Onecbkuil HalloHANBHUM yHIBepcuTeT imeHi [. [. MeunukoBa
dakynpTeT MaTeMaTukH, 13Uk Ta iHQOpMaIIHHUX TEXHOIOT1H

Kadenpa ontumansHOro KepyBaHHs 1 EKOHOMIYHOT KIOEPHETHKHU

KBAJI®IKAIIIMHA POBOTA

Ha 3/100yTTs CTyIIE€HS BUIIIO1 OCBITH «MaricTp»

«AHaJi3 e(peKTUBHOCTI AJITOPUTMIB BUIIAJIKOBOI'0 NOLIYKY B MALIUHHOMY
HABYaHHI»

«On the effectiveness analysis of Random search optimization algorithms in
machine learning»

Buxonana: 3m00yBauka ieHHOT (hOpMHU HAaBYAHHS

cnemiaigbHocTi 113 [Ipukiagna maTemaTuka
OcsitHs nporpama «lIpuknanna MaremMaTuka

BucropoOcbka Jlonita BssiuecnaBiBHa
KepiBHuk kanj. ¢i3.-mar. Hayk, 1011 Ctpaxos €. M.

PeniensenT kana. TexH. Hayk, qou. Mopo3s B. B.

PexoMeH10BaHO /10 3aXUCTY: 3axumieHo Ha 3acigandi EK Ne
[Ipotoko:n 3acimanus kadeapu npoToko No 53 p.
Ne Bif p. OmniHka / /
(3a HarioHANBEHOKO mIKaNor0, mkanow ECTS, 6amm)
I'onosa EK

3aBigyBau kadeapu

; - - TT1 JITTHC Npi3BULIE, iM’ s
(migmuc) (mpizBue, iM’51) (e (npisin)

Oneca — 2022

Odesa 1. I. Mechnikov National University
Faculty of Mathematics, Physics and Information Technology

Department of Optimal Control and Economic Cybernetics

QUALIFICATION WORK

for obtaining the degree of higher education «master»

«On the effectiveness analysis of Random search optimization algorithms in
machine learning»

Fulfilled by: full-time student

specialty 113 Applied Mathematics
Lolita Vystorobska

Supervisor: Associate Prof. Y. Strakhov

Reviewer: Associate Prof. V. Moroz

Odesa — 2022

CONTENTS
INTRODUGCTION.......ouiiiititiet ettt ettt ettt sttt e b e s bt e s bt e s at e st e e bt e bt e bt e sbeesaeeeae e et e e beesbeesbeesaeesabeeabeeneennes 5
= 108 1 1 DR TPRPPTPPPPPPPPPRNE 8
CHAPTER 1 LITERATURE ANALYSIS AND APPROACHES INVESTIGATION............ovtiiiiieiiiiieiteeee e 11
1.1. Classical methods limitations and formal description of HP optimizationcccccceeeeeiieeeiicinennn. 11
1.2, RANAOM SEAMCN....eiitiiiiiie ettt sttt st ettt e bt e s b et sae e et e e teebeesbeeseeesanenas 12
i O CT= o Tl A ToR =T [ol s DTSR P RO VSTTOTSPPP 13
S e - T g 1o o1 YT T of o P UPPPPPPPN: 15
1.6. Artificial BEE ColONY SEAICH.....cii i e e s e s rte e e s snre e e e sanee 18
O @o o [oY [o a Y AU o AV - [(<) o Yo S 19
CHAPTER 2 SEARCH ALGORITHMS IMPLEMENTATIONoooiiiiiiiiiiiieieeniee ettt s 21
CHAPTER 3 EXPERIMENT SETUP AND RESULTS ... e e e e e e e e e e e e e e e e e 24
3.1 Task and dataset deSCrPLIONciicciiiiiiiie e e e e e e e e s bee e e s abeeessnbeeeesnarenas 24
R B =) - T o] =Y o1 o Yot 11 | o V-5 24
I B 0]\ T] o] (=T g V=T o1 = o o ISR 25
I €1 26T a Y o] 1= g V=T a1 = o o TS PSR 25
3.5 Computational @XPEIIMENTuiiiiiieeicceee e e e st e e e st ee e e s abe e e e ssbaeeesnseeeeenbeeeesnnrenas 26
CONGCLUSIONS e s s e s s s s s s e s s s s s s s e s e s e s e s s e s s e s e s e sasasasasasasasasasssssssssssssasasssssasasnsnsesnanennnnns 30
BUCHOBKM ...ttt sttt et et e bt e s bt e sheesae e sat e e bt e bt e b e e bt e abeesaeesateeabeenbeesbeesaeesanenas 33
AP PEN DX A 38

APPENDIX B.....oooiiiiiiiiiiii e e e s s a e e e s e s abraes 56

INTRODUCTION

Optimization is a frequent goal in many studies, and here optimization in the
context of neural networks will be discussed as well, namely the optimization of hyper
parameters. Here, a set of methods is to be evaluated and compared with significant

emphasis on random search and natural computing algorithms.

So let us introduce the first base term referring to this work, namely as from [1]
Stochastic optimization (SO) methods are optimization methods that generate and use
random variables. For stochastic problems, the random variables appear in the
formulation of the optimization problem itself, which involves random objective
functions or random constraints. Stochastic optimization methods also include methods
with random iterates. More specific sub-type of such methods introduced here are
Natural Computing (NC) ones.

