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BCTVYII

Hapasi o Texnosorii 6s10kqeitn |1] Bunukae iHTEpec y mpecTaBHUKIB
Halpi3HOMaHITHIIMKIX cdep: Bijl 0AHKOBCHKOTO CEKTOPY JI0 3€MEJIbHOI'O PEECTPY.
Jlesiki KkoMITaHil HaBiTh 0a3yI0Th CBOI IIPOEKTU Ha, TEXHOJIOrIl OJ10K4eiiH. Bio-
KUeiiH — IIe JlelleHTpaJi3oBata 6a3a JaHux, y dKiil indopmaliiss 30epiraerbcest
y BUIJISIZI «JIQHITIOYKKa OJIOKIB» IEBHOI KiJILKOCTI TpaH3akuiil. /lemenTpaJsiiza-
mist [2] o3HAYaEe BijicyTHICTH BY3JIiB a00 TPYI 3 BUHSTKOBUM JIOCTYIIOM JI0 TIEBHUX
pecypciB.

Cepe ocobmBocTeil OJI0KUeitHy MOYKHA TaKOXK 3a3HAYUTH, 110 JaHi 30e-
piraloTbes B y4acHUKIB MepexKi. OckiabKu OJIOKYENH JleleHTpaIi30BaHmii, 1 JaHi

B HHOMY He MOXKYTh OyTH 3MiHeHi abo cKacoBaHl 3aBJISIKU CUCTeMI KpunTorpadi-

YHOT'O 3aXUCTY, I8 TEXHOJIOTIS BBaYKAEThCs JTy»Ke OE3ITeUHOIO.

Texmostorii O/0K4IeliH MOXKHA 3HAWTH 3aCTOCYBaHHS TPAKTUYHO Y BCIX
cepax misbHOCTL. Y 3] AOCTIIZKYETHCST 3aCTOCYBAHHST TEXHOJIOTIT OJIOKIEiiH Yy
TpaHCIOPTHiii soricturi. A y [4] 6y/10 A0CTiIZKEHO 0COOINBOCTI 3aCTOCY BAHHSI

OJIOKUEH-TeXHOJIOTIT y TG POBiil eKOHOMIIT].

O 1anM 13 3aco0iB JJOCTZKeHH € iMiTaliiine MojemoBanis. Boro jomo-
Marae JIOC/IKYBaTH peasibHy (bi3UUIHy CHCTEMY, He IPOBOJIAYN 3 HEero Oe3roce-
pejHix ekcriepumMenTis. Hampukia, y [5] Oymro mobymosano momesi ta imitarii
CHCTEMU OCBITH Ha OCHOBI OJIOKUeliHy, a [6] qoc/iizKye MeTonan MojeTroBaHHsT

cucreM OJIOKYelH 3a Jjornomoroo Anylogic.

Onrumizarltist - 1e 1poIiec MoIyKy po3B’s3KYy, siKuil HallKpalie 3a/10B0JIb-
HsI€ 3ajlaHOMy KpuTepito. |7| mokasye mpuk/iaj 3acTOCYBaHHS ONTHMI3AIl y
OJ10Kueiiny Jyist Bubopy KoHceHcycy. Y cTtarTi 8] posrisigarorhes pe3yibraTu
3aCTOCYBaHHs OINTHUMI3aIll B OJIOKUYEH] Ta 3alpOIIOHOBaHI OLJIBII PO3HINPEeHi

3aBJIAHHS ONTUMIBAINT JIJIT MaitOyTHHOT POOOTH.

Meta pocaizKenHsi: 100yyBaHHsI Ta ONTHMIi3allisl Mojiesieil OJ10KIeiiny

KOHTPOJILOBAHOT'O CKJIAY I JIOCTIZKEHHS 11 0COOJTMBOCTENA.

O0’eKT JoCTiPKeHHS: OJIOKUYETH KOHTPOJIbOBAHOTO CKJIJLy 3 i€papXidHuM

KOHCEHCYCOM.

[Ipenmer jocitijKeHHs: OJIOKYEH KOHTPOJIbOBAHOIO CKJIA/LY.



Meto1 J1oc/IiKeHHST: aHAJITUIHNAN aHaJIi3 Ta eKCIEePUMEHTH 3 MOJIEJLIIO Y
Python.



INTRODUCTION

Currently, representatives of various fields are interested in blockchain
technology [1]: from the banking sector to the land registry. Some companies
even base their projects on blockchain technology. Blockchain is a decentralized
database in which information is stored in the form of a "chain of blocks"of
a certain number of transactions. Decentralization [2] refers to the absence of

nodes or groups with exclusive access to certain resources.

Among the features of the blockchain, it can also be noted that the data
is stored by the network participants. Since the blockchain is decentralized, and
the data in it cannot be changed or reversed due to the cryptographic protection

system, this technology is considered very secure.

