Ojiechknii HarioHaJibHUI yHiBepenTeT imeni [. I. Meunukosa
DakyabTeT MaTeMaTUKN, (PI3UKN Ta 1HHOPMAIIITHIX TEeXHOJIOT{

Kadenpa ontumaabHOro KepyBaHHs 1 eKOHOMIUHOI KiOEPHETHKH

JnmmomHa podora

Ha 3JI00YTTd CTYIIE€Hs BUIIOI OCBITH «MaricTp»

Ha Temy: «/loBegeHHS 3 HYJIbOBUM PO3TOJIOHNIEHHSM B

3aJa9ax aHOHIMI3amil (piHAHCOBUX oIlepamiii»

«Zero-knowledge proof in the tasks of anonymization of financial transactions»

Bukonas: cTyjieHT JieHHOT (hOpMU HABYAHHS
cueriasgbiaocti 113 Ipukiajgna MmaTeMaTnka

[IpokorioB Emmanyin KoctssaTrnHOBIY

KepiBauk: kamyg. TexH. nayk., joi. Masypok I. €.

Penenzent: kamja. texn. Hayk, mpod. Mopos B. B.

PexkomenjioBano 10 3axucty: Baxuieno Ha 3aciganai EK Ne

[Iporokon 3acijanns Kadeapu [Iporokosr Ne BLI 2021 p.
Ne Bij 2021 p. Ominka / /

SasiyBau kadenapu [osioBa EK

Opeca — 2021 p.

Odesa I. I. Mechnikov National University
Faculty of Mathematics, Physics and Information Technology

Department of optimal control and economical cybernetics

Diploma thesis

master

Zero-knowledge proof in the tasks of anonymization of

financial transactions

Fulfilled by: full-time student
specialty 113 Applied Mathematics

Prokopov Emmanuil

Supervisor: Ph.D. of Engineering Sciences,
Assoc. Prof. Mazurok I. Y.

Reviewer: Ph.D. of Engineering Sciences, Full
Prof. Moroz V. V.

Odesa — 2021

CONTENTS

Beryn 4
Introduction 6
1 Zero-knowledge proofs 8
1.1 Illustrative examples 11
1.1.1 Two balls and the colour-blind friend 11

1.1.2 The strange cave of Ali Baba 12

1.1.3 Yao’s Millionaires’ Problem 14

1.2 Examples of zero-knowledge proofs used in practice 15
1.2.1 Fiat-Shamir identification protocol 15

2 Usage of zero-knowledge proofs in distributed financial systems 18

2.1 Mimblewimble protocol 18
2.2 zk-SNARK protocols 22
2.2.1 General description 22

2.2.2 Polynomial commitments 25

223 Privacy 27

2.2.4 Using zk-SNARKSs for range proofs 28

3 zk-SNARK range proofs 30
3.1 Computational experiment description 30
3.2 Analysis of the obtained results 30
BucuoBknu 33
Conclusion 34
Bibliography 35

Appendix A 37

BCTVYII

VY 1iit poboTi PO3IJISAIAETHCS BUKOPUCTAHHSI JIOBEJIEHD 3 HYJIHOBUM PO3IO-
JIOIIIEHHSIM J1JIsi TIOOY/IOBU JICIIEHTPaJII30BaHNX (PIHAHCOBUX CHUCTEM, IO MOTJIN O
3a0e3MednTH BUCOKIH piBeHb aHOHIMHOCTI (piHAHCOBUX TpaH3aKIliil (MIpUXOoBy-

BAHHSI BiJI TpeTix ocib BiAPaBHUKA, OJIepKyBada Ta CyMME TPAH3aKIIil).

[Ig Tema € akTyaJbHOIO, OCKLJILKH B OCTAHHI POKU CIIOCTEPITAETHCA 3HATHE
3poCTaHHsI iHTepecy JI0 JeleHTpaJizoBannx dpiHancoBux cucrem. Ilepri cucremn
takoro Tumy (Bitcoin, Ethereum) zabesnedyBain KopuctyBadam BHCOKHIL, y
IOPIBHSIHHI 3 TpaJuiifiHnMu (piHAHCOBUMH CUCTEMAaMU, PiBeHb AHOHIMHOCTI,
OCKIJIbKI aJIpeca KOPUCTYBaUiB He CTaBUJIACS Y BIAIIOBIIHICTD /10 1X imeHTrdiKaIiii-
Hux jannx. OjiHak 3a3HadveHi cucreMu 30epiraloTh yCiO 1CTOPII0 TpaH3aKIiil
y yOJidHOMY JIOCTYII. 3 OJHOTO OOKY, Iie 3abe3redye OiIbIIy Mpo30picThb. 3
IHIIIOTO, Y BUIIQJIKY, SIKIIIO TPeTiM ocobaM OYJIb-gKUM YMHOM CTaHyTh BiJIOMI
ienTudikalliiiii aHi BJIACHUKA II€BHOI aJpecu y CHCTeMi, IM TakoxK Oye
JIOCTYIIHA ITOBHA 1CTOPis TpaH3aKiliii miel ocodu. Ile € nebakanmm, y 3B’ 3Ky
3 [IUM BUHUKAE iHTEpeC JIO0 aHAJIONIYHUX CUCTEM, sKi NPUXOBYBaJIU O aJjipecy
BIJIIpaBHUKA, OJIePXKyBada Ta CyMy TpaH3aKIlil Biji cropoHHIx ocib. Taki cucremu
(Grin, Firo) BUKOPHCTOBYIOTH JIOKA3U 3 HYJIBOBUM DO3TOJIONIEHHSIM, 1100 3p00UTH
MOXKJINBOIO IIePeBIPKY KOPEKTHOCTI TpaH3aKIlil TpeTiMu ocobaMu, YHUKAIOTH

[IPU 1[bOMY PO3TOJIOIIEHHS 3a3HaYEeHUX JTaHUX.
Hasami B poboTi Oy/1yTh BUKOPUCTOBYBATHCA HACTYIIHI O3HATYEHHS:

dinaHcoBa cucTeMa — CYKYIHICTH (DIHAHCOBUX OlEpalliii, AKi MPOBOISATHC
cyb’ekTamu (hiHAHCOBOI JIiAJIBHOCTI 3 BUKOPHUCTAHHSIM IIEBHOI'O (PiHAHCOBOTO
MexXaHi3My. ¥ BaulaJKy JeleHTPa/i30BaHol (piHaHCOBOXI CUCTEMHU TaKUM MeXa-

HI3MOM € IIPOTOKOJI, 38 SAIKUM JIi€ I8 CUCTEMA.

Tpanzaxiiig y JerenTpaJsizoBaniit piHAHCOBIN cucTeMi — TIe Ipyla MOC/Ti-
JIOBHUX OIIepalliif, 0 3MIHIOIOTb CTaH CHUCTEMHU. 3a3BUYail BOHA MICTUTD
IIOCUJIaHHS Ha IIONepeHl TpaH3aKIlll Ta acollllo€ MeBHY KIJIbKICTb OJUHUILb

BaJIIOTU 3 OJIHUM a00 KiJIbKOMa aJipecaMu KOPUCTYBa4diB CHCTEMHU.

Maiinep — By30J1 cCTEeMH, IO 3aiiMAETHCA BaJliIallielo HOBUX TPaH3aKIIii

y CHUCTEMI1, OTPUMAIOYNU 3a 11€ TIeBHY BUHATOPOJLY.

