
Одеський нацiональний унiверситет iменi I. I. Мечникова

Факультет математики, фiзики та iнформацiйних технологiй

Кафедра оптимального керування та економiчної кiбернетики

Квалiфiкацiйна робота

на здобуття ступеня вищої освiти «магiстр»

«Iмiтацiйне моделювання та оптимiзацiя iєрархiчного

консенсусу в блокчейнах контрольованого складу»

«Simulation Modeling and Optimization of the

Hierarchical Consensus in Permissioned Blockchains»

Виконала: здобувачка денної форми навчання
спецiальностi 113 Прикладна математика
Освiтня програма «Прикладна математика»
Ворохта Алiса Юрiївна

Керiвник: канд. фiз.-мат. наук, доц. Страхов Є. М.
Рецензент: канд. техн. наук, доц. Мазурок I.Є.

Рекомендовано до захисту:

Протокол засiдання кафедри

№ вiд 2022 р.

Завiдувач кафедри

Захищено на засiданнi ЕК №

Протокол № вiд 2022 р.

Оцiнка / /

Голова ЕК

Одеса — 2022 р.

Odesa I. I. Mechnikov National University

Faculty of Mathematics, Physics and Information Technology

Department of optimal control and economical cybernetics

Diploma thesis

master

«Simulation Modeling and Optimization of the

Hierarchical Consensus in Permissioned Blockchains»

Fulfilled by: full-time student
specialty 113 Applied Mathematics
Alisa Vorokhta

Supervisor: Ph. D. in physics and mathematics
sciences, Associate Professor Yevhen Strakhov
Reviewer: Ph. D. in technical sciences, Associate
Professor Igor Mazurok

Odesa — 2022

3

CONTENTS

Вступ 4

Introduction 6

1. Imitation Modeling and Optimization 7

1.1. What is Simulation Modeling? 7

1.2. Optimization . 8

1.3. Python Programming Language 8

2. Fundamentals of distributed systems and blockchain 9

2.1. Distributed Systems . 9

2.2. Blockchain and Consensus . 10

3. Modeling and Analyzing a Permissioned Blockchain with Hi-

erarchical Consensus 13

3.1. Distributed Ledger Description 13

3.1.1. Terms . 13

3.1.2. Description . 14

3.2. Hierarchical Consensus . 14

3.3. Committee Formation Problem 16

3.3.1. Minimizing the Number of Messages 16

3.3.2. Minimizing the Number of Missed Slots 18

3.4. The Problem of Penalizing Faulty Coordinators 27

3.4.1. Types of Coordinators’ Faultiness 27

3.4.2. Simulation Modeling 27

3.5. Conclusion . 29

Висновки 30

Conclusion 31

Bibliography 32

Appendix A. Computer Code for the Partitioning algorithm 35

4

ВСТУП

Наразi до технологiї блокчейн [1] виникає iнтерес у представникiв
найрiзноманiтнiших сфер: вiд банковського сектору до земельного реєстру.
Деякi компанiї навiть базують свої проекти на технологiї блокчейн. Бло-
кчейн – це децентралiзована база даних, у якiй iнформацiя зберiгається
у виглядi «ланцюжка блокiв» певної кiлькостi транзакцiй. Децентралiза-
цiя [2] означає вiдсутнiсть вузлiв або груп з винятковим доступом до певних
ресурсiв.

Серед особливостей блокчейну можна також зазначити, що данi збе-
рiгаються в учасникiв мережi. Оскiльки блокчейн децентралiзований, i данi
в ньому не можуть бути змiненi або скасованi завдяки системi криптографi-
чного захисту, ця технологiя вважається дуже безпечною.

Технологiї блокчейн можна знайти застосування практично у всiх
сферах дiяльностi. У [3] дослiджується застосування технологiї блокчейн у
транспортнiй логiстицi. А у [4] було дослiджено особливостi застосування
блокчейн-технологiї у цифровiй економiцi.

Одним iз засобiв дослiдження є iмiтацiйне моделювання. Воно допо-
магає дослiджувати реальну фiзичну систему, не проводячи з нею безпосе-
реднiх експериментiв. Наприклад, у [5] було побудовано моделi та iмiтацiї
системи освiти на основi блокчейну, а [6] дослiджує методи моделювання
систем блокчейн за допомогою Anylogic.

Оптимiзацiя - це процес пошуку розв’язку, який найкраще задоволь-
няє заданому критерiю. [7] показує приклад застосування оптимiзацiї у
блокчейну для вибору консенсусу. У статтi [8] розглядаються результати
застосування оптимiзацiї в блокчейнi та запропонованi бiльш розширенi
завдання оптимiзацiї для майбутньої роботи.

Мета дослiдження: побудування та оптимiзацiя моделей блокчейну
контрольованого складу для дослiдження її особливостей.

Об’єкт дослiдження: блокчейн контрольованого складу з iєрархiчним
консенсусом.

Предмет дослiдження: блокчейн контрольованого складу.

5

Метод дослiдження: аналiтичний аналiз та експерименти з моделлю у
Python.

6

INTRODUCTION

Currently, representatives of various fields are interested in blockchain
technology [1]: from the banking sector to the land registry. Some companies
even base their projects on blockchain technology. Blockchain is a decentralized
database in which information is stored in the form of a "chain of blocks"of
a certain number of transactions. Decentralization [2] refers to the absence of
nodes or groups with exclusive access to certain resources.

Among the features of the blockchain, it can also be noted that the data
is stored by the network participants. Since the blockchain is decentralized, and
the data in it cannot be changed or reversed due to the cryptographic protection
system, this technology is considered very secure.

Blockchain technology can be used in almost all fields of activity. [3]
explores the application of blockchain technology in transport logistics. And in
[4] the peculiarities of the application of blockchain technology in the digital
economy have been studied.

One of the research tools is simulation modeling. It helps to study a real
physical system without conducting direct experiments with it. For example, in
[5] were built models and simulations of a blockchain-based education system,
and [6] explores methods for modeling blockchain systems using Anylogic.