Blockchain technology can be used in almost all fields of activity. [3]
explores the application of blockchain technology in transport logistics. And in
[4] the peculiarities of the application of blockchain technology in the digital

economy have been studied.

One of the research tools is simulation modeling. It helps to study a real
physical system without conducting direct experiments with it. For example, in
[5] were built models and simulations of a blockchain-based education system,

and [6] explores methods for modeling blockchain systems using Anylogic.

Optimization is the process of finding a solution that best satisfies a
given criterion. [7| shows an example of applying optimization to the blockchain
for consensus selection. The article [8] discusses the results of the application
of optimization in the blockchain and proposes more advanced optimization

problems for future work.

The purpose: to build and optimize models of a permissioned blockchain

to study its features.
Object of study: permissioned blockchain with hierarchical consensus.
Subject of study: permissioned blockchain.

Research method: analytical analysis and experiments with the model in
Python.



CHAPTER 1

IMITATION MODELING AND OPTIMIZATION

1.1. What is Simulation Modeling?

Modeling is the process of creating a model. A model is a representation
of how a certain system is built and runs. The model is a simplified version
of the system it depicts. Choosing which real-world components to include
is crucial before modeling the system. A model is the end product of this

process, which is referred to as abstraction.

Simulation modeling [9] is the process of developing and evaluating a
digital prototype of a physical model to predict how it will behave in reality.
A model like this can be ”played” in time. In this instance, the processes’
randomness will determine the outcomes. These data allow for the creation

of stable statistics. Imitation refers to experimenting using a model.

The process in which a simple model is built first, and then improved
as important features are found, is called iterative modeling [10]. There are
numerous models that may be developed for any physical system based on

different assumptions and simplifications.

A simulation’s output may be a design, a prediction about the system’s
potential actions or the impact of modifications on the system, or an ex-
planation of its behavior. Predictions and test designs can be validated by
taking measurements in the real world and comparing data with analysis and

simulation results.

Any physical system can be represented by a variety of models, each
with a wide range and level of detail. The aim of the modeling process is to

find the model best suited to its purpose.

The applications of simulation in business are numerous, and they are
frequently used when it is inconvenient to conduct trials on real systems, e.g.
due to cost or time constraints. By providing precise perceptions, simulation

modeling offers beneficial solutions across sectors [11].



1.2. Optimization

The main goal of the optimization problem [12] is to choose the element
from the allowed set that meets a certain criterion as best. To formulate the
optimization problem, an optimality criterion (the number of messages sent,
the load on the network, etc.); varying parameters (for example, the number
of network participants), the change of which allows you to influence the
efficiency of the process; mathematical model of the process and limitations

(hardware capabilities) are needed.

1.3. Python Programming Language

Python [13] is a high-level and general-purpose programming language.
Its main goals are to increase developer efficiency, code readability, and quality,
and ensure application portability. The language provides convenient high-
level data structures. It supports a variety of programming paradigms, such
as structured, object-oriented, imperative, and aspect-oriented. This makes
Python a convenient programming language for modeling and optimization

problems.



CHAPTER 2

FUNDAMENTALS OF DISTRIBUTED SYSTEMS
AND BLOCKCHAIN

2.1. Distributed Systems

Distributed systems [14] are characterized by the dispersal of functions
and resources between numerous components (referred to as "nodes”) and the
absence of a single control center, so the failure of one of the nodes does not
lead to a complete stop of the entire system. The elements cooperate with

one another to accomplish a common objective.

Client-server, three-tier, n-tier, or peer-to-peer architectures are the

most common types of distributed programming.

e Client-server: architectures in which data is requested from the server
by smart clients, who subsequently format and present it to users.

e Three-tier: architectures that enable the usage of stateless clients by
moving client intelligence to a middle layer.

e N-tier: architectures that are frequently used to describe web apps that
send requests to other enterprise services.

e Peer-to-peer: architectures that are identified by a distributed architec-
ture, in which there is not a single administration server to supervise
the entire system. In these networks, client and server functionality are
combined, giving each participant the same capabilities. P2p networks’

key benefit is that even a very high number of failing nodes will not

cause the system to crash.

A distributed system must have the following properties: scalability,
performance, and high availability [15]. Availability means that any request
to a distributed system will result in a valid response, however, there is no
assurance that each node’s response will be identical. Scalability means that
the system must have mechanisms for reacting to changes in the transaction

flow within extremely broad bounds.
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The biggest drawback of distributed systems is complexity [16]. With
the increase in the number of machines, messages, and data being passed, the

following problems arise:

e Data consistency. It can be difficult to synchronize changes to data and
application states in a distributed network.

e Network and communication failure. It is possible for messages to be sent
to the wrong nodes or in the wrong order, which degrades functioning

and communication.