O6’ekTOM J10CJIIJIZKEHHST JJaHOI POOOTH € BUKOPUCTAHHSI JIOBEJICHD 3 HYJIhO-
BIIM PO3T'OJIOIIEHHSIM B 3aja4aX aHOHIMIzaIl1l (hinaHcoBUX TpaH3akiiil. IIpeamerom
JIOCJIJIZKEHHS € JIOBEJIeHHS 3 HYJIbOBUM PO3TOJIONIEHHS Ta IPOTOKOJIN JIelleHTpa-
J30BaHUX (BIHAHCOBUX MEPEXK IO IX BUKOPUCTOBYIOTH, MOZKJINBICTD 1X BUKOPUCTAHHST
JITIsT aHOHIMIBaIlIT Tpan3akIiil B icHyiounx (gpinancoBux Mepexkax. Metoro podborn
€ JIOCJIIJIPKEHHSI CIIOCO0IB Ta, JIOILJILHOCTI 3aCTOCYBaHHSI J0BEIEHD 3 HYJIHOBUM
PO3TOJIONIEHHSM JIJIsT 1TOOYI0OBU PO3MOIIJIeHNX (PiHAHCOBUX CUCTEM, Y SIKUX

dinaHncoBi TpaH3axiiil Oy O aHOHIMIZOBAHIMIU.

VY xXoji BUKOHaHHA poboTu OYB po3pobJIeHMT MPOrpaMHNii JTOIaTOK JIJIst
MOJIEJTIOBAHHST POOOTH POBIVIAHYTHX Yy POOOTI IIPOTOKOJIIB. 3a TeMOI0 poboTn

HasiBHI JB1 my6utikanii |1, 2|:

1) Prokpov E. K.: Proof of zero-knowledge in the tasks of anonymization of
financial transactions. CtaH, 1oCsrHEHHST Ta IePCIEKTUBU 1HMOPMAIIITHIX
cucreM 1 TexnoJioriit / Marepiamun XXI BeeykpallchbKol HayKOBO-TEXHITHOT
KoHepeHIIil MOJIOJINX BUCHUX, acii-paHTiB Ta cryaenTtis. Ojeca, 22-23
kBiTas 2021 p. — Onxeca, Bupasaunrso OHAXT, 2021 p. — 229 ¢c. —
C. 51-52.

2) Prokpov E. K.: Proof of zero-knowledge in the tasks of anonymization of
financial transactions. Current issues of science, prospects and challenges.
Vol. 2 / Collection ofscientific papers «SCIENTIA» with Proceedings
of the I International Sci-entific and Theoretical Conference. Sydney,
December 17 2021. — EuropeanScientific Platform, 2021. — 111 p. —
pp. 43-44.

INTRODUCTION

This paper considers the usage of zero-knowledge proofs in decentralized
financial systems that could provide a high level of anonymity of financial
transactions (concealment of the transaction sender, recipient, and amount from
third parties).

This topic is relevant because of a significant increase in interest in
decentralized financial systems in recent years. The first systems of this type
(Bitcoin, Ethereum) provided users a high level of anonymity compared to
traditional financial systems, as users’ addresses in the systems were not matched
to their personal information. However, these systems keep the entire history
of transactions publicly available. On the one hand, this provides greater
transparency. On the other hand, if third parties somehow become aware of the
identity of the owner of a certain address in the system, they also have access
to the full history of transactions of this person. This is undesirable, so there
appeared interest in similar systems that would hide the addresses of the sender,
recipient, and the amount of the transaction from third parties. Such systems
(Grin, Firo) use zero-knowledge proofs to make it possible for the third parties
to verify the correctness of the transaction while avoiding the disclosure of the
listed data.

Further in this paper, the following definitions will be used:

A financial system is a system that allows the exchange of funds between
participants of the system, using a certain financial mechanism. In the case of
a decentralized financial system, the financial mechanism is the protocol over

which this system operates.

A transaction in a decentralized financial system is a group of successive
operations that change the state of the system. It usually contains references
to previous transactions and associates a certain amount of funds with one or

more system user addresses.

A miner is a system node that validates new transactions in the system

and receives a certain reward for this.

The object of research of this work is the use of zero-knowledge proofs

in the problems of anonymization of financial transactions. The subject of the
study is zero-knowledge proofs and protocols of decentralized financial networks
that use them, the possibility of using zero-knowledge proofs to anonymize
transactions in existing financial networks. The aim of the work is to study
the ways and expediency of using zero-knowledge proofs to build distributed

financial systems in which financial transactions would be anonymous.

During the research, a software application was developed to model the
work of the protocols considered in the paper. There are two publications on

the topic of the paper [1, 2[:

1) Prokpov E. K .: Proof of zero-knowledge in the tasks of anonymization of
financial transactions. Status, achievements and prospects of information
systems and technologies / Proceedings of the XXI All-Ukrainian scien-
tific and technical conference of young scientists, aspirants and students.
Odessa, April 22-23, 2021 — Odessa, ONAFT Publishing House, 2021 —
229 p. —pp. H1-52.

2) Prokpov E. K.: Proof of zero-knowledge in the tasks of anonymization of
financial transactions. Current issues of science, prospects and challenges.
Vol. 2 / Collection ofscientific papers «SCIENTIA» with Proceedings
of the I International Sci-entific and Theoretical Conference. Sydney,
December 17 2021. — EuropeanScientific Platform, 2021. — 111 p. —
pp. 43-44.

CHAPTER 1

ZERO-KNOWLEDGE PROOFS

Zero-knowledge proofs are a class of cryptographic protocols that allow
one agent (the prover) to prove to another agent (the verifier) that a specific
statement about some data is true, without disclosing any additional information
about this statement (without disclosing the data itself or the source from which
the prover found out about the veracity of the statement) [3]. This condition is
necessary since it is usually trivial to prove that an agent has certain information
by simply disclosing it. Zero-knowledge proofs are useful in cases when the
prover does not have the right to disclose information to the verifier and third

parties.

The protocol should take into account that the prover must only be able
to convince the verifier if the provided proof is actually valid. Otherwise, it must
be impossible to do this, or extremely unlikely due to the high computational
complexity. With the help of zero-knowledge proofs, the verifier can make
sure that the prover does indeed have some specific information, while the
information is not disclosed. This allows using these algorithms for proving
some statements about secret information while using insecure communication

channels, without the risk of third parties revealing the information [4].

In general, the concept of proof in zero-knowledge proofs is quite similar to
the classical understanding of proof in mathematics. Two main agents participate
in the protocol: the prover and the verifier. In classical mathematical proofs
(proofs of lemmas, theorems, etc.), the personality of the prover is somewhat
transcendental. At the same time, the identity of the verifier is quite clearly
defined - this is a person who reads the text of the proof and performs all its
stages to make sure that it is true. In the interactivity of agents in zero-knowledge
proofs, these roles are much more evident. The fundamental assumption is that
the verifier initially does not trust the prover. It is assumed that the prover
may try to deceive the verifier. Otherwise, if the prover is trustworthy, it is

inappropriate to require him to provide any proof.

Typically, a zero-knowledge proof is an interactive cryptographic protocol.

The verifier seeks to make sure that the prover has knowledge about some secret.
The verifier sends a request to the prover to solve some mathematical problem.
In response to this, the prover sends the verifier the solution of the problem,
which he has obtained using the secret. This solution is considered the proof.
After that, the verifier checks the correctness of the received solution. If it is
correct, the verifier accepts the hypothesis that the prover knows the secret. It is
required that the problem has high computational complexity so that it is only
possible to quickly calculate the solution if the prover knows the secret (there
is no polynomial-time algorithm that would allow finding a solution without
knowing the secret). The verifier should be able to easily check the correctness
of the obtained solution. Also, it should not be possible to extract knowledge
about the secret from the received solution (in practice it is usually required that
the problem of calculating the secret from the obtained solution is sufficiently

computationally difficult).