Optimization is the process of finding a solution that best satisfies a
given criterion. [7] shows an example of applying optimization to the blockchain
for consensus selection. The article [8] discusses the results of the application
of optimization in the blockchain and proposes more advanced optimization
problems for future work.

The purpose: to build and optimize models of a permissioned blockchain
to study its features.

Object of study: permissioned blockchain with hierarchical consensus.

Subject of study: permissioned blockchain.

Research method: analytical analysis and experiments with the model in
Python.

7

CHAPTER 1

IMITATION MODELING AND OPTIMIZATION

1.1. What is Simulation Modeling?

Modeling is the process of creating a model. A model is a representation

of how a certain system is built and runs. The model is a simplified version

of the system it depicts. Choosing which real-world components to include

is crucial before modeling the system. A model is the end product of this

process, which is referred to as abstraction.

Simulation modeling [9] is the process of developing and evaluating a

digital prototype of a physical model to predict how it will behave in reality.

A model like this can be ”played” in time. In this instance, the processes’

randomness will determine the outcomes. These data allow for the creation

of stable statistics. Imitation refers to experimenting using a model.

The process in which a simple model is built first, and then improved

as important features are found, is called iterative modeling [10]. There are

numerous models that may be developed for any physical system based on

different assumptions and simplifications.

A simulation’s output may be a design, a prediction about the system’s

potential actions or the impact of modifications on the system, or an ex-

planation of its behavior. Predictions and test designs can be validated by

taking measurements in the real world and comparing data with analysis and

simulation results.

Any physical system can be represented by a variety of models, each

with a wide range and level of detail. The aim of the modeling process is to

find the model best suited to its purpose.

The applications of simulation in business are numerous, and they are

frequently used when it is inconvenient to conduct trials on real systems, e.g.

due to cost or time constraints. By providing precise perceptions, simulation

modeling offers beneficial solutions across sectors [11].

8

1.2. Optimization

The main goal of the optimization problem [12] is to choose the element

from the allowed set that meets a certain criterion as best. To formulate the

optimization problem, an optimality criterion (the number of messages sent,

the load on the network, etc.); varying parameters (for example, the number

of network participants), the change of which allows you to influence the

efficiency of the process; mathematical model of the process and limitations

(hardware capabilities) are needed.

1.3. Python Programming Language

Python [13] is a high-level and general-purpose programming language.

Its main goals are to increase developer efficiency, code readability, and quality,

and ensure application portability. The language provides convenient high-

level data structures. It supports a variety of programming paradigms, such

as structured, object-oriented, imperative, and aspect-oriented. This makes

Python a convenient programming language for modeling and optimization

problems.

9

CHAPTER 2

FUNDAMENTALS OF DISTRIBUTED SYSTEMS

AND BLOCKCHAIN

2.1. Distributed Systems

Distributed systems [14] are characterized by the dispersal of functions

and resources between numerous components (referred to as ”nodes”) and the

absence of a single control center, so the failure of one of the nodes does not

lead to a complete stop of the entire system. The elements cooperate with

one another to accomplish a common objective.

Client-server, three-tier, n-tier, or peer-to-peer architectures are the

most common types of distributed programming.

• Client-server: architectures in which data is requested from the server

by smart clients, who subsequently format and present it to users.

• Three-tier: architectures that enable the usage of stateless clients by

moving client intelligence to a middle layer.

• N-tier: architectures that are frequently used to describe web apps that

send requests to other enterprise services.

• Peer-to-peer: architectures that are identified by a distributed architec-

ture, in which there is not a single administration server to supervise

the entire system. In these networks, client and server functionality are

combined, giving each participant the same capabilities. P2p networks’

key benefit is that even a very high number of failing nodes will not

cause the system to crash.

A distributed system must have the following properties: scalability,

performance, and high availability [15]. Availability means that any request

to a distributed system will result in a valid response, however, there is no

assurance that each node’s response will be identical. Scalability means that

the system must have mechanisms for reacting to changes in the transaction

flow within extremely broad bounds.

10

The biggest drawback of distributed systems is complexity [16]. With

the increase in the number of machines, messages, and data being passed, the

following problems arise:

• Data consistency. It can be difficult to synchronize changes to data and

application states in a distributed network.

• Network and communication failure. It is possible for messages to be sent

to the wrong nodes or in the wrong order, which degrades functioning

and communication.

A distributed ledger (DLT) is a database that is distributed across

multiple network nodes or computing devices.

The circumstance where various nodes assume different versions of

adding data to the ledger occurs in the majority of systems. The issue with

weak form finalization is the probabilistic or deterministic construction of a

common prefix that expands with time for all ledger versions in honest nodes.

The challenge in the strong form (fast finalization) is to design a protocol that

fixes the order and content of new data in an unambiguous and irrefutable

manner before it is completely dispersed over the network.

Blockchain is a prime example of one of the DLT data structure types.

2.2. Blockchain and Consensus

A blockchain is a growing sequence of transaction blocks that contain the

cryptographic hash of the preceding block linked together using cryptography

[17]. Blockchains are resistant to data modification. It happens due to the

fact that once recorded, the data in any given block cannot be changed

retrospectively without changing all the following blocks. Side chains are

removed during finalization, and every block is arranged in a linear way.

There are three types of blockchains: permissionless, permissioned,

or both [18]. Networks powered by permissionless blockchains are open to

all users. They do not limit the rights of network nodes. A permissioned

blockchain allows only specific companies or people with verified identities

and the necessary clearance to manage the way data is processed there. For

11

this type of blockchain, there are several levels of data access, for example,

such as:

• reading transactions from the blockchain, but with certain restrictions;

• proposal of transactions for inclusion in the blockchain;

• creation of new blocks.

Achieving overall system stability while dealing with a number of faulty

processes is a fundamental challenge in distributed computing and multi-agent

systems. These processes are described as consensus [19].

Byzantine fault tolerance (BFT)[20] is a property of a system that

can withstand a class of failures that occur due to the ”Byzantine Generals

Problem”. It was developed to represent a scenario in which a concerted

strategy must be agreed upon by all system participants in order to prevent

catastrophic system failure, yet some of these actors are unreliable. One of the

most important properties of BFT is that if a system is made up of 3 · 𝑓 + 1

nodes, 𝑓 is the maximum number of faulty nodes that it can handle.