A distributed ledger (DLT) is a database that is distributed across

multiple network nodes or computing devices.

The circumstance where various nodes assume different versions of
adding data to the ledger occurs in the majority of systems. The issue with
weak form finalization is the probabilistic or deterministic construction of a
common prefix that expands with time for all ledger versions in honest nodes.
The challenge in the strong form (fast finalization) is to design a protocol that
fixes the order and content of new data in an unambiguous and irrefutable

manner before it is completely dispersed over the network.

Blockchain is a prime example of one of the DLT data structure types.

2.2. Blockchain and Consensus

A blockchain is a growing sequence of transaction blocks that contain the
cryptographic hash of the preceding block linked together using cryptography
[17]. Blockchains are resistant to data modification. It happens due to the
fact that once recorded, the data in any given block cannot be changed
retrospectively without changing all the following blocks. Side chains are

removed during finalization, and every block is arranged in a linear way.

There are three types of blockchains: permissionless, permissioned,
or both [18]. Networks powered by permissionless blockchains are open to
all users. They do not limit the rights of network nodes. A permissioned
blockchain allows only specific companies or people with verified identities

and the necessary clearance to manage the way data is processed there. For



11

this type of blockchain, there are several levels of data access, for example,

such as:

e reading transactions from the blockchain, but with certain restrictions;
e proposal of transactions for inclusion in the blockchain;

e creation of new blocks.

Achieving overall system stability while dealing with a number of faulty
processes is a fundamental challenge in distributed computing and multi-agent

systems. These processes are described as consensus [19].

Byzantine fault tolerance (BFT)[20] is a property of a system that
can withstand a class of failures that occur due to the ”"Byzantine Generals
Problem”. It was developed to represent a scenario in which a concerted
strategy must be agreed upon by all system participants in order to prevent
catastrophic system failure, yet some of these actors are unreliable. One of the
most important properties of BFT is that if a system is made up of 3- f + 1

nodes, f is the maximum number of faulty nodes that it can handle.

A Practical Byzantine Fault Tolerance (PBFT) [21] algorithm was
developed, which ensures network security as long as the proportion of faulty

nodes stays below the required level.

Different consensus mechanism algorithms operate according to various

concepts.

The most well-known cryptocurrency networks use the Proof-of-Work
(POW) consensus mechanism. This algorithm requires from the nodes par-
ticipating in the network operation the result of a rather long work. This
result can be easily verified. However, this mechanism requires high energy

consumption and quite a long processing time.

The Proof-of-Stake (POS) is another common consensus algorithm.
Compared to POW, it is less resource intensive. In addition, this mechanism
requires less cost. In this algorithm, the probability of the formation of the
next block in the blockchain by the participant is proportional to the share
that the virtual currency tokens belonging to this participant make up from
their total number. The disadvantage of this is that it encourages saving

cryptocurrency rather than spending it.
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Similarly, there are other consensus algorithms like Proof-of-Capacity
(POC), Proof-of-Activity (POA), Proof-of-History (POH), etc.



13

CHAPTER 3

MODELING AND ANALYZING A PERMISSIONED
BLOCKCHAIN WITH HIERARCHICAL
CONSENSUS

3.1. Distributed Ledger Description

This section describes the work of DLT [22].

3.1.1. Terms

e A Node is a server that has been registered in the network and stores
all the relevant data as Ledgers.

e Workers are logical structural components that are deployed on each
Node. They have the necessary credentials required to participate in
the POS protocol.

e Validator and Coordinator are independent elements of each Worker.

e Slot is the structural unit of the timeline of the network. Actions
are taken into account simultaneously throughout a slot, and selected
Validators in each subnet of each shard are required to produce and
distribute their block.

e Epoch is a combination of slots. Epochs are used to summarize the
network’s intermediate results.

e Era is a combination of epochs. In the era the democratically coordinated
changes to the values of the network setup take place.

e Coordinating and Shard networks are two functional subsystems that
are implemented for the system’s operation.

e BlockDAG is a directed cyclic graph (DAG) that has blocks as its
vertices and references to preceding blocks as its edges.

e A block is called a spine block if it precedes all other blocks in the same
slot.
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3.1.2. Description

The Shard network is based on the DAG protocol. Block finalization,
DAG linearization, and the selection of Validators that create blocks within a
specific time slot are managed by the blockchain-based Coordinating network.
As a result of the networks working together, the created blocks of transactions
line up in a DAG, part of which is topologically sorted and finalized (Stream).

The second part, consisting of not yet ordered blocks, forms Spray.

The protocol is based on the fast finality POS consensus. For more
information about this DLT, see [22].

3.2. Hierarchical Consensus

The operation of the Coordinating network begins with the creation of

a genesis block, which contains the initial list of Validators.

At the beginning of each epoch, a list of Committees for the next epoch

is randomly generated for each slot.