There are also zero-knowledge proof protocols that do not require inter-
active input data. Such protocols tend to rely on the assumption of a perfect
cryptographic hash function (which means that the output of a one-way hash

function cannot be predicted if the function input is unknown) [5].

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone provide

the following definition for zero-knowledge proofs [6]:

Definition 1.1. A zero-knowledge proof is an interactive protocol that allows
the prover to convince the verifier that some specific statement is true. The

protocol must satisfy the following three properties:

1) Completeness: If the prover and verifier are honest, the prover is likely to
convince the verifier with sufficient probability. The definition of sufficient
probability depends on the specific algorithm and the application, but it
usually means that the probability that the verifier will reject the provided
proof under the specified conditions is negligible. This means that if the
statement is actually true, then the prover will convince the verifier with
any predetermined probability. Here we define an honest prover as a
prover who will try to convince the verifier that the statement is true only
if it is actually true. An honest verifier is a verifier who admits that the

statement is true only if he is provided with valid proof.

10

2) Soundness: If the statement is false, no dishonest prover can convince an
honest verifier that the statement is true. The opposite is possible, but it
is negligible.

3) Zero-knowledge: the prover must not provide any additional information
about the statement other than the fact that the statement is true or
false to any (honest or dishonest) verifier. Also, it is important that
there does not exist a polynomial algorithm that allows the verifier to
obtain any additional information about the statement from the provided
proof. In addition, if the procedure of proving truthfulness of the same
statement between the same prover and verifier occurs several times (in
several rounds), then the proof obtained by the verifier in the previous
round must not increase his chances of extracting additional information

about the statement from proofs obtained in the next rounds.

Remark 1.1. Consider an observer who has access to open communication
channels that are used by the prover and the verifier during the execution of the
protocol. The observer witnesses the request sent from the verifier to the prover,
the proof that it sends in response, and the negative or positive verdict of the
verifier. However, this does not give the observer any confidence in the truth or
falsity of the statement, since the verifier and the prover could have agreed in
advance about the list of tasks that the verifier sends. In addition, the observer
cannot be sure whether the verifier and the prover are acting honestly. This is
a very important property of interactive zero-knowledge proofs: as the result of
execution of the protocol, only the actively participating verifier receives new

information about the statement [6].

Remark 1.2. None of the above three properties, or any combination of them,
does not guarantee that the protocol is secure. A necessary condition for the
security of the protocol is the fulfillment of all three of these properties and
the fact that the mathematical problem that is used for building the proof (the
problem on which the protocol is built) is computationally hard. [6].

When compared to classical public-key cryptographic systems, the follow-

ing observations on zero-knowledge proof protocols can be made [6]:

1) No degradation with usage: The security of protocols using zero-knowledge

11

proofs does not suffer degradation with repetitive use, and is resistant to
text selection attacks. However, many public-key systems are vulnerable
to this type of attack.

2) Many zero-knowledge protocols do not explicitly use data encryption,
which can be useful in some situations (for example, when applied to
decentralized financial systems, it can increase user trust in the system).

3) Efficiency: often protocols based on interactive zero-knowledge proofs,
due to their nature, have relatively low computational efficiency and may
create a relatively high load on communication channels.

4) Depending on the problem on which they are based, some zero-knowledge

protocols may use unproven assumptions (like the P versus NP problem).

[lustrative examples

Below there are some illustrative examples of zero knowledge protocols.

Two balls and the colour-blind friend

Consider two people standing in the room: V. (the verifier) and P. (the
prover). On the table between them are two balls, which differ only in color:
one is red, the other one is green. V. is color blind and cannot distinguish one
ball from another. P. can see the color difference and can distinguish them. V.
doubts that the balls are distinguishable. At the same time, P. wants to prove
this to V., without revealing which of the balls is red and which is green. The
proof is carried out as follows: V. takes both balls in his hands and hides them
behind his back. Then he shows one of the balls to P. Then V. puts it behind
his back, and then again shows only one of the two balls, choosing one of them
randomly with equal probability. He asks P. if the same ball was shown for the
first time, or another one. P. can distinguish the balls and tells V. the correct
answer. Now V. knows that P. probably actually can distinguish the balls. Or
P. just was lucky to guess, with a probability of 50%. Then all actions can be
repeated once more so that the probability that P. guessed the correct answer

twice in a row is 25% [4].

This is an example of an interactive zero-knowledge proof. In this case,

12

the following statement is being proved: P. knows the colors of the balls, and,
accordingly, can distinguish them. Each round of proofing consists of several

steps:

1) V. Shows P. one of the balls.

2) V. randomly selects one of the balls, shows it to P, and asks P. to say
whether the same ball was shown at the first time or not.

3) As proof, P. tells V. the correct answer.

4) If the answer is incorrect, V. does not believe P. If it is correct, V. believes
that P. does indeed have the required information about the statement,
or asks for another round.

So, after n rounds V. will make sure that P. knows the colors of the balls, with
probability 1 — 2% In this case, P. will not receive any additional information
about how he could distinguish the balls if they were mixed randomly. At the
same time, P. can never be completely sure that D. is telling the truth, but can
convince of this with an arbitrarily high probability. It is easy to notice that

this algorithm satisfies the three properties from definition 1.1.

The strange cave of Ali Baba

This illustrative example was first published by Jean-Jacques Quisquater

and others in their paper "How to Explain Zero-Knowledge Protocols to Your
Children" |7].

In this example we consider a torus-shaped cave (figure 1.1):

13

Figure 1.1. The cave scheme

The cave has an entrance at point B, and at its opposite end, between
points C and D, there is a door, which can only be opened if one knows the
secret password. The verifier (V.) wishes to make sure that the prover (P.)
knows the password. At the same time, the prover does not want to disclose

the password to the verifier. Then they act as follows:

1) V. and P. Move to the entrance to the cave, to the point A. V. waits at
point A, while P. enters the cave and goes to one of the points C or D.

2) After some time, sufficient for P. to hide out of sight, V. moves to point B
and shouts out loud from which side P. should go out. Suppose V. wants
P. to come out from the right. Then, if P. is at point D, he just exits the
cave. If he is at point C, he uses the password to open the door, moves to
point D, and exits from the required side.

3) Seeing that P. has exited from the correct side, V. understands that either
P. has the password, or he has guessed at which point he would be asked

to show.

The chance that P. just guessed from which side he would be asked to
show is 50%. Thus, repeating the procedure n times, P. can convince V. that he
1

knows the password with probability 1 — 5. Obviously, this algorithm satisfies

the properties of completeness, soundness and zero-knowledge.

This example illustrates Remark 1.1 well: if a third-party observer is
watching the procedure, he cannot be sure that P. indeed knows the password,
since P. and V. could have agreed in advance to deceive the observer. The only
way for an observer to make sure that P. knows the password is to participate

in the protocol himself in the role of the verifier.

14

Yao’s Millionaires’ Problem

Another illustrative example, related to economics in some way, is a

discrete version of Yao’s millionaires’ problem.

The original problem has the following statement [8]. Consider Alice has
a secret number a, and Bob has a secret number . The goal of Alice and Bob
is to find out whether the inequality a < b is true, without revealing to each
other or any third parties the values of a and b, or any other information about

these numbers.

This problem is called so because, in the original setting, Alice and Bob
are two millionaires who want to find out which of them is wealthier, without
revealing the amounts of money they have. We will take a look at a discrete

version of this problem [4].

Consider Alice has a secret number a, and Bob has a secret number b
such that a and b are integers in set {1,2,...n}, where n is a natural number.
They want to check if statement a = b is true, without revealing to each other
or third parties the values of these numbers or any other information about

them. To solve this problem, the following procedure is proposed:

1) Bob enters the room alone, takes n lockable boxes, and marks each of
them with a unique number from the set {1,2,...n}.