Beginning with definition of Natural Computing term as mentioned in [2], [it]
refers to computational processes observed in nature, and human-designed computing
inspired by nature. When complex natural phenomena are analyzed in terms of
computational processes, our understanding of both nature and the essence of
computation is enhanced. Characteristic for human-designed computing inspired by
nature is the metaphorical use of concepts, principles and mechanisms underlying

natural systems.

Beneficial cooperation among organisms and entities has suggested new ideas
for search and control engineering. The look at highly interconnected networks of
simple biological processing unit, that can learn and adapt, has introduced the way for
our development of computational systems that can differentiate between complex

patterns, and improve themselves over time.

By studying complex biological organisms, looking at nature designed systems,
industry and science was brought ways to explore innovative design approaches and
develop even new products. It is worth to add note from [3], where 10 real-world
successful implementations of NC algorithms were presented, that NC methods are

more than substitute approach to the challenges faced in various domains. In many

6

fields, nature-inspired methods have overcome barriers in the prior achievements and

capabilities of classical computing.

In the subsequent understanding of this paper, these NC algorithms in essence
and in the actual sense refer to a more global concept of random search and stochastic

optimization methods.

Another part of the current paper is Hyper Parameters optimization in Neural
Networks (NN), where, for clarification, such a parameter is the one to be set prior the
training process, cannot be deduced via model learning, and mainly, a set of hyper
parameters can manage and control learning process itself. It can be a loss function,
proper model layer configuration, activation function type, optimization technique etc.
For now, hyper parameters will not be divided into those that belong to model and to

algorithms, nevertheless such a separation could take place as well.

Thus, the main purpose of the current report is an investigation of various
approaches of Hyper Parameters optimization in Neural Networks and its comparison.
As Hyper Parameters optimization is showed up as a non-trivial task, especially in case
of high number of the latter, it is needed to apply more sophisticated methods for

resolving such a problem.

Nevertheless, there are no special literature and only a few papers that could
present a broad comparison of the various methods of Hyper Parameters optimization.
In most cases, researchers take some model by specific task, simple NN like Multilayer
perceptron or Convolutional NN, and some Optimization method that did not used
before or was modified, and eventually explore how those two perform together.
Unfortunately, it is not standardized cause each time there are different models, data,
search space as well as general parameters of the tests. That is why in this research the
main objective is to sum up it all together, implement the selected search algorithms

for specific task and perform the comparison analysis based on results.

For the following report, natural language processing (NLP) aspect-bsaed

classification task has been chosen. As models, deep neural network (DNN) and gated

7

recurrent unit (GRU) model were used, and for a comparison, simple random search,
tree-structured Parzen estimator (TPE); simulated annealing, particle-swarm

optimization, harmony search, as well as genetic algorithms are to be evaluated.

BCTYII
Onrtumizariisi € 4acTo0 METOI0 B 0ararboX JOCHIIKEHHSX, 1 TYT OyJe TakoxX
00roBOPIOBATUCS OINTHUMI3AIliSl B KOHTEKCTI HEHPOHHUX MEPEXK, a caMe ONTUMI3aIlis
rineprapametpiB. TyT HEOOX1HO OLIHUTH Ta MOPIBHATH HaOip METOMIB 13 3HAYHUM

AKIICHTOM Ha BHUIIAAKOBOMY IIOINYKY Ta IMIPUPOIHUX 00YMCITIOBAJIEHUX aJIropurmax.

OT1xe, BBeJIeMO TIepIIui 0a30BUH TEPMiH, 110 BIAHOCUTKLCA 10 I1€1 poOOTH, a
came 3 [1] Croxactuuni meroam ontumizarii (SO) — me Meronu omTHMi3allii, sKi
TeHepyIOTh 1 BUKOPHUCTOBYIOTh BHUIAQAKOBI BENMWYMHH. [CTOXacTHYHHMX 3a1ad
BUIIAJIKOB1 BEJIMYUHU 3’ SIBISIOTHCS Y (POPMYIIIOBAHHI CaMOi 3a/1aul ONTUMI3allli, sika
BKJIIOYA€ BUMNAAKOBI MLUIbOBI (QyHKLII ab0 BUNAAKOBI oOMexeHHs. Meroau
CTOXACTUYHOI ONMTHMI3allii TaKOX BKJIIOYAIOTh METOJIU 3 BUIMAIKOBUMHU 1TEpAIlisiMU.
binbm cnenu@iuHUM MIATUNIOM TAKUX METOMIB, MPEACTABICHUX TYT, € MPUPOJIHI

oouncienus (NC).

[Tounnaroun 3 BusHaueHHs TepMmiHy «IIpupomni obumcnenus» (NC), sk
3a3HaueHO B [2], [BIH] BITZHOCHUTbCS J0 OOYHCIIOBAIBLHUX MPOIECIB, IO
CIIOCTEPIraloThCsl B TPUPOJIL, 1 PO3pOOJEHUX JIIOAUHOK OOYUCIEHb, HATXHEHUX
npuponoro. Komu ckmaaHi TpUPOJHI SBUIIA AHATIBYIOTBCS 3 TOYKH 30Dy
OOYHUCITIOBAILHUX TPOIIECIB, HAIlle PO3YMIHHS SIK MPUPOIHU, TaK 1 CyTI OOYMCIICHb
MOKPAIYETHCA. XapaKTEPHUM JJI1 PO3pPOOJICHUX JIFOJUHOI OOYMCIICHh, HATXHEHUX
MPUPOIOI0, € METaPOpUYHE BUKOPUCTAHHS TOHSATH, MPUHIUIIB 1 MEXaHI3MiB, IO

JeXaTh B OCHOBI MPUPOJHUX CHCTEM.

brnarotrBopHa criBIpais MiXk OpraiisMaMu Ta CyTHOCTSIMH 3alipONOHYBaJIa HOB1
171€1 JTsI IOTITYKOBO1 1 KOHTPOJIBHOT TeXHIKH. [lormsi Ha qyske B3a€MOTIOB’ I3aH1 MEPEKi
MPOCTUX O10JIOTTYHUX MPOIIECOPIB, AKI MOXKYTh HABYATHCS Ta aJanTyBaTHCS, BITKPUB
HUISAX 0 HAIOi po3po0KH 0OUMCITIOBATIBHUX CUCTEM, SIKI MOKYTh PO3PI3HATH CKJIa/IHI

MOI[CJ'Ii Ta BJOCKOHAJIKOBATHUCA 3 HaCOM.