In turn, at the beginning of each slot, the leaders of those Committees
are chosen at random from among the Members of the Committees, and
nodes are randomly chosen from the Committee Members to create blocks.
In addition, each node of the Coordinating network sends to the connected
nodes of the BlockDAG network information about the epoch, the list of block
creators, and the finalized blocks. Moreover, each node of the Coordinating
network receives information about spine blocks from the BlockDAG network

node connected to it.

Algorithm 3.1 (Hierarchical Consensus [23]). Assume that the finalized
spine block of the n-th slot f, is already selected. By definition, f; is the

genesis block.

1) Each Committee Member sends messages to the other Members with a
list of visible spine blocks starting at n + 1 slots, a block of the previous
state, and a signature.

2) As a result of such a mailing, two options are possible:
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2

5 votes, such

a) There is a sequence of blocks that received more than
that no longer sequence received more than % votes.
b) No sequence received more than % of votes. It is considered that a
sequence of blocks receives a vote if it is the beginning of some of
the block sequences which are parts of messages from the previous
step. In this case, it is supposed that the resulting sequence of

blocks is empty.

3) Each Committee Member that supports the resulting sequence of blocks
sends a message to the other Members with this sequence, a block of
the previous state, and a signature.

4) The leader of the Committee forms a message with the resulting sequence
of blocks, a block of the previous state, and signatures of the Committee
Members from the previous step and sends it to the other leaders of the
Committees.

5) If more than % of the Committees receive a nonempty sequence, each
leader sends a message to the other leaders that contain messages from
the previous step from other Committees and its signature.

6) The first leader forms and sends out the block that contains messages
from the previous step, signatures of leaders, and its signature. Other-

wise, the block is not published.

The Coordinating network’s block acceptance rules:

1) A correctly produced Coordinating network block is passed on and
added to the chain if it is obtained no later than the following slot.

2) A correctly produced Coordinating network block is passed on and put
on the waiting list if it is obtained through one slot.

3) A block that is on the waiting list is added to the chain if a block that
was generated immediately or with a delay references it.

4) A block of the Coordinating network is erased and not forwarded further

if it is received more than two slots after it was produced.

In order for the procedures described above to be possible, it is necessary
that all nodes know the public keys of each and their total number. This
means that a permissioned blockchain is needed for this. For more information

about the consensus, see [23].
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3.3. Committee Formation Problem

Consider the problem of optimal partitioning of the set of Coordinators
into Committees to make a finalization decision. The optimization problem is
two criteria. First, we should minimize the number of messages transmitted.
Secondly, to reduce the influence of faulty Coordinators on the finalization
decision in each slot. In this case, we will call the faulty Coordinators that,

for any reason, do not participate in the work of the Committee.

3.3.1. Minimizing the Number of Messages

Let

e n be the number of Coordinators;
e ¢ be the number of Committees;

e m be the number of Committee Members.

It is obvious that n = 32-¢-m from the assumption that all Coordinators
take part in the work of the Committee once in an epoch. We consider that
there are 32 slots in the epoch. When creating a block in the Coordina-
tion network, first the Committee Members exchange messages within the
BFT protocol, and then the aggregators (Committee leaders) also exchange
messages within the BFT protocol. Thus, the total number of messages is:

(m—1)

M=2m-(m-1)-c+2-c-(c—1)=2|= G tele=1[. (3D

Figure (3.1) illustrates dependency of number of messages depending

on the number of Members and Committees by the formula (3.1):
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Figure 3.1. Dependency of messages on Members and Committees

Let us consider the question of the values of ¢ and m for which the

number of transmitted messages will be minimal.

n
Since m = 39 .0 the problem is reduced to minimizing the function
c

(neglect the term that does not contain c):

2
n 2

n
M(c)= —1" 12— [4,—}. 3.2
() 17024_C+c c, c¢€ (3.2)

128

An additional condition is that ¢ only accepts integer values. Also, due
to the limitations of the BF'T protocol, we assume that ¢ > 4 and m > 4.
From the last inequality, in particular, it follows that ¢ < 198" In addition, we
assume that the number of Coordinators is sufficiently large. The approximate

value of the minimum point can be calculated analytically:

2
3/ M

Co ~ 2008 (3.3)

Figure (3.2) illustrates the dependency of the number of messages depending

on the number of Committees by the formula (3.2):
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Figure 3.2. Dependency of messages on Committees (reduced formula)

Based on the properties of the BF'T protocol, we can recommend choos-
ing the number of Committees as an integer of the form 3 - f + 1 closest to

Cop.

With the help of numerical optimization methods or mathematical tools,
one can get a more accurate answer. However, for a sufficiently large number
of Coordinators, the answer for an approximate solution and a more accurate

one is the same.