2) Bob leaves the room and throws away all the keys to the boxes except one
corresponding to the box marked with b. Alice makes sure that Bob has
only one key left.

3) Alice enters the room. Alice slips a small piece of paper marked with the
text “Yes” into a box marked with number a. In the rest of the boxes, she
slips identical pieces of paper labeled “No”. Alice leaves the room.

4) Bob enters the room. He opens the box marked with b, takes out a piece
of paper, and leaves it on the table. He erases the marks from all the
boxes and removes them.

5) Alice enters the room and also checks what is written on the piece of
paper.

Now, if the piece of paper says “Yes,” both Alice and Bob know that a = b.

Otherwise, they know that a # b. An interesting thing about this example is

15

that in this case both Alice and Bob act as both the verifier and the prover.
The algorithm satisfies the third property from definition 1.1 (zero-knowledge),
since neither Alice nor Bob acquire any knowledge about the numbers a and
b except for the correctness of the provided statement. On the other hand, it
does not satisfy the second property, since both Alice and Bob can successfully
cheat. Alice can slip a piece of paper labeled “Yes” into the wrong box. Bob

can keep the key to another box, not the one marked with b.

Examples of zero-knowledge proofs used in practice
Fiat-Shamir identification protocol

Fiat-Shamir protocol is a well-known and widely used zero-knowledge
protocol [6]. It is an identification protocol in which the user proves his identity
by proving that he knows the value of the square root of some number ¢, which
serves as the user’s public key. The protocol is based on the fact that the task

of calculating the square root of a number by some modulo is computationally
hard.

The setup phase consists of several steps:

1) A trusted third party chooses two large primes p and ¢, computes their
product n = pq, and communicates the value n to the users.

2) Users, using the obtained value of n, generate their public keys. Each
user chooses a random number s such that 1 < s <n — 1. s now is the
user’s private key. Next, each user calculates the value of his public key ¢:

t = s mod n.

There also exist modifications of this algorithm that do not require a

trusted third party for the setup phase [6].

The identification itself is performed in several rounds. Each round has
the following structure:

1) The prover chooses a random number v such that 1 < v < n—1, calculates

2 mod n, called the fixer, and sends it to the verifier.

the value ¢ = v
2) The verifier sends the prover a random bit r € {0, 1}.

3) The prover calculates the value x = vs” mod n and sends it back to the

16

verifier.

The verifier considers the result of the round to be positive if the equality
22 = qt" mod n is satisfied. It is easy to show by substitution that if the prover

acts honestly, these expressions are equal:

22> mod n = ¢t" mod n

(vs")?> mod n = v*t" mod n

25?7 mod n = v%2s* mod n

The probability that a dishonest prover (who does not know the secret
key s) in one round can pass the check is 3 [6]. Therefore, after z rounds, the
probability that a cheater could be mistaken for a user knowing the secret s is
2%. By setting the required number of rounds sufficiently large, it is possible to

reduce the probability of cheating to any required value.

An important remark is that that the randomness of the verifier’s request
generated at the second step is a fundamental part of the protocol. If the request
is known in advance, a potential dishonest prover can easily mislead the verifier.
In each round, the dishonest prover has two possible patterns of behavior. If
he expects a request to be r = 0, he chooses a random number v and passes
the value ¢ = v*> mod n to the verifier. If he receives a request r = 0 from the
verifier, then the prover sends the correct answer x = v. However, he cannot
correctly answer if the request is = 1. In the opposite case, when the expected
request is r = 1, the dishonest prover chooses a random number v and sends

)2

the number ¢ = %~ mod n to the verifier. If he receives a request 7 = 1 from

the verifier, he sends the answer x = v, which will be accepted by the verifier

2 2

. 2
as correct, since g¢ mod n = %t mod n = v mod n = x* mod n. However,

the prover will not give the correct answer to the request » = 0.

There is a simple modification of the protocol that allows reducing the
required number of rounds to one, thereby significantly reducing the requirements
for communication channels [9]. It relies on a version of the protocol that exploits
the difficulty of the task of calculation of a root of a large simple degree by a
simple modulus to avoid a trusted third party in the setup phase.

k

For public keys generation, numbers of the structure £ = s* mod p are

used, where p is a prime number of a special structure: p = Nk? + 1, where k

17

is a prime number. Unlike the iterative protocol, this version assumes that each
k

user has h values t; = s} as a public key, where s; are secret values, 1 = 1,2, ..., h.

This allows h one-bit requests of the iterative protocol to be combined into a
single h-bit request F, and the identification process, which now takes only one

round, consists of the following steps:

1) The prover chooses a random number v such that 1 < v < p—1, calculates

k

the value of the fixer ¢ = v mod p, and sends it to the verifier.

2) The verifier generates a random h-bit number £ = (eq, e, ...,€;) and

sends it to the prover.
h
3) The prover calculates the value W = v [[" mod p and sends it as a
i=1
response to the received request.

h
The verifier considers the answer correct if the relation W* = ¢ [] ¢§'
i=1
mod p is true. The probability of deception is 2%, which is determined by the

following actions of the dishonest prover trying to impersonate the owner of the

open key (1, ta,..., t5). The prover generates a random request £ = (eq, eg,..., €p,)

and a random response W, and then calculates the value of ¢ = W* ﬁ t.
mod p. Then, at the first step of the protocol, he sends the received ﬁxe;‘:\lfalue
to the verifier, expecting to receive a request £ = E, which is an event with
probability 2% When such an event occurs, the dishonest prover successtully

passes the authentication procedure.

18

CHAPTER 2

USAGE OF ZERO-KNOWLEDGE PROOFS IN
DISTRIBUTED FINANCIAL SYSTEMS

Distributed financial systems built using zero-knowledge proofs are of
great interest to the public. They offer a significantly higher level of anonymity
by hiding a lot of transaction details such as the sender and recipient addresses
or the amount of the transaction. Such systems have another strong advantage
over classical distributed financial systems, which store the entire transaction
history publicly available. Some of them do not require storing the complete
history of transactions !!!, but only its actual part. This leads to a significant
reduction of the requirements to the memory size of the network node and

increases the scalability of the system.

On the other hand, this is also the source of the main disadvantage of this
kind of systems. Without a complete history of transactions, the user can make
sure of the correctness of the system only by understanding the principle of its
operation. This raises a problem since usually the protocols used in practice
are quite complex. And often, the more reliability the protocol can provide,
the more complex it is. This can lead to high distrust of a significant part
of potential users to the system because of inability to understand the “moon
math”, which greatly increases the entry threshold. Furthermore, the simpler
the system is, the easier it is to maintain and perform the audit. It is highly
important since many projects using zero-knowledge proofs are open-source and

community-driven.

Mimblewimble protocol

Mimblewimble is a blockchain format and protocol using zero-knowledge
proofs. It provides relatively high scalability, privacy, and anonymity of transac-
tions. One of the implementations of this protocol is the open-source project
Grin [10].

To ensure a high level of transaction anonymity, Mimblewimble uses

19

elliptic curve cryptography. In this paper, we will not discuss cryptography on
elliptic curves in detail, but below we will provide a description of their basic

properties.

An elliptic curve defined over a certain field is a set of points [6]. Consider
an elliptic curve C'. For the points of the elliptic curve, the operations of addition
and scalar multiplication are defined in a specific way. Consider an integer
number k. Then, using scalar multiplication, it is possible to calculate k x H,
and the product is also a point on the curve C. Elliptic curves form an abelian
group with respect to the addition operation. Consider another scalar j, then
it is also possible to calculate (k + j) * H. Addition and scalar multiplication
on the Elliptic Curve satisfies the commutative and associative properties of
addition and multiplication: (k+j)*« H =kx H + j x H.