BuBuaroun cknaani 010J0T14HI OpPraHi3MH, JUBISTYUCH Ha CTBOPEHI IIPUPOJIOI0

CHUCTEMHM, TMPOMHUCIIOBICTh 1 HayKa 3HAWILIM NUBSIXH JOCTIKEHHS 1HHOBALIMHUX

HiAXOMAIB 10 MPOEKTyBaHHS Ta pO3pOOKM HaBITh HOBUX MPOAYKTiB. Bapro momaru
npumitky 3 [3], ne Oyno mpencrtaBieHo 10 peanbHux ycmimHuX peanizamii NC-
anroput™iB, 110 Metoau NC € OUIbIT HIXK 3aMIHHUM I1AXO0A0M J0 IPoOJIeM, 3 SKUMH
CTUKAIOTBCS B PI3HUX 00JacTAX. Y 0aratbox rampy3six MPUPOIHI METOIW TOI0JaNIN

MNEePCKOaN B HOHGpGI{HiX JOCATHCHHAX 1 MOKJIMBOCTSX KJIACMYHHMX OOUYHCIICHD.

VY nopanbiioMy po3ymiHHi i€l ctarTi 11 anroputMu NC 1o cyTi Ta B peaibHOMY
CEHC1 BITHOCSITHCS 10 OLIbII TTI00aNbHOT KOHIENIIiT METOIB BUIIAAKOBOTO MOIIYKY Ta

CTOXaCTUYHOI onTuMizarii.

[HIIOI0O YAaCTMHOIO TIOTOYHOI CTaTTI € ONTUMI3AIlis TileprnapameTpiB y
Heriponnux mepexkax (NN), ae, 11t yTouHeHHS, TaKuid TapaMeTp € apaMeTpoM, STKH
BCTAHOBIIIOETHCS TEpe]l TPOIECOM HaBYaHHS, HE MOXXe OyTH BHBEICHUN 3a
JIOTIOMOT'OI0 HaBYaHHS MOJIEI1, 1, TOJIOBHUM YHHOM, MHOKHHA TiIIEpIapaMeTpiB MOKE
KEepyBaTU 1 KOHTPOJIIOBATH caM Ipolec HaBuaHHA. Lle moxxe Oytu (yHKIis BTpar,
HaJie)KHa KOHQIryparlisi piBHS MOJENi, TUI (DYHKIIIT aKTUBAIlli, METOJIUKA ONTHUMI3allii
tomo. [Toku 110 rinepnapameTpu He OyIyTh PO3AUIATUCS HA Ti, IO HAJIEKATh MOJEII

Ta aIropuT™Mam, MPoTe TAKUN MOALT TAKOXK MOKE MaTH MICLIE.

TakuM YMHOM, OCHOBHOIO METOIO AaHOI pOOOTH € AOCIIHKEHHS PI3HUX IM1/1X0/11B
onTuMi3zalii rineprnapaMeTpiB y HEMPOHHUX Mepexax Ta iX MOpiBHSAHHA. OCKUIbKH
ONTHUMI3allis TileprapaMeTpiB BUSBISETHCA HETPUBIAIBHOIO 33/1au€t0, 0COOJIMBO MpHU
BEJIMKIM KITBKOCTI OCTaHHIX, [JIs BHUpPINIEHHS Takoi MNpoOieMu HeoOX1THO

3aCTOCOBYBATH O1IBIN CKJIAHI METOIH.

Tum He MeHIIl, HeMae CIeliaibHOT JIITepaTypH 1 JIUIIE KiJIbKa CTaTel, IKi MOTJIH
0 mpeACTaBUTH IIHUPOKE MOPIBHSIHHS PI3HUX METOJIB ONTUMI3allli riepnapameTpis. Y
OUTBIIOCTI BUMAAKIB JOCTIAHUKN OEpyTh MEBHY MOJENb 32 KOHKPETHHUM 3aB/IaHHSM,
npocty NN, sik-ot Gararomaposuii nepcentpon ado 3roptkoBy CNN, 1 gesikuii MeTon
onTUMi3auii, KU paHille HE BUKOPUCTOBYBaBCcs ab0 OyB MoaudikoBaHUM, 1 B
KIHIIEBOMY MiJCYMKY JOCIHIDKYIOTh, SIK BOHU MpalioloTh pazoMm. Ha xanb, 1e He

CTaHJAapTU30BaHO, TOMY IO KOXKEH pa3 € pi3Hi MOJIell, IaHl, MPOCTIp MOILIYKY, a TAKOK

10

3arajibHi MapaMeTpu TEeCTiB. ToMy B JaHOMY JAOCHIIKEHHI TOJIOBHOIO METOI0 €
HiJIcyMyBaTH BCE pa3oM, peali3yBaTH 0OpaHi aJrOpUTMH IMOUIYKY AJISi KOHKPETHOTO

3aBJJaHHA Ta IIPOBCCTHU HOpiBHHJ’IBHI/Iﬁ aHaJn3 3a pe3yJjibTaTaMHU.