3.3.2. Minimizing the Number of Missed Slots

Due to the fact that some of the Coordinators may turn out to be faulty,
we need to find out how this will affect the decision in the Committees and
the final decision on finalization. In this case, it is necessary to estimate what
is the maximum proportion of faulty Coordinators that is acceptable without

stopping or significantly delaying the decision-making process.

Formulation of the Problem

For a given number of Coordinators, find such a number of Committees

and determine the number of their Members, at which the average number of
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missed slots per epoch will be in a certain sense “minimal”. Missed slots are
those slots in which it was not possible to accept the block. Obviously, the
number of missed slots will depend on the proportion of faulty Coordinators
and their distribution within the Committees. The task is to give a method for
constructing a partition that, on average (in most cases), will give a smaller
number of missed slots than other partitions. At the same time, the number

of sent messages should also be taken into account, possibly minimizing it.

General Provisions

According to the protocol, a decision can be made both within the
Committee by Members of the Committee and between Committees by
aggregators only if there are more than % of votes in favor of this decision. In
this case, the percentage of majority (Share) required for making a decision
will be the smallest if the number of Members as a number can be represented
as 3+ f + 1, i.e. when divided by 3, the remainder is 1. A few examples of

how Share changes depending on Members are given below (see figure (3.3)):
o 2
Majority = 3 Members;

round (Majority —0.5) + 1

- 100%.
Members %

Share =

84

824

804 67.5

78 4 67.4

o
~
w

76 4

Share, %
Share, %

74 4

@
~
)

724

o
~
=

70 4

@
~
=)

681 : ‘ ‘ . 66.9 1 : : ‘ ‘ :
5 10 15 20 100 105 110 115 120 125
Members Members

Figure 3.3. Dependency of Share on Members

Obviously, as the value of Members increases, the fluctuations in the

value of Share decrease. This is also consistent with the results of mathematical
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modeling. A smaller average number of missed slots per epoch was observed

when the number of Committees and their Members were in form of 3 - f + 1.

Using simulation modeling, it was found that the critical value of the
total number of faulty Coordinators, at which there is no large delay in the
finalization of blocks, is 20% [24]. Figure (3.4) shows the number of missed
slots per epoch depending on the proportion of faulty Coordinators. On the
first graph, the number of Committees is 4 and the number of Committee
Members is 64, on the second graph - on the contrary. On the third graph,
the number of Committees is 128 and the number of Committee Members is
16.
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Figure 3.4. Dependency of the number of missed slots on the proportion of
the faulty Coordinators

In addition, during the simulation, it was found that the best result
(lower average number of missed slots per epoch) with a fixed number of
Coordinators is achieved with a decrease in the number of Committees and

with a corresponding increase in the number of their Members. Figure (3.5)
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shows the number of missed slots per epoch depending on the number of
Committees and Committee Members. Green dots indicate the number of

obtained missed slots up to 11, yellow - from 11 to 21, and red - from 22.

Members

10 1 - v ws we we e e

‘

T T T T T T
10 20 30 40 50 60
Committees

Figure 3.5. Dependency of the number of missed slots on the number of
Committees and Committee Members

However, due to technical restrictions on the exchange of messages

within the Committee, the number of Committee Members should not exceed

128.

Partitioning algorithm

Algorithm 3.2 (Partitioning algorithm). Let

o numberCoordinators be the total number of Coordinators in the net-

work;
e maxMembers = 127 be the maximum possible number of Committee

Members.

In the first version of the formulas, all variables are positive integers,
and when dividing, the result is rounded down. In the second version of the

formulas, non-integer division is used.

1) Minimum number of Committees to which all Members can be placed.
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] ) numberCoordinators — 1
minCommittees = + 1;
32 - maxMembers

numberCoordinators
32 - maxMembers

minCommittees = ceiling (

It is assumed that in an epoch there are 32 slots and all Coordinators

should participate in the work of Committees once per epoch.

2) The number of Committees of form 3 - f + 1.

nC it —2
Commattees = (mm omn;z e’ + 1) -3+ 1;
nC it —1
Commattees = max (4, cerling (mm omﬂ;z ces ) -3+ 1) .

where Committees is the minimum number of form 3 - f + 1 greater than

minCommittees. This number of Committees will be used in each slot.

3) The mean number of Committee Members.

numberCoordinators

meanMembers =
32 - Committees

numberCoordinators
meanMembers = floor ( )

32 - Committees
4) The minimum number of Committee Members of form 3 - f + 1.

meanMembers — 1
3

minMembers = < + 1) -3 —2;

3

where minMembers is the maximum number of the form 3 - f + 1 that does

Members — 1
minMembers = floor (mean cmoers ) -3+ 1.

not exceed meanMembers. In other words, each of the Committees has

minMembers Coordinators.
5) Number of Coordinators not assigned to Committees.

restMembers = numberCoordinators — 32 - Committees - minMembers.

6) Number of triples formed from these Coordinators.