In elliptic curve cryptography, if a large scalar value of k is considered as
the private key, then the product kx H, where H is the point of the elliptic curve,
can be used as the corresponding public key. Although multiplication by a scalar
in elliptic curves is trivial, division by a point of a curve is computationally
difficult. Thus, even if someone knows the value of the public key k x H,

calculating k is close to impossible.

The previous formula (k4 j) * H = kx H + j %« H, where k and j are
considered to be secret private keys, shows that it is possible to obtain a public
key by adding two private keys and this operation is identical to adding two

corresponding public keys.

The Mimblewimble protocol achieves a high level of anonymity using the
specific transaction structure. The verification of transactions relies on two

basic properties:

1) Zero sums verification. The sum of transaction’s inputs must be equal
to the sum of transaction outputs. This proofs that transaction does
not create new tokens, without revealing the actual input and output
amounts.

2) Private key ownership. Like in many other distributed financial systems,
the user’s ownership of specific transactions outputs is guaranteed by
the possession of elliptic curves private keys. However, the proof that

the user owns specific private keys is not achieved by simply signing the

20

transaction.

Elliptic curves properties allow obscuring the values in a transaction.
Consider v is an input or output value of a transaction, and H is an elliptic
curve. Then instead of directly adding v into the transaction’s data, v is
substituted with v« H. This is possible because it is still possible to ensure
that transaction outputs and inputs sum equals zero using the properties of the
elliptic curve. Consider a transaction with two inputs vy and vy and one output
vg. Then v; + vy =v3 = w1 * H + vy x H = vg % H. This allows ensuring
that the transaction does not create new tokens without revealing its inputs

and outputs.

In practice, the set of possible values of transaction inputs or outputs is
finite and quite small, so it would be possible to reveal the amount v using brute
force. Moreover, knowledge of the value of a specific transaction input or output
v reveals output values of all further transactions that use v; [10]. To avoid
this, consider another elliptic curve (G, which is another generator of the group,
generated by H. Also consider a private key r used as a blinding factor. Thus,

input and output values of a transaction are encoded as r * G + v * H, where:

1) ris a private key used as a blinding factor. G is an elliptic curve. rx G is
a public key on the curve G.
2) v is the value of an input or an output of a transaction. H is another

elliptic curve.

Due to elliptic curves properties, it is difficult to compute r and v. As an
example, consider creating of a transaction with two inputs v; and vy and one
output vs. If it is a valid transaction, then vq +wv9 = v3. Following the described
procedure, a blinding factor is generated for every input and output. So the
new equation is (r1 * G+vyx H) 4+ (rox G+ vy H) = (r3« G + v3* H), which
implies that r; + r9 = r3. So, transaction amounts can be validated without

revealing their amounts.

Another idea introduced by Mimblewimble is that the same private key r
that is used for blinding the transaction value can be used to prove ownership

of that value.

Consider Alice wants to send Bob vy tokens. To blind this amount, Bob

chooses r as a blinding factor. Then somewhere on the blockchain the following

21

unspent transaction output that should only be spendable by Bob appears:
X =171 * G+ vy * H. The addition result X is a public value, value of vy is
known by Alice and Bob, the r; value is known only by Bob. To spend these
vy tokens, the protocol requires the user to know the secret key r;. Consider
Bob now wants to transfer these v; tokens to Carol. Then he should create a
transaction such that X; = Y, where X; is a transaction input that spends
the output X of the previous transaction, and Y is a transaction output for
Carol. There is no way to create such a transaction without knowing the secret
key r1. Of course, if Carol accepts the transaction, she has to know the value of

the private key r; and the value v;. The resulting transaction sum equals to
zero: Y — X;=(mxG+uv*xH)—(ri*«G+uvxH)=0xG+0xH.

This is unacceptable because in this case the same private key r1 must
be used by Carol to spend the output of this transaction, but it is also known
to Bob, so this output is spendable by Bob too. So, Carol generates another

private key ro. Then the following equation would be written in the transaction:
Y- Xi=(rexGH+uvy*sH)—(rn«G+unxH)=(ro—r)«G+0x H.

The sum of this transaction is no longer zero, but it is still possible to validate
it. There is an extra value on the curve G' (ro — 1) which equals the sum of
all blinding factors. Note that (ro — r1) is a valid public key for the generator
point G [10]. For any scalars x and y the sum z x G 4+ y % H is a valid public
key on G only if y equals zero. Therefore, the protocol needs to verify that the
transacting parties can collectively produce the private key (ro — 71) for the
resulting point Y — X;. It is done in a simple way by signing the transaction

with the extra value (ro — 1) and verifying the signature using the public key
Y — X;. This ensures that:

1) Transaction participants collectively know the private key, so the sender
had the right to send the tokens.

2) Transaction does not create new tokens.

This signature must be checked by the validators to ensure that the

transaction is valid.

In all the described formulas it is considered that the values inputs and

outputs are always non-negative. If negative values would be allowed this would

22

allow the creation of new tokens in a transaction. For example, consider a
transaction with one input with value 5 and two outputs with values 7 and
—2. This still would be a valid transaction, according to the formulas. This
case would be hard to detect as transaction values are blinded and point -2*H
is indistinguishable from any other. The same problem would be caused by

overflowing values.

To solve this problem, Mimblewimble uses range proofs [11]. It is a non-
interactive zero-knowledge protocol that is used for generating the proof that
some specific value belongs to a specific range (in the case of Mimblewimble
the considered range is from 0 to the maximum integer value that does not
overflow). Such proof can be verified by any third party without revealing the

value. But range proofs are not the only way to solve this problem.

zk-SNARK protocols
General description

Another family of general-purpose non-interactive zero-knowledge proof
protocols that attracts a lot of interest in recent years is zk-SNARKSs (zero
knowledge succinct arguments of knowledge) [12]. Zk-SNARKSs are used to
generate compact proofs that some computation (that often can be hard)
has some particular output. These proofs can be verified quickly, while the
underlying computation may be complex. This family of protocols is often used
in distributed financial systems (e. g. Zcash) for increasing system scalability and
anonymization of specific transactions details. Two main features of zk-SNARKSs

(when applied to distributed financial systems) are:

1) Scalability: in such systems verification of a newly created transaction is
often a problem as this may require heavy computations. This gets even
worse in systems that provide some transaction anonymization as they
often use complex cryptography. Interactive protocols are not appliable
in this case as exchanging messages between the verifier and the prover
would create a heavy load on the communication channels. Usage of
non-interactive protocols allows the prover to calculate the proof once and

attach it to a transaction, without receiving any initial requests from the

23

verifier. After that, any verifier may check if the proof is valid.
2) Zero-knowledge: the protocols allow proving some statements about a

value without revealing it.

This kind of protocol may be used for building succinct proofs for results
of very heavy computations. This is useful if the computation should be verified
often by a big number of verifiers, and the computations are too complicated to
repeat every time. The proof is considered “succinct” if the proof size and time
required for its verification asymptotically grow significantly slower than the

size of computations for which it is built [13].

When building proof for a large computation, the verifier must not check
each step of the computation, but he still should be able to check if the prover is
honest. If the computation consists of multiple repetitive steps, the natural idea
is random sampling. This idea is quite similar to one described in the interactive
protocols that are discussed in the previous chapter. The verifier may check
the intermediate computation result on several randomly chosen steps. The
prover does not know the number of steps in advance, so if a set of required
intermediate results is big enough, the probability that the prover is dishonest

is negligible.