Jlns HactymHoi pobGotu Oysio 00paHO 3aBAaHHsA Kiacudikalii BiJIHOCHO
cyTHOCTel 00poOku mpupoHoi MoBU (NLP). B sikocTi Mozeneir BUKOPUCTOBYBATHCS
KJIaCUYHA HEHpOHHA Mepeka Ta MOJENb BEHTWJIHBHOTO PEKYpPEHTHOrO By3ja, a JUIs
NOPIBHSHHS — MPOCTHIA BUTIAJIKOBHH TomyK, tree-structured Parzen estimator (TPE);
JITOPUTMH 3MOJIEIbOBAHOTO BiJMAajy, PO YaCTOK, TAPMOHIMHOTO MOIIYKY, a TaKOX

TeHETUYHUI aJITOPUTM MalOTh OyTH OLIIHEHI.

Mera pobotu: peanizyBaTd 0OpaHi aJrOPUTMH TIOMIYKY JUIsi KOHKPETHOTO
3aBJaHHs, kiacu@ikallii BIJIHOCHO CyTHOCTEH, Ta MPOBECTU MOPIBHSIIBHUI aHaI3 3a

pe3yiabTaTamu.

OOG’exT ,ZIOCJIiI[)KeHHfI: MOILGHi MAaIlIMHHOTO HaBYAHHA. KJIIaCHYHA HGﬁpOHHa
MEpeXKa Ta MOJCIb BCHTUIILHOIO PEKYPCHTHOI'O BY3JIa, AJITOPUTMHU BHUIIAAKOBOTO
IMOIIYKY: BI/Il'IaI[KOBI/II‘/II IIOIIYK, aJIr'OPUTMHU 3MOACIBOBAHOI'O BiI[l'IaJ'Iy, POXO YaCTOK,

rapMOHIWHOTO TIONIYKY, & TAKOK T€HETUYHUN alTOPUTM.

[IpeameT mociiJKEHHS: MOPIBHSIbHA XapaKTEPUCTUKA METOJIB BUIAIKOBOTO

MOIIYKY.

Metoau qOCHIIKEHHS: 00UYHMCITIOBAJIbHI €KCTIEPUMEHTH.

11

CHAPTER 1
LITERATURE ANALYSIS AND APPROACHES INVESTIGATION

1.1. Classical methods limitations and formal description of HP
optimization

Beginning with the state-of-the-art analysis in HP optimization, it worth to
describe in numbers, how such an optimization becomes a complex trial, as it turns to
time as well as space and resources consuming, what in combination with learning part
itself turns into extremely long running computation event, thus have a huge search

space.

For this assuming the example from [4], the equations are expressed as
f(u,(opy),u,(op,)), where f is a binary function, u is a unary function, and op is
operand. Using arithmetic operators as a binary function, identity, negation, logarithm,
exponential, trigonometric function, square root, and square as a unary function, and
constants zero, one and variable x as an operand, the search space becomes 4 x 72 x 32
in total, reaching about 2000. Even searching for two formula is tricky to handle with

the large search space which has a size of 20002 = 4000000.

There are classical approaches to HP optimization, like grid search and manual
tuning, which for dwindling number of HP act satisfactorily, however as models get
more complex, this number rises, and grid search becomes a poor option compared
with even simple version of random search. Because especially, as described in [5], for
most data sets only a few of the hyper parameters really matter, but those different
hyper-parameters are important on different data sets what was revealed through a
Gaussian process analysis of the function from hyper-parameters to validation set

performance.

On this stage, let us formally describe the HP optimization problem but
beginning with model learnable parameters (usually refer to weights, w) optimization
for broader view. The general objective of the (NN) model M is to derive such an

approximation function F that minimize the loss L(X, f) between predicted and actual

12

(grand truth) outputs over input vectors X. However, as mentioned above model itself
with inner optimization algorithm have Hyper Parameters ¢ that to be optimized as
well, and by choosing which the final model can be described in following context

F = M (Xt"*™) and where HP optimization can be conducted:

(P* — minL(Xvalidation’M(p(Xtrain)) (1.1)

1.2. Random search

Returning to the paper mentioned earlier [5], where random search surpassed
classical approaches, a few more advantages of random search algorithms, to be
noticed compared with conducting grid ones. Based on detachment of every statistical
test, the latter can be stopped at any moment and the whole sequence form a complete
experiment, where each test can be conducted asynchronously. Having additional
computational resources more tests can be thrown in an experiment without grid
regulation and if some test throws an error or is just unsuccessful, it can be easily

restarted or neglected without disrupting the whole experiment.

Referring again to research in [5], random experiments with large numbers of trials
also bring attention to the question of how to measure test error of an experiment when
many test have some claim to being best. When using a relatively small validation set,
the uncertainty involved in selecting the best model by cross-validation can be larger
than the uncertainty in measuring the test set performance of any one model. It is
important to take both sources of uncertainty into account when reporting the
uncertainty around the best model found by a model search algorithm. This technique
is useful to all experiments (including both random and grid) in which multiple models

achieve approximately the best validation set performance.

Finally, the optimization strategies described by [5], are non-adaptive: they do not
influence the course of the experiment based on already available results. Random

search can be generally not as good as the sequential combination of manual and grid

13

search from an expert by [deep-nets-icml-07.pdf] in the case of the 32-dimensional
search problem of deep belief network optimization, because the efficiency of
sequential optimization overcame the inefficiency of the grid search employed at each

step of the procedure.