A Practical Byzantine Fault Tolerance (PBFT) [21] algorithm was

developed, which ensures network security as long as the proportion of faulty

nodes stays below the required level.

Different consensus mechanism algorithms operate according to various

concepts.

The most well-known cryptocurrency networks use the Proof-of-Work

(POW) consensus mechanism. This algorithm requires from the nodes par-

ticipating in the network operation the result of a rather long work. This

result can be easily verified. However, this mechanism requires high energy

consumption and quite a long processing time.

The Proof-of-Stake (POS) is another common consensus algorithm.

Compared to POW, it is less resource intensive. In addition, this mechanism

requires less cost. In this algorithm, the probability of the formation of the

next block in the blockchain by the participant is proportional to the share

that the virtual currency tokens belonging to this participant make up from

their total number. The disadvantage of this is that it encourages saving

cryptocurrency rather than spending it.

12

Similarly, there are other consensus algorithms like Proof-of-Capacity

(POC), Proof-of-Activity (POA), Proof-of-History (POH), etc.

13

CHAPTER 3

MODELING AND ANALYZING A PERMISSIONED

BLOCKCHAIN WITH HIERARCHICAL

CONSENSUS

3.1. Distributed Ledger Description

This section describes the work of DLT [22].

3.1.1. Terms

• A Node is a server that has been registered in the network and stores

all the relevant data as Ledgers.

• Workers are logical structural components that are deployed on each

Node. They have the necessary credentials required to participate in

the POS protocol.

• Validator and Coordinator are independent elements of each Worker.

• Slot is the structural unit of the timeline of the network. Actions

are taken into account simultaneously throughout a slot, and selected

Validators in each subnet of each shard are required to produce and

distribute their block.

• Epoch is a combination of slots. Epochs are used to summarize the

network’s intermediate results.

• Era is a combination of epochs. In the era the democratically coordinated

changes to the values of the network setup take place.

• Coordinating and Shard networks are two functional subsystems that

are implemented for the system’s operation.

• BlockDAG is a directed cyclic graph (DAG) that has blocks as its

vertices and references to preceding blocks as its edges.

• A block is called a spine block if it precedes all other blocks in the same

slot.

14

3.1.2. Description

The Shard network is based on the DAG protocol. Block finalization,

DAG linearization, and the selection of Validators that create blocks within a

specific time slot are managed by the blockchain-based Coordinating network.

As a result of the networks working together, the created blocks of transactions

line up in a DAG, part of which is topologically sorted and finalized (Stream).

The second part, consisting of not yet ordered blocks, forms Spray.

The protocol is based on the fast finality POS consensus. For more

information about this DLT, see [22].

3.2. Hierarchical Consensus

The operation of the Coordinating network begins with the creation of

a genesis block, which contains the initial list of Validators.

At the beginning of each epoch, a list of Committees for the next epoch

is randomly generated for each slot.

In turn, at the beginning of each slot, the leaders of those Committees

are chosen at random from among the Members of the Committees, and

nodes are randomly chosen from the Committee Members to create blocks.

In addition, each node of the Coordinating network sends to the connected

nodes of the BlockDAG network information about the epoch, the list of block

creators, and the finalized blocks. Moreover, each node of the Coordinating

network receives information about spine blocks from the BlockDAG network

node connected to it.

Algorithm 3.1 (Hierarchical Consensus [23]). Assume that the finalized

spine block of the 𝑛-th slot 𝑓𝑛 is already selected. By definition, 𝑓0 is the

genesis block.

1) Each Committee Member sends messages to the other Members with a

list of visible spine blocks starting at 𝑛+1 slots, a block of the previous

state, and a signature.

2) As a result of such a mailing, two options are possible:

15

a) There is a sequence of blocks that received more than 2
3 votes, such

that no longer sequence received more than 2
3 votes.

b) No sequence received more than 2
3 of votes. It is considered that a

sequence of blocks receives a vote if it is the beginning of some of

the block sequences which are parts of messages from the previous

step. In this case, it is supposed that the resulting sequence of

blocks is empty.

3) Each Committee Member that supports the resulting sequence of blocks

sends a message to the other Members with this sequence, a block of

the previous state, and a signature.

4) The leader of the Committee forms a message with the resulting sequence

of blocks, a block of the previous state, and signatures of the Committee

Members from the previous step and sends it to the other leaders of the

Committees.

5) If more than 2
3 of the Committees receive a nonempty sequence, each

leader sends a message to the other leaders that contain messages from

the previous step from other Committees and its signature.

6) The first leader forms and sends out the block that contains messages

from the previous step, signatures of leaders, and its signature. Other-

wise, the block is not published.

The Coordinating network’s block acceptance rules:

1) A correctly produced Coordinating network block is passed on and

added to the chain if it is obtained no later than the following slot.

2) A correctly produced Coordinating network block is passed on and put

on the waiting list if it is obtained through one slot.

3) A block that is on the waiting list is added to the chain if a block that

was generated immediately or with a delay references it.

4) A block of the Coordinating network is erased and not forwarded further

if it is received more than two slots after it was produced.

In order for the procedures described above to be possible, it is necessary

that all nodes know the public keys of each and their total number. This

means that a permissioned blockchain is needed for this. For more information

about the consensus, see [23].

16

3.3. Committee Formation Problem

Consider the problem of optimal partitioning of the set of Coordinators

into Committees to make a finalization decision. The optimization problem is

two criteria. First, we should minimize the number of messages transmitted.

Secondly, to reduce the influence of faulty Coordinators on the finalization

decision in each slot. In this case, we will call the faulty Coordinators that,

for any reason, do not participate in the work of the Committee.

3.3.1. Minimizing the Number of Messages

Let

• 𝑛 be the number of Coordinators;

• 𝑐 be the number of Committees;

• 𝑚 be the number of Committee Members.