Considering that the computation consists of similar repetitive blocks, it
is easy to build a non-interactive version of an interactive zero-knowledge proof
protocol using the Fiat-Shamir heuristic [12]. Zk-SNARKs use Merkle trees for
applying this heuristic.

A Merkle tree is a binary tree, such that its leaves contain hashes of data
blocks, and its inner vertices contain hashes of combinations of values in the
child vertices. The root element of the tree contains the hash of the whole
data set, so Merkle three may be considered as a one-way hash function. It
makes getting the hash of a combination of specific values easy and may be used
for verification of the values. In general, the three may use any hash function.
When a new data block is added, its hash is put into a new leaf node, and all

the parent node’s values are updated one by one.

The basic idea of the Fiat-Shamir heuristic is quite simple. In interactive
proof protocols, random requests to the prover are generated by the verifier. To

make the protocol non-interactive, the prover performs the computation and

24

calculates its Merkle tree. After that, he uses the root of the tree to pseudo-
randomly generate a set of random indexes and provides the Merkle branches
with corresponding indexes. The key idea is that the prover does not know
in advance which branches he will have to disclose before the computation is
completed. If the dishonest prover tries to fake part of the data after he knows

the indexes, this changes the Merkle root, so the set of indexes also changes.

Another problem is that if the prover makes a mistake at some point in
the computation, it is difficult to detect that during the verification. Using
polynomials for encoding the data is the solution used in zk-SNARKs [14].

A polynomial of a single indeterminate is an algebraic expression form
n

P(x) =" ¢x'. A useful property of polynomials is that they contain informa-
tion abollj‘(c) a huge set of values, which is received by evaluating it for integer
argument values. For example, if the equation A(x)+ B(x) = C(x), where A(x),
B(z) and C(x) are polynomials, is true , it is true for any x. Consider two large
sets of values that should be checked for equality. Brute force comparison would
require linear time with respect to the sets size. It is possible to build a Lagrange

polynomial for each set and compare the coefficients of these polynomials.

It is also possible to check relations between a large number of adjacent
evaluations of the same polynomial. This is achieved using the first corollary
of the polynomial remainder theorem [14|. Consider a polynomial P(x) that
evaluates to zero for elements of some set S = 1, x9,...,x;. Then P(x) can be
expressed as P(x) = Z(z)*H(z), where Z(x) = (x—z1)*(x —29) *. .. x(x—x}),
and H (zx) is a polynomial. If a polynomial equals zero across some set, it is a

multiple of the lowest-degree polynomial that equals zero across the same set.

A simple example is checking if a polynomial encodes the Fibonacci
numbers [14]. Consider a polynomial F'(x). The task is to check if F(z + 2) =
F(x)+ F(x+ 1) for x € {0,1,...,98}. Usually this would require a hundred
polynomial evaluations and comparisons, this may be a lot of computation.
But it is also possible to prove that F actually satisfies the required condition

by proving that the polynomial P(z) = F(x 4+ 2) — F(x + 1) — F(x) is zero
F(z+2)—F(z+1)—F(x)
Z(x)

Zx)=(x—0)%(z—1)*... % (x —98). It is easy for the verifier to compute

over that range by providing the quotient H(x) = , where

the polynomial Z(z) and check the equation. Thus, a computation that would

25

require a hundred polynomial evaluations is reduced to simple polynomial

equation.

Polynomial commitments

Another problem is that comparing large polynomials coefficient by coef-
ficient may be computationally hard. Another technique allows reducing the

comparison time: the polynomial commitments

. A polynomial commitment is a specific way to hash the polynomials so that the
size of produced hashes is less than the size of the polynomial, and there are some
specific operations defined for hashes, that allow comparing the polynomials by
comparing their hashes. We will denote “commitment of polynomial C'(x)” as

com(C(z)), or com(C'). The common operations defined for commitments are:

1) Addition: given com(P), com(Q), and com(R) it is possible to check if
P+ Q=R

2) Multiplication: given com(P), com(Q), and com(R) it is possible to check
if Px() = R.

3) Evaluation: given com(P), scalars w, z and a supplemental proof @), it is
possible to check if P(w) = z.

These three operations may be constructed from each other. Constructing

multiplication from addition is trivial. Evaluation is more complex. To prove
%. Then the verifier can

check if Q(x) * (x — w) + z = P(z). If such a polynomial Q(z) exists, then

P(x) — z = Q(z) * (x — w) which means that P(x) — z equals zero at w as

that P(w) = z the prover can construct Q(z) =

r—w at w.

Construction of addition and multiplication from the evaluation is possible
using the Schwartz-Zippel lemma [14]. It states that if some polynomial equations
hold true at a randomly selected coordinate, then it almost certainly holds for
all the other coordinates. For example, an interactive protocol for proving the
equation P(x+2)— P(z+1) — P(x) = Z(x) * H(x) from the previous example

could consist of the following steps:

1) The prover sends the verifier the commitments of the polynomials com(P)
and com(H).

26

2) The verifier randomly selects an x-coordinate value r.

3) The prover sends the verifier zy = P(r), 21 = P(r + 1), z2 = P(r9),
zp = H(r) and the corresponding proofs Qg, Q1, Q2, Q-

4) The verifier verifies the proofs, calculates z, = Z(r) and checks that

Zo —Z1 — R) = Zp k2,

This may be easily converted to a non-interactive protocol using the Fiat-
Shamir heuristic: the prover would use some hash function to calculate r =
hash(com(P),com(H)).

Two systems wildly used in practice for building polynomial commitments
are bulletproofs [11] and FRI. In practice, the FRI implementations use a lot of

complex optimizations, but the basic scheme [14] is quite simple.

Consider a polynomial P(x) with degree less then n. In FRI the com-
mitment to P is a Merkle root of a set of evaluations to this polynomial at
some pre-selected set of coordinates. As size of the set of coordinates may be
bigger than n, it is necessary to prove that the set of evaluations was produced
by a degree < n polynomial, because a dishonest prover could simply build a

Lagrange polynomial.

Consider Q(x) is the polynomial only containing the even coefficients
of P, and the polynomial R only contains the odd ones. So that P(z) =
Q(x?) + x x R(2?). Note that the highest possible degree of @ and R is §. The
prover is asked to generate Merkle roots for @Q(z) and R(z). Then a random
or pseudo-random number r is generated and a prover is asked to provide
a linear combination S(z) = Q(x) + r * R(x). Then a relatively big set of
pseudo-random coordinates is generated and the prover is asked to provide the
branches of the Merkle tree for P,), R, and S at this coordinates. At each
of the coordinates x; the prover checks that P(x;) = Q(x?) + x; x R(z?) and
S(x:) = Q(a?) + 1+ R(a?).

Note that as @) and R both have degrees < n, the same is true for S as
their linear combination. And the same works in reverse: this guarantees that
the degree of P is less than n as P(z) = Q(x?) + x * R(z*). This prevents the
prover from choosing malicious) and R with hidden high-degree coefficients.
The described process may be done repeatedly, halving the maximum possible

polynomial degree on each round. So it would take around logs(n) to make the

27

degree small enough to be checked manually.

The complete description of the protocol for generation an FRI commit-

ment:

1) Calculate Merkle roots for P,) and R.

2) Pseudo-randomly select r depending on the values obtained in the previous
step.

3) Calculate Merkle root for S.

4) Randomly select a sufficient number k of random coordinates

5) Provide Merkle branches at selected coordinates for P, @), R and S, so
that the verifier can check that P(z) = Q(2?) + x * R(z?) and S(x) =
Q(x) + r*R(x) at all the provided coordinates.

6) Set S as new P so that the degree is reduced by 2.