Thus, in current work, adaptive random and natural computing optimization

algorithms are to be investigated and estimated.

1.3. Genetic search

In [4] an approach to find both activation function and optimization technique
was proposed based on genetic algorithm, where at the same time focus on the relation
between forward and backward processes in the activation function and optimization
technique was hold. Here, the activation function and the optimization technique were
encoded into parse trees and place them into chromosomes of individual. Each
individual x; differs from other individuals in a common neural network by the
activation function and optimization technigue of the chromosomes cf" and c,f".
Net(c;*, c,fi) represented by chromosomes is defined as child network. This network
is constructed with individual x;, learned with CIFAR-10 dataset, and the accuracy is

used as the fitness function of x;.

Fitness function is calculated by learning and validating with the same dataset in a

child network that represents each individual within a population in a generation.
The general process of genetic algorithms can be described as following:

1. Select parent individuals from the current population, the probability of selection

being proportional to fitness.
2. Crossover at the randomly is chosen to form two offspring with probabilityp,;

3. Mutate the two offspring at each point with probability p,,, and place the

resulting individuals in the new population.

14

4. 1-3 steps will be repeated until N offspring have been created.
5. Replace the current population with the new population.

The activation function and the optimization technique were showed as (1) and (2),

where was an attempt to evolve f, g in each equation.
xi = f(Xi-1), (1.2)
0=60-ge/(0)), (13

where x; is an input of the i*" layer, f is an activation function, 6 is weights of deep
learning model, g is an optimization technique, J(:) is a loss function, and V, is a

gradient with respect to 6.

Selection, mutation, and crossover were used as operators for the next generation

based on individuals' fitness.

Thus, in the above discussed paper, automatically found equations for activation
function and the optimizer have the best performance compared to the combination of
the existing activation function and the optimization technique. Moreover, generated
in optimization process SineLU function proved in analysis that it is better than the
conventional activation function, and it is stated as following:

sinfx + fx, x =0

flx) = { sinfx, x <0’ (1.4)

where § = 0.5and g € [0.,1.].

In the next paper [6] a genetic algorithm was used to tune only one hyper
parameter in transfer CNN model, namely trainable layers of the transfer model. The
task was simplified by boundaries that layers can only follow the strict scheme, that
looks like sequence of frozen layers, next go sequentially only trainable ones, and again
either frozen ones or none, if it was the last layer optimization ran on. Such a scheme
constructs a bivariate optimization problem, which will change the 27 space to Tx(T-
1)/2, where T is the number of all layers which state to be chosen. Another task

provided here, was an interpretability whereby help of the GA guided results,

15

additional information can be extracted by analyzing other features such as gradients/
backward inference. The filter criterion is constructed by accuracy and the counts of
the trainable layers. The fitness function is computed by accuracy and the counts of the
trainable layers, and the probability, that whether the iy individual is selected to
survive, is also influenced by the fitness. The optimized transfer model converged with

a precision of 97% in the classification in no more than 15 generations.

In [7], the same task was investigated, applying Cartesian genetic programming
encoding method to optimize CNN architectures automatically for vision
classification. A node function in Cartesian genetic programming was constructed
including tensor concatenation modules and convolutional blocks. The recognition
accuracy is set as the target of Cartesian genetic programming, while connectivity of

the CNN architecture and the Cartesian genetic programming are optimized.

One more interesting point is an implementation of so-called forced mutation to
efficiently use the computational resource by applying the mutation operator until at
least one active node changes for reproducing the candidate solution. By the validation,
their method is proved to be capable to construct a CNN model that comparable with

state-of-the-art models.

1.4. Harmony search

One more paper presented an application of natural computing algorithm for
hyper parameter tuning in CNN. In [8], a metaheuristic optimization method called
meter-setting-free harmony search (PSF-HS) was used for hyperparameters
optimization in the feature extraction step of a CNN, namely kernel size, stride, zero
padding, number of channels of the convolutional layer, and kernel size and stride of
the pooling layer. In such a method, the latter, given in combination as harmony, affect
the size of the feature map of the layer in the feature extraction step of a CNN, thus in

the PSF-HS algorithm, each solution, called a harmony, is represented by a vector, and

16

is stored in the Harmony Memory (HM). Each harmony is generated by random

selection, harmony memory consideration, and pitch adjustment methods.

The HM is updated based on the loss of a CNN constructed using the generated
harmony vector. The termination condition was set so that all harmony vectors stored
in the HM converge into one harmony vector. The simulation results showed that by
tuning the hyperparameters of a CNN, the number of weights and biases that need to

be trained were reduced, and classification accuracy was improved.

1.5. Particle swarm optimization

Another natural computing algorithm was used for HP optimization in
classification and regression task in [9], namely particle swarm optimization (PSO).
However, since the formal idea of the mapping from hyper-parameters space to
generalization accuracy is unclear, thus (PSO) methods cannot be directly used in the
problem of HP assessment. The solution is the Bayesian Optimization (BO)
Framework, that provides an opportunity to turn the HP optimization into the

optimization of an acquisition function.