, restMembers
triples = ;
3
_ restMembers
triples = floor 3 :
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7) Number of Coordinators not included in the triples.
next Members = rest Members%3.
8) Distribution of triples by Committees.
a) Case 1.

The number of first slots of the epoch in which all Committees will be

increased by 3 Coordinators:

_ triples
irstSlots = :
/ Committees’
triples
firstSlots = floor p' .
Committees

And in the next slot the number of Committees that are increased:
nextCommittees = triples%Committees

by 3 Coordinators. Also in this slot, one can increase one more of the
Committees by nextMembers Coordinators. The following equality must be

true:

numberCoordinators = 32 - Commiattees - minMembers-+

+ firstSlots - Committees - 3 + nextCommittees - 3 + next Members.

b) Case 2.

The minimum number of Committees from each slot that will receive 3

additional Coordinators:

triples
32

triples)

fullCommittees =

fullCommittees = floor (

In addition, a certain number of slots should receive one more Committee

each with an increased number of Coordinators by 3 (for example, at the



24

beginning of the epoch):

extraSlots = triples%32.

As above, one more of the Committees can be increased, for example,

one from the next slot by nextMembers Coordinators. The equality must
hold:

numberCoordinators = 32 - Commatees - minMember s+

+32 - fullCommittees - 3 + extraSlots - 3 + next Members.

The result is:

e The number of Committees in each slot is Committees, the minimum
possible value of the form 3 - f + 1.

e In all Committees, the number (also of the form 3- f 4+ 1) of Members is
minMembers or minMembers + 3, except perhaps for one Committee
with 1 or 2 more Members than minMembers.

e The number of Committees with “increased” by 3 Members is triples.

Such Committees can be allocated to slots in various ways.

Example

Let’s take 16257 Coordinators. The minimum number of Committees:

16257 ) B

mintomimaittees ceuing (32 127

The minimum number of Committees of the form 3 - f + 1, which is not less

than the minCommittees:
: - 4
Committees = ceiling (§> 3+ 1=T.
Each Committee will have in average:

16257
Members = fl — | =72
meanMembers = floor (32 . 7)
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Members. Then, representing the number of Committee Members as 3- f + 1,

we get:

71
minMembers = floor (;) x3+1="70.

Then the number of Coordinators who were not included in the Committees:
restMembers = 192001 — 32 -7 -70 = 577.

In order to add them to other Committees without violating the 3 + 1 form,

we divide the rest of the Coordinators into triples. We get:

triples = floor (%) = 192.

As a result, nextMembers = 1.

Case 1. Determine in how many first slots of the epoch all Committees

will be increased by 3 Coordinators:

192

firstSlots = floor (7> = 27.

And in the next slot we increase:
nextCommittees = 192%7 = 3

Committees for 3 Coordinators. In the fourth Committee in this slot, we add

the remaining Coordinator.

Case 2. Determine the minimum number of Committees in each slot

that will receive 3 additional Coordinators:
fullCommittees = floor(192/32) = 6.

The remaining Coordinator goes to the Committee of some slot.
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Simulation Modeling

For the resulting partitions, graphs of the dependence of the number
of missed slots on the number of Coordinators were plotted for various

percentages of faulty Coordinators for both cases (see figure (3.6)).
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Figure 3.6. Dependency of the number of missed slots on the number of
Coordinators

From the graphs, one can see that the average number of missed slots
does not exceed 13 with a percentage of faulty Coordinators of < 20%. It is

also found that both proposed methods are not inferior to each other.

The code of the algorithm and simulation can be found in appendix A.
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3.4. The Problem of Penalizing Faulty

Coordinators

3.4.1. Types of Coordinators’ Faultiness

The article [25] details the types of Coordinator misbehavior that can

be captured on the Coordination Network ledger. Penalties are calculated

automatically based on the recorded information. Let’s consider the influence

of faulty nodes on the processes in the Coordinating network. Since the

finalization of the distributed ledger is performed in the Coordinating network,

the following problems may cause it to be delayed.

1)

5)

Vote Omissions. It can be assumed that if a certain Coordinator does
not vote several times in a row, it is out of order. In this case, it is
penalized.

Missing blocks. If there is no previous block(s) in one or more slots
in a row, the current slot leader refers to the most recently received
block. A Coordinator is penalized for failing to make blocks. In both
situations, all penalized Coordinators are prohibited from taking part
in the network’s operation for the current and following Eras.
Duplicate Creation. The current leader must only produce one block
per slot in the Coordinating Network in accordance with the protocol’s
requirements. If a certain Coordinator does not follow the rule, it is
penalized.

Conflicting Messages. A Committee Member can sign and send
messages containing conflicting information. In this case, it is also
penalized.

Invalid proof. The leader can submit invalid proof of attacks in its

block. It is penalized for such kind of action.