7) Repeat these steps until the polynomial degree is small enough to be

checked manually.

Thus a full "FRI commitment" in this simplified version of the protocol consists
of:

1) The Merkle root of evaluations of P, @), R, and S; obtained on the first
round.

2) The pseudo-randomly selected branches of P, (), R and Sy to check that
S is correctly generated from P.

3) The Merkle roots and randomly selected branches at the following k
rounds.

4) The full Merkle tree of the evaluations of Sy so it can be checked directly.

Privacy

The problem of the described algorithm is that in some tasks it is necessary
to keep values of the polynomial at some specific in secret. Providing evaluations
of the polynomial P(z) may help the validator to recover the value of the
polynomial at another specific coordinate. In general, this is unlikely as the
proofs are succinct, so often they will not be big enough to leak big parts of

secret information. But there is a way to neglect this probability [14].

The idea is to add some extra factors to the polynomials before calculating

28

their Merkle roots. Considering the polynomial P(z) from the previous examples,
it is possible to add a small multiple of Z(x) to it to obtain P'(z) = P(x) +
Z(z) *x E(x) for some random FE(x). This obscures the data but does not
change the polynomial evaluations at the coordinates where “the computation
is happening” as Z(z) evaluates to zero at these coordinates, but this adds
enough extra “noise” into commitments to make the remaining information

unrecoverable.

Using zk-SNARKSs for range proofs

The statement of the task in terms of zk-SNARKSs is the following. Con-
sider a polynomial P(x) that evaluates at some point n to a specific secret value
P(n). Prove that for some scalar ub such that ub > 0: 0 < P(n) < 2“*! with-
out revealing the exact value of P(n). This is the common case in distributed
financial systems when it is necessary to prove that the balance is non-zero and

does not overflow without revealing its value [13].
The proof can be constructed using the following polynomial equations [14]:

1) P(0)=0

2) P(x +1) = P(z) * 2 + R(zx) for integer values of x across the range
{0...ub}

3) R(x) € {0,1} across the same range

The last two equations can be written in different form using the polynomial
Z(x)=(xr—=0)%(z —1)*... * (x — ub).

[t evaluates to zero for all values from the set {0...ub}.
1) Plx4+1)— P(x)*2— R(x) = Z(x) x Hi(x)
2) R(z)* (1 — R(x)) = Z(x) * Hy(z). This is identical to the previous form
of the equation as for any scalar value k the equation k % (1 — k) =0 is
true only if k € {0,1}.
The idea is that evaluations of P(i) build up the number bit-by-bit. In this

way, any number in the range {0,2%} can be built in at most ub steps, and

any numbers outside this range can not. For example, if P(3) = 7, then the

29

sequence of evaluations P(0), P(1), P(2), P(3) would be 0,1,3,7, in binary
format: 0,1,11,111.

30

CHAPTER 3

ZK-SNARK RANGE PROOFS

Computational experiment description

Previous chapters have discussed the Mimblewimble protocol and its weak
spots. The main problem is the fact that the protocol relies on range proofs.
Typically, decentralized financial systems are open source projects supported
by the community. Therefore, it is very important to keep the system simple.
Mimblewimble deals with bulletproofs, which are very difficult to understand
even for users with some mathematical background. In the previous chapter,
the zk-SNARK protocol was described along with a way to use it to prove that a
value is in a specified interval without revealing that number. This is achieved by
constructing a special type of polynomial and evaluating it on pseudo-randomly
generated sets of coordinates. The proposal is to modify the Mimblewimble
protocol to use zk-SNARK-s instead of bulletproofs so that the system becomes

more transparent and easy for maintenance and auditing.

During the work, a software application was developed to simulate the
operation of the proposed Mimblewimble modernization. The computational
experiment was performed to simulate the work of a naive implementation of
the algorithm proposed in the previous chapter. The proof computation process
was modeled with different values of the input parameters (range width and the
target value). The main purpose of the experiment was a heuristic checking
the dependency of computation time and the resulting proof size of the input
values. In order to reduce the influence of random factors on the evaluation of
the performance of the algorithm, the calculation of the proof was performed
multiple times for the same set of parameters, and then the arithmetic mean of

the obtained values was calculated.

Analysis of the obtained results

Two main variables that may affect the algorithm performance are the

upper bound ub and the target value P(n). Code of the application used for

31

modeling the algorithm functioning may be found in the appendix A.

The computational experiments have shown that ub and P(n) almost do
not affect the proof size. This is an expected behaviour as the proof size mostly
depends on number of rounds, which depends on the degree of the polynomial
P(x). A single polynomial may encode large number of points and the degree
of the polynomial grows slowly with P(n) growth. On the other hand, as the
proof contains large number of randomly sampled Merkle branches, it grows
approximately linearly depending on the required number of samples. But this

is not critical as in practice this value usually stays relatively small (less then
10000) [14].

The computational experiments for checking the algorithm performance
were performed for the parameters ub and P(n). During each of experiments
the value of other parameter was fixed. The results of experiments for ranges of

different width are represented on the figure 3.2.1.

045 1

040 -

0.35 1

gxacution time, seconds

0.30 4

025 1

0 200 400 &00 BOO 1000
upper bound value

Figure 3.2.1 Results of computational experiments for ranges of different width.

The results show that the computation time grows rather quickly with an increase

in the size of the required interval, while still remaining within acceptable limits.

The results of experiments for different target values are represented on
the figure 3.2.2.

32

0.6 -

0.5 1

0.4 -

0.3 1

0.2 1

exacution time, seconds

0.1 1

0.0 0.2 0.4 0.6 0.8 10
target value lek

Figure 3.2.2 Results of computational experiments for different target values.

The results show that computation time is acceptable even for large target
values. But P(x) is a Lagrange polynomial, and number of points on which it
is built depends on length of the binary representation of the target value, so

for small target values the computation is performed faster.

The algorithm performance may be significantly increased using different
optimizations, during the computational experiment the naive implementation

was used.

Thus, the computational experiment showed that the solution is relatively
scalable, proof computation takes acceptable amount of time (considering that
in some popular distributed financial systems transaction verification may take

up to ten minutes) [10]. The proposed modification could be used in practice.

33

BUCHOBKU

Y X0/l BUKOHaHHSA POOOTHU OYyJIO PO3IVISHYTO JIOKA3W 3 HYJHOBUM PO3-
T'OJIOIIEHHSIM Ta, MOYKJIMBICTH 1X 3aCTOCYBaHHS JIjIsi aHOHIMIi3allil (piHaHCOBUX
TpaH3aKIiil y posnojijieHnx (piHAHCOBUX CHCTeMaX. DBy/m posrisHyTi pi3Hi
LJTIOCTpaTUBHI NPUKJIAIN Ta IIPOTOKOJIH, 110 BUKOPUCTOBYIOTHCA Ha IPAKTHIIL.
Byso posriisinyTo mpoTokoJ posmoiieHol dpinanconoi cucremu Mimblewimble.
Bynu posrisgHyTi fioro cujibHi Ta cjabki ctoponu. Bysta 3podsieHa Mporno3uiis
MO IndiIKaIl I[bOro MPOTOKOJY. By/I0 po3riisiHyTo K/ac HelHTepaKTHBHUX ITPOTO-
KOJIIB JI0Ka3iB i3 HysboBuM posrosomierasym zk-SNARK. Bysio posristayTo
MOYKJIMBICTB X BuKopucTtanas y Mimblewimble ajsi mokaszy toro, mo cyma
TpaH3aKIlil € HEeHY/JIbOBOIO 1 HEe IIEePEeIOBHIOETHbCA 0e3 11 pO3roJIOIIeHHS, IO
3HQYHO I11JIBUIILYE aHOHIMHICTH TPaH3aKIllil y cucTeMi MOPIBHAHO 3 KJIACUYHUMU
cucreMaMu. ByJio poBeieHO 00UNC/IIOBAJIbHII €KCIIEPUMEHT 13 METOI MO/Ie-
JIIOBAHHS pOOOTU 3aIIPOIIOHOBAHOIO AJICOPUTMY Ta, 11 NPOAYKTUBHOCTI 3aJ1€2KHO
BiJI 3HaUYeHb BXiIHUX mapameTpiB. OTpumani gaHl ¢BiIuaTh, 10 BiH HPUIATHUI
JIJIsl BUKOpUCTaHHsT Ha, npakTumi. Ilix gac gocsimkenHast O0ysa0 3pobJieHO 1B

myOJtiKallil Ha BIAIOBIJIHY TeMY.