The optimal value of an approximation function is derived during BO search by
forming a posterior probability of the function’s output. A surrogate model, consisted
of a prior distribution, is used to construct the mapping from the hyper-parameters to
the model accuracy and in this paper a Gaussian process is chosen for this role. Thus
eventually, the optimization of the hyper-parameters is converted into an optimization
problem of the acquisition function a, where PSO is coming to help. In general, a is
non-convex and multi-peak, where the non-convex optimization problems are to be
solved in the search space X. In this work, acquisition function is chosen as upper
confidence bounds (UCB), that trades off exploration against exploitation. PSO
algorithm is simple, with a few adjustment parameters and fast convergence speed.
Plus, what is the advantage, it is not necessary to calculate the derivatives of the

objective function in the process of PSO. Thus, a few words about algorithms structure:

17

1. A population of particles with random points and velocity on n-dimensions of

the search space is initialized.
2. For each particle, the fitness function in n-dim is estimated.

3. Particle’s fitness evaluation is compared with particle’s beat value (ppes:)- If
current value is better than best one, then let p,..; be equal to the current value, and

the p,.s: location equal to the current location.

4. Fitness evaluation is compared with the population’s overall previous best
(gpest)- If current value is better than g , then reset g,.: to the current particle’s

array index and value.

5. The position and velocity of the particle should be changed according to
equations (1)(2):

vi(t+1) = wv(t) + C1T1(Pbesti(t) — xi(t)) + Czrz(gbesti(t) — xi(t)) (1.5)
xi(t+1) = x;(t)+ vi(t+ 1), (1.6)
where
c; and c, are the learning factors of the algorithm,
r, and r, are random variables uniformly distributed in [0, 1].
6. Execute Step 2 until a criterion is met.

Thus, in this paper PSO method is used to optimize the acquisition function to
obtain new evaluation points, that significantly reduces the computational burden.
Empirical evaluation on machine learning model showed that PSO-BO improves upon
the state of the art. The resulting method can be used with most acquisition function.

However, the algorithm runs slowly in high-dimensional space.

18
1.6. Artificial Bee Colony search
[10] presented one more nature inspired algorithm called Artificial Bee Colony

(ABC) for HP optimization in classification task. The general process in ABC built on

4 main phases:
1. The initial food sources are randomly produced via the expression:
Xm = ;i +rand(0,1) * (u; — ;), (L.7)
where u; , I; — upper, lower bound of the search space.
2. The neighbor food source v,,; is determined and calculated by the equation:
Umi = Xmi + Tmi(Xmi — Xp), (1.8)

where i —randomly selected parameter index, x;, — randomly selected food source, r;,,;

random variable uniformly distributed in [0, 1].

The fitness function is calculated as following:

1

, (1.9)
L+ |fn (o)l fin () <0

where f,,(x,,) - objective function.

After this calculation greedy selection is applied between the x,,, and v,, .

3. The quantity of a food source is evaluated by its profitability and the

profitability of all food sources. B, is determined by the formula

f ity (xm)

Pn = :
T YN fitn (o)

(1.10)

Onlooker bees search the neighborhoods of food source according to the

expression from the step 2.

19

4. The new solutions are randomly searched by the scout bees using the

expression as for step 1:
Xm = l; +rand(0,1) x (u; — ;) (1.11)

In the mentioned paper, nevertheless, such an algorithm was specifically adopted

in order to handle a combination of HP types while original ABC works only with
continuous problems. Moreover, the range of variables in basic ABC is the same for
all the dimensions, what also needed to be resolved for optimization task.
Thus, in the study, categorical variables initially are encoded as integers and treated as
discrete ones afterward. After the optimization process is done and before training the
model, these variables are converted again to corresponding values. For binary
categorical variables, the hyper-parameter value is flipped, namely: flipped = 1 —
binary value.

The results of the experiment in discussed study showed that HP-ABC improves
the classification accuracy as well as decreases the tuning time compared to other state-
of-the-art approaches. What is more important, HP-ABC proved an ability to solve the
HPO problems with large search spaces.

The same ABC algorithm was used for HP optimization in [11], where a few
modifications worth to be noticed. The convergence rate of the algorithm was enhanced
by applying K-means clustering to the population of solutions, which means avoiding
the evaluation of each solution by calculating only the cluster centroids. Moreover,
opposition-based strategy was implemented to balance exploration and exploitation
steps. The results on a real-world data in this study demonstrates faster convergence
speed and running time without decreasing the accuracy in most cases and has an

advantage over previous approaches.

1.7. Comparison study attempt

In [12] eventually comparison research was provided for a sophisticated task,

namely HP optimization for sentiments analysis in Arabic language. In this paper, five

20

hyperparameter tuning approaches are presented: Grid Search, Random Search,
Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Bayesian
Optimization. These algorithms are used to perform the hyperparameter optimization
of six machine learning algorithms to analyze Arabic reviews from sentimentally side.
The experimental results showed that the Support Vector Classifier offers the best
accuracy both before and after hyperparameter tuning, with the highest score using
Bayesian Optimization. Meanwhile, PSO and GA dramatically enhanced the score of

the Naive Bayes classifier.

21

CHAPTER 2
SEARCH ALGORITHMS IMPLEMENTATION

For the current research, Optuna [13] framework has been used as an automatic
hyperparameter optimization software, which already includes some of algorithms, and
gives an ability to implement custom algorithms a.k.a. samplers. All the algorithms
were implemented within Optuna, what keeps standardized way of comparison for
current experiments. Important terms\ objects that should be defined for future
explanation are Study — optimization based on an objective function; Trial — a single
execution of the objective function. The framework provides useful pruning
mechanism, that was used in current research for each Study. This mechanism
automatically stops unpromising trials at the early stages of the training by evaluating

temporary results after each epoch.