3.4.2. Simulation Modeling

The fundamental rule when determining penalties is that they need

to be much higher than any potential gain from potential attacks. To scale
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the magnitude of the penalties, in this case, a multiplier of A > 1 is applied.
Finding a value that would be acceptable under various Coordinator misbe-
havior scenarios is one of the simulation’s goals. It is necessary that faulty or
inactive Coordinators eventually lose their right to take part in the consensus.
By doing this, a critical mass of faulty nodes that might otherwise block the
reaching of consensus is prevented. However, inadvertent Coordinator shut-
downs or short equipment malfunctions should not result in a Coordinator’s

permanent ban.
The following scenarios for Coordinator failures are considered:

1) hontine hours are on and hgf fine hours off;
2) the shutdown duration is distributed according to the normal law with
mean t,,.., and standard deviation tgy;

3) the probability of failure when performing one or another action is
P e (0;1).

In these cases, the period of time after which the Coordinator was no
longer allowed to participate in the work is fixed and depends on the value of

the various parameters listed above.

It is recommended to set a rather high value of A = 100 based on the
results. For instance, the penalty for failing to create two blocks in a row or
for voting with the submitting of a conflicting message is 100 times greater
than the equivalent incentives. In order to make the necessary equipment
modifications, the Coordinator’s involvement in the network is also temporarily
interrupted (for the present and following eras). Otherwise, in the event of
further failures, the stake value will fall below 50%, which will result in
the Coordinator’s permanent ban. As a result, the Coordinator’s stake is

preserved and it will be able to participate in the network in the future.

Table (3.1) considers the average number of eras after which a com-
pletely non-working Coordinator is removed from participation in the network

depending on the scaling parameter. Each era lasts ~ 9.1 hours.
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Table 3.1.

The average number of eras after which a completely non-working
Coordinator is banned depending on A

A Eras

1 400000
10 39000
100 3500
1000 500
10000 | 50
100000 | 7

3.5. Conclusion

If the number of faulty Coordinators is obviously small, then one can
use the formula (3.3) to calculate the number of Committees and Committee

Members.

In the case when the smallest possible number of missed slots is impor-
tant, the Partitioning algorithm performed well. Those Coordinators who did
not get into minMembers can be distributed in different ways to Committees.
To reduce the exchange of messages within the Committee, the maximum

number of Committee Members is set to 127.

The scaling multiplier A for penalties is recommended to be set at A =
= 100. At the same time, a completely non-working Coordinator is perma-
nently banned from participating in the network after a long period of time
(taking into account the time of temporary suspension), and the penalties for

violations are significantly greater than the rewards.
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BUCHOBKU

Pobota Gysta mpucBsgdeHa JOC/IiIXKEHHIO 1€papXigTHOr0 KOHCEHCYCY B
OJIOKUeiTHAX KOHTPOJIBOBAHOTO CKJIAJLY 3a JIOTIOMOIOK0 aHAITHIHOTO aHaJIi3y Ta

MO/JIEJTIOBAHHS Ha MOBI NporpaMysanus Python.

1) Byso ommcano mMoze/b i€papxiqHOr0 KOHCEHCYCY Ha OCHOBI IIPOTOKOJTY
Gozalandia.

2) Byso onucano ta BupiieHo mpobsemy MiHIMIZAIl 9ucia MOBiIOMIIEHbD,
AKUME OOMIHIOIOThCS Koopaunaropu.

3) Byso BusiBsieHo, 1m0 Haiibibmuil mporeHT HectipaBHnx KoopamHaTopis,
IpU IKOMY He BiJIOYBa€ThCsI BEJUKOI 3aTPUMKHN Y (piHasi3allil OJI0KIB - 11e
20%.

4) Bysno BusiBJI€HO, 10 HafKpaIllle JiCyIo Jist KiTbKocTi YdacHukis Komirery
ta KomireriB mae Buriisiy 3 - f 4 1 Jijist 3MEHIIeHHsI KiJIbKOCTI IIPOITYITEHNX
ciotiB. [Ipn mpoMy KimbKeTh KoMiTeTiB Mae 6yTH sikoMora MeHIIIOIO.

5) Byno nobymoBano AnropuT™ po3OUTTST Ta BUSIBJICHO, IO KiJTbKICTh MPOITY-
IIEHUX CJIOTIB € HU3bKOIO IIpU Oro 3aCTOCYBaHHI.

6) Byso posrisityTo mpobsieMy 3HAXO/KEHHsI TapaMeTpa MaciTabyBaHHs A,
KU BIATOBIA€ 3a MTpadu 3a aTaku, POOJIIIN X HEJIOMIILHUMA. Bysio

PEKOMEHI0BaHO 3HadYeHHs 1Horo mapamerpy A = 100.