It is obvious that 𝑛 = 32·𝑐·𝑚 from the assumption that all Coordinators

take part in the work of the Committee once in an epoch. We consider that

there are 32 slots in the epoch. When creating a block in the Coordina-

tion network, first the Committee Members exchange messages within the

BFT protocol, and then the aggregators (Committee leaders) also exchange

messages within the BFT protocol. Thus, the total number of messages is:

𝑀 = 2 ·𝑚 · (𝑚− 1) · 𝑐+ 2 · 𝑐 · (𝑐− 1) = 2

[︂
𝑛 · (𝑚− 1)

32
+ 𝑐 · (𝑐− 1)

]︂
. (3.1)

Figure (3.1) illustrates dependency of number of messages depending

on the number of Members and Committees by the formula (3.1):

17

Figure 3.1. Dependency of messages on Members and Committees

Let us consider the question of the values of 𝑐 and 𝑚 for which the

number of transmitted messages will be minimal.

Since 𝑚 =
𝑛

32 · 𝑐
, the problem is reduced to minimizing the function

(neglect the term that does not contain 𝑐):

𝑀(𝑐) =
𝑛2

1,024 · 𝑐
+ 𝑐2 − 𝑐, 𝑐 ∈

[︁
4,

𝑛

128

]︁
. (3.2)

An additional condition is that 𝑐 only accepts integer values. Also, due

to the limitations of the BFT protocol, we assume that 𝑐 > 4 and 𝑚 > 4.

From the last inequality, in particular, it follows that 𝑐 6
𝑛

128
. In addition, we

assume that the number of Coordinators is sufficiently large. The approximate

value of the minimum point can be calculated analytically:

𝑐0 ≈ 3

√︃
𝑛2

2,028
. (3.3)

Figure (3.2) illustrates the dependency of the number of messages depending

on the number of Committees by the formula (3.2):

18

Figure 3.2. Dependency of messages on Committees (reduced formula)

Based on the properties of the BFT protocol, we can recommend choos-

ing the number of Committees as an integer of the form 3 · 𝑓 + 1 closest to

𝑐0.

With the help of numerical optimization methods or mathematical tools,

one can get a more accurate answer. However, for a sufficiently large number

of Coordinators, the answer for an approximate solution and a more accurate

one is the same.

3.3.2. Minimizing the Number of Missed Slots

Due to the fact that some of the Coordinators may turn out to be faulty,

we need to find out how this will affect the decision in the Committees and

the final decision on finalization. In this case, it is necessary to estimate what

is the maximum proportion of faulty Coordinators that is acceptable without

stopping or significantly delaying the decision-making process.

Formulation of the Problem

For a given number of Coordinators, find such a number of Committees

and determine the number of their Members, at which the average number of

19

missed slots per epoch will be in a certain sense “minimal”. Missed slots are

those slots in which it was not possible to accept the block. Obviously, the

number of missed slots will depend on the proportion of faulty Coordinators

and their distribution within the Committees. The task is to give a method for

constructing a partition that, on average (in most cases), will give a smaller

number of missed slots than other partitions. At the same time, the number

of sent messages should also be taken into account, possibly minimizing it.

General Provisions

According to the protocol, a decision can be made both within the

Committee by Members of the Committee and between Committees by

aggregators only if there are more than 2
3 of votes in favor of this decision. In

this case, the percentage of majority (Share) required for making a decision

will be the smallest if the number of Members as a number can be represented

as 3 · 𝑓 + 1, i.e. when divided by 3, the remainder is 1. A few examples of

how Share changes depending on Members are given below (see figure (3.3)):

𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 =
2

3
·𝑀𝑒𝑚𝑏𝑒𝑟𝑠;

𝑆ℎ𝑎𝑟𝑒 =
𝑟𝑜𝑢𝑛𝑑 (𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 − 0.5) + 1

𝑀𝑒𝑚𝑏𝑒𝑟𝑠
· 100%.

Figure 3.3. Dependency of Share on Members

Obviously, as the value of Members increases, the fluctuations in the

value of Share decrease. This is also consistent with the results of mathematical

20

modeling. A smaller average number of missed slots per epoch was observed

when the number of Committees and their Members were in form of 3 · 𝑓 + 1.

Using simulation modeling, it was found that the critical value of the

total number of faulty Coordinators, at which there is no large delay in the

finalization of blocks, is 20% [24]. Figure (3.4) shows the number of missed

slots per epoch depending on the proportion of faulty Coordinators. On the

first graph, the number of Committees is 4 and the number of Committee

Members is 64, on the second graph - on the contrary. On the third graph,

the number of Committees is 128 and the number of Committee Members is

16.

Figure 3.4. Dependency of the number of missed slots on the proportion of
the faulty Coordinators

In addition, during the simulation, it was found that the best result

(lower average number of missed slots per epoch) with a fixed number of

Coordinators is achieved with a decrease in the number of Committees and

with a corresponding increase in the number of their Members. Figure (3.5)

21

shows the number of missed slots per epoch depending on the number of

Committees and Committee Members. Green dots indicate the number of

obtained missed slots up to 11, yellow - from 11 to 21, and red - from 22.

Figure 3.5. Dependency of the number of missed slots on the number of
Committees and Committee Members

However, due to technical restrictions on the exchange of messages

within the Committee, the number of Committee Members should not exceed

128.

Partitioning algorithm

Algorithm 3.2 (Partitioning algorithm). Let

• 𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑠 be the total number of Coordinators in the net-

work;

• 𝑚𝑎𝑥𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 127 be the maximum possible number of Committee

Members.

In the first version of the formulas, all variables are positive integers,

and when dividing, the result is rounded down. In the second version of the

formulas, non-integer division is used.

1) Minimum number of Committees to which all Members can be placed.

22

𝑚𝑖𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑠− 1

32 ·𝑚𝑎𝑥𝑀𝑒𝑚𝑏𝑒𝑟𝑠
+ 1;

𝑚𝑖𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(︂
𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑠

32 ·𝑚𝑎𝑥𝑀𝑒𝑚𝑏𝑒𝑟𝑠

)︂
.

It is assumed that in an epoch there are 32 slots and all Coordinators

should participate in the work of Committees once per epoch.