Algorithms that come out of the box are TPE, Random Search and Genetic
Search, all of them were discussed in the previous chapter, nevertheless, it worth to
mention that the variant of the last one is sophisticated. Namely NSGA-I1 [14] what
stands for “Nondominated Sorting Genetic Algorithm I1”, is a multi-objective genetic
algorithm with a fast non-dominated sorting approach and a selection operator that
creates a mating pool by combining the parent and offspring populations and selecting
the best N solutions. In Optuna documentation, an example of the Simulated Annealing
Sampler can be found, but, unfortunately, it was not working, and needed to be fixed
and modified, the final version of it can be found in Appendix A.3. Two more samplers
were implemented as a part of current research, these are Particle Swarm Optimization

(PSO) algorithm and Harmony memory search.

First of all, hyperparameters transformation should be described, mainly an
approach to handling parameters with non-continuous distribution. For this purpose,
Optuna has module _transform, that enabling conversion of search space bounds and
parameter configurations into continuous space. Bounds and parameters associated

with categorical distributions are one-hot encoded. Parameter configurations in this

22

space can additionally be untransformed or mapped back to the original space. For all
kind of numerical distributions forward transformation is a type casting as float, while
backward transformation depends fully on the exact distribution with respect to current
bounds. In new samplers for search space generalization the next conversion features
were used: BaseDistribution class methods to_external repr, to_internal _repr for
categorical parameters conversion; _transform module functions

_transform_numerical_param, _untransform_numerical_param for numerical ones.

The essential part of the PSO is the mechanism of collecting the previous trials
— particles here and preserving the direct connection between 2 trials from 2 sequential
populations. This process also plays major role in logic, because we need to sort trial
values within one population and reuse best trial in population (as well as one in the
whole generation) for further parameters selection. The code implementation for the
whole PSO sampler is provided in Appendix A.4. Another important part for PSO
algorithms is the velocity recalculation that is computed using previous, predecessor
particle, parameter velocity, as well as generation and population best parameters, and
such constants as inertia weight, cognitive and social coefficients that are also be
multiplied by random variables. This new velocity is afterward sum up with

predecessor parameter, what gives the current parameter value for a trial.

Here, specifically for PSO, Optuna Study and Base Storage classes were
extended in order to provide feature that could extract best trial not from the whole
study but from last limited number of completed trials. These methods in both classes
are called the same, best trial from_last n, and its implementation is added to
Appendix A.1, A.2.

Harmony memory search is the next custom sampler. Here, the stochastic
components are presented through harmony memory considering rate (HMCR) and
pitch adjusting rate (PAR), that play a role of thresholds. Moreover, these thresholds
are recalculated for each trial based on completed trials number as well as maximum
trials number. Afterwards comparison of random number with HMCR indicates if the

random trial parameter from current harmony memory should be used for next

23

parameter recalculation, while comparison with PAR is called upon to decide if this
random trial parameter should be used as it is or changed using band width constant
with current parameter distribution limits. Harmony memory is also an important
component of the algorithm, because random trial for future trials HPs generation can
be selected only from the harmony memory subset if trials that has restricted size, and
only best performed trials can be added there. Algorithm implementation can be

examined as well in Appendix A.5.

24

CHAPTER 3
EXPERIMENT SETUP AND RESULTS

3.1 Task and dataset description

Current report subject is a Natural language processing (NLP) classification task,
namely aspect-based sentiments analysis in Twitter comments dataset. As models, deep
neural network as well as gated recurrent unit model have been selected, while 6
optimization algorithms were compared, among which 5 of them are in essence

stochastic ones.

The task itself is more sophisticated than general classification because
sentiment should be defined on the entity-level. It means, given a message and an
entity, the task is to judge the sentiment of the message about the entity. There are three
classes in this dataset: Positive, Negative, Neutral, Irrelevant. For DNN tests messages
that are not relevant to the entity (i.e. Irrelevant) are regarded as Neutral, however for
GRU tests all 4 classes were left as they are, because recurrent model has in general
more capabilities against DNN and therefore can distinguish between relatively similar

sentiments. Training set size was 74k samples, test set — 1k samples.

3.2 Data preprocessing
A few more words about data and its preprocessing difference depending on

model. For both models, standard data cleaning such as non-alphabetic chars as well
as punctuation filtering were applied along with repeated chars and stop-words
removal. However, in DNN case embedding extraction has been done beforehand, and
one-hot encoded entities matrix was concatenated to the embedding matrix, what in
combination gives the actual input for the model. As a tokenization mechanism, spaCy
[15] pipeline was used. In GRU case, embeddings were learned online during the train

itself, and padding was applied to input sequences.

25
3.3 DNN implementation

The first model, deep neural network, is, roughly speaking, a perceptron with
several levels of complexity, that was implemented using Pytorch framework [16]. As
activation function after each layer LeakyRelLU is used and it was constant, while
number of layers as well as number of units inside each level have been selected by

search algorithm on each trial as part of the experiment.

3.4 GRU implementation
The second model, Gated Recurrent Unit that has also been implemented using

Pytorch framework, is an improved version of standard recurrent neural network
(RNN) with special gating mechanism that aimed to solve vanishing gradient problem
in RNNs. Namely, update and reset gates are used in GRU, these are two vectors which
decide what information should be passed to the output. The main thing about them is
that they can be trained to keep information from long ago, without cleaning it through
time or remove information which is irrelevant to the prediction. The architecture of
the GRU model unit is presented on the figure 3.1, and its temporary values as well as

gates can be calculated as following:
z= oc(W®x, +VPh,_;) (3.1)
r=ocWPx, +VPh,_,), (3.2

where x, — input vector with W ®™ as its own weights; same goes for h,_, — vector
with information for the previous t-1 units and it is also multiplied by its own weight

v@n): g — sigmoid function; z,,r; — update, reset gates.