[ITo6 Kpale JOC/HIUTH IO TEeMY, MOYKHa MPOTECTYBATU POOOTY TaKOl

JIeIeHTPaJII30BaHOl CUCTEMH.

PesysbraTn j1oc/izKerb Oy IpejicTaB/IeHl Ha HayKOBiil KoHMepeHIlil

[24].
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CONCLUSION

The work was dedicated to the study of hierarchical consensus in permi-

ssioned blockchains using analytical analysis and modeling in the Python

programming language.

1)

A hierarchical consensus model based on the Gozalandia protocol was
described.

The problem of minimizing the number of messages exchanged by Coordi-
nators has been described and resolved.

It was found that the largest percentage of faulty Coordinators, at which
there is no significant delay in block finalization, is 20%.

It was found that the best number for the number of Committee Members
and Committees is 3 - f 4+ 1 to reduce the number of missed slots. At the
same time, the number of Committees should be as small as possible.

A Partitioning algorithm was built and the number of missed slots was
found to be low when it was applied.

The problem of finding the scaling parameter A\, which is responsible for
the penalties for the attacks, making them infeasible, was considered. The

value of this parameter A = 100 was recommended.

To better explore this topic, we should test the operation of such a

decentralized system.

The research results were presented at the scientific conference [24].
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APPENDIX A

COMPUTER CODE FOR THE PARTITIONING
ALGORITHM

import math

import numpy as np

import matplotlib
matplotlib.use('TkAgg')

import matplotlib.pyplot as plt

maxMembers = 127
numbersCoordinators = np.arange (500, 50050, step=50)
[]
[]

for numberCoordinators in numbersCoordinators:

resultsCasel

resultsCase?

minCommittees = math.ceil (numberCoordinators / 32 /
maxMembers)

Committees = max(4, math.ceil((minCommittees - 1) / 3) * 3
+ 1)

meanMembers = math.floor (numberCoordinators / 32 /
Committees)

minMembers = math.floor((meanMembers - 1) / 3) * 3 + 1

restMembers = numberCoordinators - 32 * Committees *
minMembers

triples = math.floor(restMembers / 3)

nextMembers = restMembers % 3

faultyCoordinators = int(numberCoordinators * 0.2)

overallNumberMissedSlots = 0

Coordinators =
np.append(np.zeros(int (faultyCoordinators)),
np.ones (numberCoordinators - int(faultyCoordinators)))

# Case 1

firstSlots = math.floor(triples / Committees)
nextCommittees = triples 7 Committees

for i in range(10000):



np.random.shuffle(Coordinators)
for slot in range(32):
index = 0
numberFaultyCommittees = 0
leaderIndex = 0
for committee in range(Committees):
members = minMembers
if slot < firstSlots:
members = minMembers + 3
elif slot == firstSlots and committee <
nextCommittees:
members = minMembers + 3
elif slot == firstSlots and nextCommittees ==
committee:
members = minMembers + nextMembers

numberFair = np.sum(Coordinators[index:index +
members] )
numberFaulty = members - numberFair

if Coordinators[index] == 0 or numberFaulty >=
1 / 3 * members:

numberFaultyCommittees += 1

if committee == Committees - 1:
leaderIndex = index
index += members

if numberFaultyCommittees >= 1 / 3 * Committees or
Coordinators[leaderIndex] ==
overallNumberMissedSlots += 1

missedSlotsAvg = overallNumberMissedSlots / 10000
resultsCasel.append(missedSlotsAvg)

# Case 2

fullCommittees = math.floor(triples / 32)
extraSlots = triples 7% 32
overallNumberMissedSlots = 0



for i in range(10000):
np.random.shuffle(Coordinators)
for slot in range(32):
index = 0
numberFaultyCommittees = 0
leaderIndex = 0
for committee in range(Committees):
members = minMembers
if committee < fullCommittees:
members = minMembers + 3
elif committee == fullCommittees and slot <
extraSlots:
members = minMembers + 3
elif committee == fullCommittees and slot ==
extraSlots:
members = minMembers + nextMembers

numberFair = np.sum(Coordinators[index:index +
members])
numberFaulty = members - numberFair

if Coordinators[index] == 0 or numberFaulty >=
1 / 3 * members:
numberFaultyCommittees += 1

if committee == Committees - 1:
leaderIndex = index
index += members

if numberFaultyCommittees >= 1 / 3 * Committees or
Coordinators[leaderIndex] == O:
overallNumberMissedSlots += 1

missedSlotsAvg = overallNumberMissedSlots / 10000
resultsCase2.append(missedSlotsAvg)

plt.plot(np.arange (500, 50050, step=50), resultsCasel,
label="case 1")



plt.plot(np.arange (500, 50050, step=50), resultsCase2,
label="case 2")

plt.xlabel("Coordinators")

plt.ylabel("Faulty slots")

plt.legend()

plt.show()
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