34

CONCLUSION

In the course of the work, zero-knowledge proofs and the possibility of their
application to anonymize financial transactions in distributed financial systems
were studied. Various illustrative examples and protocols used in practice
were described. The financial distributed system protocol Mimblewimble was
reviewed. Its strengths and weaknesses were listed. Modification of this protocol
has been proposed. The class of non-interactive zero-knowledge proof protocols
zk-SNARK was described. The possibility of using them in Mimblewimble was
proposed to prove that the transaction amount is non-zero and does not overflow
without disclosing it, which significantly increases the anonymity of transactions
in the system in comparison with classical systems. A computational experiment
was performed to simulate the operation of the functioning of the proposed
algorithm and its performance depending on the values of the input parameters.
The obtained data indicates that it is suitable for practical usage. During the

research, two publications on the relevant topic were made.

35

BIBLIOGRAPHY

. CraH, JIOCATHEHHST Ta TIEPCIEKTUBN 1H(MOPMAIIHIX CHCTeM 1 TEXHOJIOTIi /
Marepiasm XXI BeceykpaiHCbKOI HAyKOBO-TEXHIUHOI KOH(EPEHIIIT MOJIOIIX
BUYEHUX, aclipaHTiB Ta cTymeHTiB. Oueca, 22-23 kpiTas 2021 p. — Ojeca,
Bugapaunrso OHAXT, 2021 p. — 229 ¢. — C. 51-52.

. Current issues of science, prospects and challenges. Vol. 2 / Collection of
scientific papers «SCIENTIA» with Proceedings of the I International Sci-
entific and Theoretical Conference. Sydney, December 17 2021. — European
Scientific Platform, 2021. — 111 p. — pp. 43-44.

. Watrous J. Zero-Knowledge Against Quantum Attacks / John Watrous. —
Waterloo, Ontario, Canada: Institute for Quantum Computing and School

of Computer Science University of Waterloo, 2008. — 36 p.

. Gowravaram N. R. Zero Knowledge Proofs and Applications
to Financial Regulation [Ejexrponnuit pecype|] / Gowravaram
// Harvard College. — 2018. — Pexum joctymy 0 pecypey:
https://dash.harvard.edu/handle/1,/38811528.

. Santis A. D. Non-Interactive Zero-Knowledge Proof Systems / Santis A. D.,
Micali S., Persiano G. // Advances in Cryptology — CRYPTO '87: A Con-
ference on the Theory and Applications of Cryptographic Techniques, Santa
Barbara, California, USA, August 16-20, 1987, Proceedings / C. Pomerance,
Lecture Notes in Computer Science — Berlin: Springer Berlin Heidelberg —
1988. — Vol. 293 — pp. 5H2—T72.

. Menezes A. J. Handbook of Applied Cryptography / A. J. Menezes,
P. V. Oorschot, S. A. Vanstone — CRC Press, 1996. — 816 p. — pp. 405—417.

. How to Explain Zero-Knowledge Protocols to Your Children / [J. Quisquater,
L. C. Guillou, T. A. Berson and others| // Advances in Cryptology —
CRYPTO ’89: Proceedings / [J. Quisquater, L. C. Guillou, T. A. Berson
and others|., 1990. — pp. 628-631.

. Yao A. C. Protocols for Secure Computations / Andrew Yao., 1982. — 5 p. —
(IEEE).

. Feige U. Zero-knowledge proofs of identity / U. Feige, A. Fiat, A. Shamir,
1988. — (Journal of Cryptology). — pp. 77-94.

10.

11.

12.

13.

14.

36

Introduction ~ to Mimblewimble and Grin [Enexkrponmuii
pecypc|. — 2021. — Pexxuwm JIOCTYILY J10 pecypcy:
https://github.com /mimblewimble/grin/blob /master /doc/intro.md.

B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille and G. Maxwell,
"Bulletproofs: Short Proofs for Confidential Transactions and More", 2018
[EEE Symposium on Security and Privacy (SP), San Francisco, CA, USA,
2018, pp. 315-334.

Groth J. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable snarks / Jens Groth, Mary Maller. — Advances
in Cryptology — CRYPTO 2017 — 37th Annual International Cryptology
Conference. Santa Barbara, August 20-24 2017.— Part I1.— pp. 581-612.

Scalable, transparent, and post-quantum secure computational integrity /
E. Ben-Sasson, I. Bentov, Y. Horesh, M. Riabzev., 2018. — 83 p. — pp. 33-51.

Buterin V. An approximate introduction to how zk-SNARKSs are possible
|Esnekrponnuii pecype| / Vitalik Buterin. — 2021. — Pexxum jrocryity ji0
pecypey: https:/ /vitalik.ca/general /2021/01/26 /snarks.html.

37

Appendix A

Fragments of implementation used in the computational
experiment

All the code snippets are written in Python 3

Evaluate a polynomial at a specific coordinate
def eval_poly_at(p, x):
y =0
power_of_x = 1
for i, p_coeff in enumerate(p):
y += power_of_x * p_coeff
power_of_x = (power_of_x * x)

return y

Build a polynomial that returns 0 at all specified xs
def zpoly(xs):
root = [1]
for x in xs:
root.insert (0, 0)
for j in range(len(root)-1):
root[j] -= root[j+1] * x

return root

Lagrange interpolations
def build_lagrange(x, y):

return Polynomial (lagrange(x, y)).coef

def int_to_bits(n):
return [int(digit) for digit in bin(n) [2:]]

def bits_to_int(bits):

return int("".join(str(x) for x in bits), 2)

Build the polynomial P
def build_p(n):
bits = int_to_bits(n)
y = [bits_to_int(bits[0:i+1]) for i in range(len(bits))]

def

x = [1 for i in range(len(y))]

return build_lagrange(x, y)

estimate_proof (n, ub):
mercle_root_points = 10000
start_time = time.time()

proof = []

p = build_p(n)
print(p)
z = zpoly([i for i in range(ub+1)])

for i in range(0, int(math.log2(len(p)))):
calculate_qr(p)

proof .append(calculate_merkle_root(mercle_root_points))

print('Time: ', time.time() - start_time)
print ('Proof size: ', np.array(proof, dtype=object) .nbytes)

return proof

38

	Вступ
	Introduction
	Zero-knowledge proofs
	Illustrative examples
	Two balls and the colour-blind friend
	The strange cave of Ali Baba
	Yao’s Millionaires’ Problem

	Examples of zero-knowledge proofs used in practice
	Fiat-Shamir identification protocol

	Usage of zero-knowledge proofs in distributed financial systems
	Mimblewimble protocol
	zk-SNARK protocols
	General description
	Polynomial commitments
	Privacy
	Using zk-SNARKs for range proofs

	zk-SNARK range proofs
	Computational experiment description
	Analysis of the obtained results

	Висновки
	Conclusion
	Bibliography
	Appendix A