2) The number of Committees of form 3 · 𝑓 + 1.

𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 =

(︂
𝑚𝑖𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠− 2

3
+ 1

)︂
· 3 + 1;

𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 = 𝑚𝑎𝑥

(︂
4, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(︂
𝑚𝑖𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠− 1

3

)︂
· 3 + 1

)︂
.

where 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 is the minimum number of form 3 · 𝑓 + 1 greater than

𝑚𝑖𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠. This number of Committees will be used in each slot.

3) The mean number of Committee Members.

𝑚𝑒𝑎𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑠

32 · 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠
;

𝑚𝑒𝑎𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 𝑓𝑙𝑜𝑜𝑟

(︂
𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑠

32 · 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠

)︂
.

4) The minimum number of Committee Members of form 3 · 𝑓 + 1.

𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 =

(︂
𝑚𝑒𝑎𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠− 1

3
+ 1

)︂
· 3− 2;

𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 𝑓𝑙𝑜𝑜𝑟

(︂
𝑚𝑒𝑎𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠− 1

3

)︂
· 3 + 1.

where 𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 is the maximum number of the form 3 · 𝑓 + 1 that does

not exceed 𝑚𝑒𝑎𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠. In other words, each of the Committees has

𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 Coordinators.

5) Number of Coordinators not assigned to Committees.

𝑟𝑒𝑠𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑠− 32 · 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 ·𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠.

6) Number of triples formed from these Coordinators.

𝑡𝑟𝑖𝑝𝑙𝑒𝑠 =
𝑟𝑒𝑠𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠

3
;

𝑡𝑟𝑖𝑝𝑙𝑒𝑠 = 𝑓𝑙𝑜𝑜𝑟

(︂
𝑟𝑒𝑠𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠

3

)︂
.

23

7) Number of Coordinators not included in the triples.

𝑛𝑒𝑥𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 𝑟𝑒𝑠𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠%3.

8) Distribution of triples by Committees.

a) Case 1.

The number of first slots of the epoch in which all Committees will be

increased by 3 Coordinators:

𝑓𝑖𝑟𝑠𝑡𝑆𝑙𝑜𝑡𝑠 =
𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠
;

𝑓𝑖𝑟𝑠𝑡𝑆𝑙𝑜𝑡𝑠 = 𝑓𝑙𝑜𝑜𝑟

(︂
𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠

)︂
.

And in the next slot the number of Committees that are increased:

𝑛𝑒𝑥𝑡𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 = 𝑡𝑟𝑖𝑝𝑙𝑒𝑠%𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠

by 3 Coordinators. Also in this slot, one can increase one more of the

Committees by 𝑛𝑒𝑥𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠 Coordinators. The following equality must be

true:

𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑠 = 32 · 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 ·𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠+

+𝑓𝑖𝑟𝑠𝑡𝑆𝑙𝑜𝑡𝑠 · 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 · 3 + 𝑛𝑒𝑥𝑡𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 · 3 + 𝑛𝑒𝑥𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠.

b) Case 2.

The minimum number of Committees from each slot that will receive 3

additional Coordinators:

𝑓𝑢𝑙𝑙𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 =
𝑡𝑟𝑖𝑝𝑙𝑒𝑠

32
;

𝑓𝑢𝑙𝑙𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 = 𝑓𝑙𝑜𝑜𝑟

(︂
𝑡𝑟𝑖𝑝𝑙𝑒𝑠

32

)︂
.

In addition, a certain number of slots should receive one more Committee

each with an increased number of Coordinators by 3 (for example, at the

24

beginning of the epoch):

𝑒𝑥𝑡𝑟𝑎𝑆𝑙𝑜𝑡𝑠 = 𝑡𝑟𝑖𝑝𝑙𝑒𝑠%32.

As above, one more of the Committees can be increased, for example,

one from the next slot by 𝑛𝑒𝑥𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠 Coordinators. The equality must

hold:

𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟𝑠 = 32 · 𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑒𝑠 ·𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠+

+32 · 𝑓𝑢𝑙𝑙𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 · 3 + 𝑒𝑥𝑡𝑟𝑎𝑆𝑙𝑜𝑡𝑠 · 3 + 𝑛𝑒𝑥𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠.

The result is:

• The number of Committees in each slot is Committees, the minimum

possible value of the form 3 · 𝑓 + 1.

• In all Committees, the number (also of the form 3 · 𝑓 +1) of Members is

𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 or 𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠+ 3, except perhaps for one Committee

with 1 or 2 more Members than 𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠.

• The number of Committees with “increased” by 3 Members is triples.

Such Committees can be allocated to slots in various ways.

Example

Let’s take 16257 Coordinators. The minimum number of Committees:

𝑚𝑖𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(︂
16257

32 · 127

)︂
= 5.

The minimum number of Committees of the form 3 · 𝑓 + 1, which is not less

than the 𝑚𝑖𝑛𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠:

𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(︂
4

3

)︂
· 3 + 1 = 7.

Each Committee will have in average:

𝑚𝑒𝑎𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 𝑓𝑙𝑜𝑜𝑟

(︂
16257

32 · 7

)︂
= 72

25

Members. Then, representing the number of Committee Members as 3 · 𝑓 + 1,

we get:

𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 𝑓𝑙𝑜𝑜𝑟

(︂
71

3

)︂
* 3 + 1 = 70.

Then the number of Coordinators who were not included in the Committees:

𝑟𝑒𝑠𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 192001− 32 · 7 · 70 = 577.

In order to add them to other Committees without violating the 3 + 1 form,

we divide the rest of the Coordinators into triples. We get:

𝑡𝑟𝑖𝑝𝑙𝑒𝑠 = 𝑓𝑙𝑜𝑜𝑟

(︂
577

3

)︂
= 192.

As a result, 𝑛𝑒𝑥𝑡𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 1.

Case 1. Determine in how many first slots of the epoch all Committees

will be increased by 3 Coordinators:

𝑓𝑖𝑟𝑠𝑡𝑆𝑙𝑜𝑡𝑠 = 𝑓𝑙𝑜𝑜𝑟

(︂
192

7

)︂
= 27.

And in the next slot we increase:

𝑛𝑒𝑥𝑡𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 = 192%7 = 3

Committees for 3 Coordinators. In the fourth Committee in this slot, we add

the remaining Coordinator.

Case 2. Determine the minimum number of Committees in each slot

that will receive 3 additional Coordinators:

𝑓𝑢𝑙𝑙𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒𝑠 = 𝑓𝑙𝑜𝑜𝑟(192/32) = 6.

The remaining Coordinator goes to the Committee of some slot.

26

Simulation Modeling

For the resulting partitions, graphs of the dependence of the number

of missed slots on the number of Coordinators were plotted for various

percentages of faulty Coordinators for both cases (see figure (3.6)).

Figure 3.6. Dependency of the number of missed slots on the number of
Coordinators

From the graphs, one can see that the average number of missed slots

does not exceed 13 with a percentage of faulty Coordinators of 6 20%. It is

also found that both proposed methods are not inferior to each other.

The code of the algorithm and simulation can be found in appendix A.

27

3.4. The Problem of Penalizing Faulty

Coordinators

3.4.1. Types of Coordinators’ Faultiness

The article [25] details the types of Coordinator misbehavior that can

be captured on the Coordination Network ledger. Penalties are calculated

automatically based on the recorded information. Let’s consider the influence

of faulty nodes on the processes in the Coordinating network. Since the

finalization of the distributed ledger is performed in the Coordinating network,

the following problems may cause it to be delayed.

1) Vote Omissions. It can be assumed that if a certain Coordinator does

not vote several times in a row, it is out of order. In this case, it is

penalized.

2) Missing blocks. If there is no previous block(s) in one or more slots

in a row, the current slot leader refers to the most recently received

block. A Coordinator is penalized for failing to make blocks. In both

situations, all penalized Coordinators are prohibited from taking part

in the network’s operation for the current and following Eras.

3) Duplicate Creation. The current leader must only produce one block

per slot in the Coordinating Network in accordance with the protocol’s

requirements. If a certain Coordinator does not follow the rule, it is

penalized.

4) Conflicting Messages. A Committee Member can sign and send

messages containing conflicting information. In this case, it is also

penalized.

5) Invalid proof. The leader can submit invalid proof of attacks in its

block. It is penalized for such kind of action.

3.4.2. Simulation Modeling

The fundamental rule when determining penalties is that they need

to be much higher than any potential gain from potential attacks. To scale

28

the magnitude of the penalties, in this case, a multiplier of 𝜆 > 1 is applied.

Finding a value that would be acceptable under various Coordinator misbe-

havior scenarios is one of the simulation’s goals. It is necessary that faulty or

inactive Coordinators eventually lose their right to take part in the consensus.

By doing this, a critical mass of faulty nodes that might otherwise block the

reaching of consensus is prevented. However, inadvertent Coordinator shut-

downs or short equipment malfunctions should not result in a Coordinator’s

permanent ban.

The following scenarios for Coordinator failures are considered:

1) ℎ𝑜𝑛𝑙𝑖𝑛𝑒 hours are on and ℎ𝑜𝑓𝑓𝑙𝑖𝑛𝑒 hours off;

2) the shutdown duration is distributed according to the normal law with

mean 𝑡𝑚𝑒𝑎𝑛 and standard deviation 𝑡𝑠𝑡𝑑;

3) the probability of failure when performing one or another action is

𝑃 ∈ (0; 1).

In these cases, the period of time after which the Coordinator was no

longer allowed to participate in the work is fixed and depends on the value of

the various parameters listed above.

It is recommended to set a rather high value of 𝜆 = 100 based on the

results. For instance, the penalty for failing to create two blocks in a row or

for voting with the submitting of a conflicting message is 100 times greater

than the equivalent incentives. In order to make the necessary equipment

modifications, the Coordinator’s involvement in the network is also temporarily

interrupted (for the present and following eras). Otherwise, in the event of

further failures, the stake value will fall below 50%, which will result in

the Coordinator’s permanent ban. As a result, the Coordinator’s stake is

preserved and it will be able to participate in the network in the future.

Table (3.1) considers the average number of eras after which a com-

pletely non-working Coordinator is removed from participation in the network

depending on the scaling parameter. Each era lasts ≈ 9.1 hours.

29

Table 3.1.

The average number of eras after which a completely non-working
Coordinator is banned depending on 𝜆

𝜆 Eras

1 400000

10 39000

100 3500

1000 500

10000 50

100000 7

3.5. Conclusion

If the number of faulty Coordinators is obviously small, then one can

use the formula (3.3) to calculate the number of Committees and Committee

Members.

In the case when the smallest possible number of missed slots is impor-

tant, the Partitioning algorithm performed well. Those Coordinators who did

not get into 𝑚𝑖𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 can be distributed in different ways to Committees.

To reduce the exchange of messages within the Committee, the maximum

number of Committee Members is set to 127.

The scaling multiplier 𝜆 for penalties is recommended to be set at 𝜆 =

= 100. At the same time, a completely non-working Coordinator is perma-

nently banned from participating in the network after a long period of time

(taking into account the time of temporary suspension), and the penalties for

violations are significantly greater than the rewards.

30

ВИСНОВКИ

Робота була присвячена дослiдженню iєрархiчного консенсусу в
блокчейнах контрольованого складу за допомогою аналiтичного аналiзу та
моделювання на мовi програмування Python.

1) Було описано модель iєрархiчного консенсусу на основi протоколу
Gozalandia.

2) Було описано та вирiшено проблему мiнiмiзацiї числа повiдомлень,
якими обмiнюються Координатори.

3) Було виявлено, що найбiльший процент несправних Координаторiв,
при якому не вiдбувається великої затримки у фiналiзацiї блокiв - це
20%.

4) Було виявлено, що найкраще число для кiлькостi Учасникiв Комiтету
та Комiтетiв має вигляд 3 · 𝑓 +1 для зменшення кiлькостi пропущених
слотiв. При цьому кiльксть Комiтетiв має бути якомога меншою.

5) Було побудовано Алгоритм розбиття та виявлено, що кiлькiсть пропу-
щених слотiв є низькою при його застосуваннi.

6) Було розглянуто проблему знаходження параметра масштабування 𝜆,
який вiдповiдає за штрафи за атаки, роблячи їх недоцiльними. Було
рекомендовано значення цього параметру 𝜆 = 100.

Щоб краще дослiдити цю тему, можна протестувати роботу такої
децентралiзованої системи.

Результати дослiджень були представленi на науковiй конференцiї
[24].

31

CONCLUSION

The work was dedicated to the study of hierarchical consensus in permi-
ssioned blockchains using analytical analysis and modeling in the Python
programming language.

1) A hierarchical consensus model based on the Gozalandia protocol was
described.

2) The problem of minimizing the number of messages exchanged by Coordi-
nators has been described and resolved.

3) It was found that the largest percentage of faulty Coordinators, at which
there is no significant delay in block finalization, is 20%.

4) It was found that the best number for the number of Committee Members
and Committees is 3 · 𝑓 + 1 to reduce the number of missed slots. At the
same time, the number of Committees should be as small as possible.

5) A Partitioning algorithm was built and the number of missed slots was
found to be low when it was applied.

6) The problem of finding the scaling parameter 𝜆, which is responsible for
the penalties for the attacks, making them infeasible, was considered. The
value of this parameter 𝜆 = 100 was recommended.

To better explore this topic, we should test the operation of such a
decentralized system.

The research results were presented at the scientific conference [24].

32

BIBLIOGRAPHY

1. Wright C. Bitcoin: A Peer-to-Peer Electronic Cash System //
University of Southern Queensland. — August, 2008. — DOI:
http://dx.doi.org/10.2139/ssrn.3440802

2. Anderson M. Exploring Decentralization: Blockchain Technology
and Complex Coordination // Anderson M. — Journal
of Design and Science. — 2019. — Resource access mode:
https://jods.mitpress.mit.edu/pub/7vxemtm3/release/2

3. Корнага Я. I. Дослiдження та застосування технологiї блокчейн у транс-
портнiй логiстицi / Корнага Я. I., Тiльняк Ю. Я. — ВIСНИК ЖДТУ. —
2019. – № 1 (83). — DOI: https://doi.org/10.26642/tn-2019-1(83)-12-17

4. Жмуркевич А. Є. Особливостi застосування блокчейн-технологiї у ци-
фровiй економiцi / Жмуркевич А. Є., Вакулiн Р. С. — Мiжнародний
науковий журнал "Iнтернаука". — 2018. — № 6(2). — С. 14-17. — Режим
доступу: http://nbuv.gov.ua/UJRN/mnj_2018_6(2)__5

5. Bajwa N. K. Modelling and Simulation of Blockchain
based Education system / Bajwa N. K. —- Masters thesis,
Concordia University. — 2018. — Resource access mode:
https://spectrum.library.concordia.ca/984170/1/Bajwa_MASc_S2018.pdf

6. Spirkina A. Approaches to Modeling Blockchain Systems / [Spirkina A.,
Aptrieva E., Elagin V. et al.] — 2020 12th International Congress on Ultra
Modern Telecommunications and Control Systems and Workshops (ICUMT).
— 2020. — DOI: 10.1109/ICUMT51630.2020.9222437

7. Золотарьова I. О. Iнформацiйнi технологiї оптимiзацiї роботи приватного
блокчейн за допомогою вибору алгоритму консенсусу / Золотарьова I. О.,
Плеханова Г. О. — Системи обробки iнформацiї. — 2020. — № 1(160). —
С. 107-14. — DOI: https://doi.org/10.30748/soi.2020.160.14

8. Antwi R. A Survey on Network Optimization Techniques for Blockchain
Systems / [Antwi R., Gadze J., Tchao E. et al.] — Algorithms 2022. — 15. —
193. — DOI: https://doi.org/10.3390/a15060193

9. Anu M. Introduction to modeling and simulation / Anu M. — WSC ’97:
Proceedings of the 29th conference on Winter simulation. — December, 1997.

33

— p. 7-13. — DOI: https://doi.org/10.1145/268437.268440

10. Downey A. Modeling and Simulation in Python / Downey A.
— Green Tea Press. — 2017. — Resource access mode:
https://greenteapress.com/modsimpy/ModSimPy3.pdf

11. Why use simulation modeling? // Anylogic: web site. — URL:
https://www.anylogic.com/use-of-simulation/ (date of application:
05.12.2022)

12. Mathematical optimization / Wikipedia, the free encyclopedia: web site. —
URL: https://en.wikipedia.org/wiki/Mathematical_optimization (date of
application: 05.12.2022)

13. Rossum G. Python tutorial / Rossum G. — Technical Report CS-R9526. —
Centrum voor Wiskunde en Informatica (CWI) Amsterdam. — May, 1995.
— Resource access mode: https://ir.cwi.nl/pub/5007/05007D.pdf

14. Brewer E. Towards robust distributed systems / Brewer E. — Proceedi-
ngs of the XIX annual ACM symposium on Principles of distributed
computing. —– Portland, OR: ACM, 2000. –— Vol. 19, no. 7. — DOI:
doi:10.1145/343477.343502

15. Grybniak S. Decentralized platforms: Goals, challenges, and solutions /
[Grybniak S., Leonchyk Y., Masalskyi R. et al] — 2022 IEEE 7th Forum on
Research and Technologies for Society and Industry Innovation (RTSI). —
2022. — pp. 62-67. — DOI: 10.1109/RTSI55261.2022.9905225

16. Distributed Systems - The Complete Guide / Confluent: web site. — URL:
https://www.confluent.io/learn/distributed-systems/

17. Blockchain / Wikipedia, the free encyclopedia: web site. — URL:
https://en.wikipedia.org/wiki/Blockchain (date of application: 05.12.2022)

18. Types of Blockchain / Geeks for Geeks: web site. — URL:
https://www.geeksforgeeks.org/types-of-blockchain/ (date of application:
05.12.2022)

19. Frankenfield J. Consensus Mechanism (Cryptocurrency)
/ Frankenfield J. — Investopedia: web site. — URL:
https://www.investopedia.com/terms/c/consensus-mechanism-
cryptocurrency.asp (date of application: 30.11.2022)

20. Lamport L., Shostak R., Pease M. C. The Byzantine Generals Problem /

34

ACM Transactions on Programming Languages and Systems. — Vol. 4. —
No. 3. — July 1982. — DOI: 10.1145/357172.357176

21. Castro M. Practical Byzantine Fault Tolerance / Castro M., Lickov B.
— OSDI ’99: Proceedings of the third symposium on Operating systems
design and implementation. — February 1999. — p. 173–186. — DOI:
10.1002/9781119682127.ch7

22. Grybniak S., Dmytryshyn D., Leonchyk Y., Mazurok I., Nashyvan O.,
Shanin R. Waterfall: A Scalable Distributed Ledger Technology // IEEE 1st
GET Blockchain Forum, California. — United States. — 2022. — In press.

23. Grybniak S. Waterfall: Salto Collazo. Tokenomics / [Grybniak S.,
Leonchyk Y., Masalskyi R. et al.] — IEEE International Conference on
Blockchain, Smart Healthcare and Emerging Technologies. — Bucharest,
Romania. — 2022. — In press.

24. Vorokhta A. Simulation Modelling of the Consensus Based on the Gozalandia
/ [Vorokhta A., Mazurok I., Leonchyk Y. et al.] — Adaptive Learning
Management Technologies. — Kyiv. — 2022. –– p. 31-33.

25. Mazurok I. An incentive system for decentralized DAG-based platforms
/ [Mazurok I., Leonchyk Y., Grybniak S. et al.] — Applied Aspects of
Information Technology. — vol. 5(3). — 2022. — pp. 196–207.

35

APPENDIX A

COMPUTER CODE FOR THE PARTITIONING

ALGORITHM

import math

import numpy as np

import matplotlib

matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

maxMembers = 127

numbersCoordinators = np.arange(500, 50050, step=50)

resultsCase1 = []

resultsCase2 = []

for numberCoordinators in numbersCoordinators:

minCommittees = math.ceil(numberCoordinators / 32 /

maxMembers)

Committees = max(4, math.ceil((minCommittees - 1) / 3) * 3

+ 1)

meanMembers = math.floor(numberCoordinators / 32 /

Committees)

minMembers = math.floor((meanMembers - 1) / 3) * 3 + 1

restMembers = numberCoordinators - 32 * Committees *

minMembers

triples = math.floor(restMembers / 3)

nextMembers = restMembers % 3

faultyCoordinators = int(numberCoordinators * 0.2)

overallNumberMissedSlots = 0

Coordinators =

np.append(np.zeros(int(faultyCoordinators)),

np.ones(numberCoordinators - int(faultyCoordinators)))

Case 1

firstSlots = math.floor(triples / Committees)

nextCommittees = triples % Committees

for i in range(10000):

36

np.random.shuffle(Coordinators)

for slot in range(32):

index = 0

numberFaultyCommittees = 0

leaderIndex = 0

for committee in range(Committees):

members = minMembers

if slot < firstSlots:

members = minMembers + 3

elif slot == firstSlots and committee <

nextCommittees:

members = minMembers + 3

elif slot == firstSlots and nextCommittees ==

committee:

members = minMembers + nextMembers

numberFair = np.sum(Coordinators[index:index +

members])

numberFaulty = members - numberFair

if Coordinators[index] == 0 or numberFaulty >=

1 / 3 * members:

numberFaultyCommittees += 1

if committee == Committees - 1:

leaderIndex = index

index += members

if numberFaultyCommittees >= 1 / 3 * Committees or

Coordinators[leaderIndex] == 0:

overallNumberMissedSlots += 1

missedSlotsAvg = overallNumberMissedSlots / 10000

resultsCase1.append(missedSlotsAvg)

Case 2

fullCommittees = math.floor(triples / 32)

extraSlots = triples % 32

overallNumberMissedSlots = 0

37

for i in range(10000):

np.random.shuffle(Coordinators)

for slot in range(32):

index = 0

numberFaultyCommittees = 0

leaderIndex = 0

for committee in range(Committees):

members = minMembers

if committee < fullCommittees:

members = minMembers + 3

elif committee == fullCommittees and slot <

extraSlots:

members = minMembers + 3

elif committee == fullCommittees and slot ==

extraSlots:

members = minMembers + nextMembers

numberFair = np.sum(Coordinators[index:index +

members])

numberFaulty = members - numberFair

if Coordinators[index] == 0 or numberFaulty >=

1 / 3 * members:

numberFaultyCommittees += 1

if committee == Committees - 1:

leaderIndex = index

index += members

if numberFaultyCommittees >= 1 / 3 * Committees or

Coordinators[leaderIndex] == 0:

overallNumberMissedSlots += 1

missedSlotsAvg = overallNumberMissedSlots / 10000

resultsCase2.append(missedSlotsAvg)

plt.plot(np.arange(500, 50050, step=50), resultsCase1,

label="case 1")

38

plt.plot(np.arange(500, 50050, step=50), resultsCase2,

label="case 2")

plt.xlabel("Coordinators")

plt.ylabel("Faulty slots")

plt.legend()

plt.show()

	Вступ
	Introduction
	Imitation Modeling and Optimization
	What is Simulation Modeling?
	Optimization
	Python Programming Language

	Fundamentals of distributed systems and blockchain
	Distributed Systems
	Blockchain and Consensus

	Modeling and Analyzing a Permissioned Blockchain with Hierarchical Consensus
	Distributed Ledger Description
	Terms
	Description

	Hierarchical Consensus
	Committee Formation Problem
	Minimizing the Number of Messages
	Minimizing the Number of Missed Slots

	The Problem of Penalizing Faulty Coordinators
	Types of Coordinators' Faultiness
	Simulation Modeling

	Conclusion

	Висновки
	Conclusion
	Bibliography
	Appendix Computer Code for the Partitioning algorithm