After that we have all inputs to compute current memory content, that will use

reset gate to store the relevant information from the past:
hi = tanh(Wx; + r©OVh,_,), (3.3)

where ® — Hadamard product operator.

26

In the end final memory at current time step should be evaluated using update

gate along with current memory content:

ht == ZtG)ht_l + (1 - Zt)G)hé (3.4)

he-q hy
Ei-o
r
t
— 1)
tanh
h
1-z
. -2
Xt
G tanh
“plus™ operation “sigmoid” function “Hadamard product™ operation “tanh™ function

Figure 3.1 Gated Recurrent Unit [17]

3.5 Computational experiment

Current experiment consists of 6 HP search algorithms:

 Random search: define a search space as a bounded domain of
hyperparameter values and randomly sample points in that domain.

« TPE from [18]: SMBO type of methods sequentially construct models to
approximate the performance of hyperparameters based on historical
measurements, and then subsequently choose new hyperparameters to test

based on this model.

27

« Simulated Annealing: choose one of the previous trial points as a starting
point, and then sample each HP from a similar distribution to the one
specified in the prior, but whose density is more concentrated around the trial
point we selected.

» Genetic search: uses evolutionary algorithm; and implements biologically
inspired operators such as selection, crossover/ mutation.

« Particle swarm optimization: optimizes a problem by iteratively trying to
improve a candidate solution regarding a given measure of quality.

« Harmony memory search: music-inspired metaheuristic optimization
algorithm, based on the principal to find a perfect harmony state through

improvisations.

The above algorithms details and implementation were covered in previous
chapters, but it worth to mention that all algorithms were implemented within
one framework, and although HP depends on model, within one model HPs as
well as their distributions are all equal, thus from this point experiment setup can
be described. Moreover, all the experiments were run on one GPU using pruning
mechanism provided by Optuna framework, it means on each epoch the
temporary results were evaluated and aborted for dead-end ones. For both
models there are few algorithms parameters to be specified: for Harmony search
harmony memory size is 8; for PSO particles number within generation is 12;

for genetic search population size is 10.

DNN hyper parameters and search space:
» Learning rate: 1e-5 — le-1.
» Optimizer: Adam, AdamW, RMSprop.

» Batch size: 8 — 32.

28

* Epochs number: 3 — 8.

» Layers number: 1 - 3.

 Units number withing layer: 4 — 18.
* Trials number: 50.

GRU hyper parameters and search space:

Learning rate: 8e-4 — 3e-3.

Optimizer: Adam, AdamW, RMSprop.

» Embeddings dimension: 128 — 256.

» Epochs number: 3 — 8.

» Dropout probability: 0.2 — 0.6.

 Units number withing layer: 512 — 1024.

e Trials number: 30.

Hardware properties:
* Processor AMD Ryzen 9 5900HX with Radeon Graphics 3.30 GHz

» Graphics card NVIDIA GeForce RTX 3060 laptop GPU GDDR6 @ 6GB
(192bit)

* OS name: Ubuntu 22.04.1 LTS inside WSL2

* OS type: 64-bit

Table 3.1 Key results with DNN model

29

Algorithm Calculation time, Accuracy Best Trial Ne
min:sec

Random search 14:58 0.666 22
TPE 29:47 0.671 12
Annealing 14:27 0.675 49
Harmony search 21:20 0.671 40
Genetic search 17:27 0.666 45
PSO 16:45 0.665 32

DNN trials optimization history and parameters importance for each algorithm are
presented in Appendix B.1.

Table 3.2 Key results with GRU model

Algorithm Calculation time, Accuracy Best Trial Ne
min:sec
Random search 21:47 0.955 6
TPE 19:46 0.96 20
Annealing 18:52 0.95 1
Harmony search 24:11 0.95 26
Genetic search 24:35 0.963 12
PSO 20:08 0.951 7

GRU trials optimization history and parameters importance for each algorithm are
presented in Appendix B.2.

30

CONCLUSIONS

Literature analysis regarding HP stochastic optimization was provided. As can
be seen, there is a bunch of studies exploring specific stochastic or natural computing
algorithm for some specific problem. Namely, in this paper 6 hyperparameter
approaches were investigated: Grid Search, Random Search, Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Harmony Search (HS) and Artificial Bee Colony
(ABC) algorithm. It worth to mention that in most of the papers the methods were not
implemented as it is, because of the heterogeneity of the HP search space. For some of
algorithms authors modify inner structure of the algorithm (GA, ABC, HS), thus binary
or categorical variables can be converted forward and backward; for PSO even this was
not possible, and mapping to the model accuracy using Bayesian Optimization
Framework was added. There was only one paper that includes a comparison between
methods, but here a bigger emphasis was on the specific task, and there was no valid
clue that the test setup was fully standardized, thus the results could be transfer to
another task. Moreover, many studies apply modifications to the methods like
conditions and inner assessment during search to not investigate potentially dead ends
or aggregations of intermediate results that can decrease resource consumption etc.
Nevertheless, there is still a lack of compound studies that could show the valid picture
on effectiveness of the stochastic algorithms set, and give an abundant comparison

analysis, what is defined as the main objective for this proceeding research.

As a result of this study, two algorithms were implemented, PSO and Harmony
search, one algorithm was modified, Simulated Annealing, and corresponding
framework Optuna was extended to satisfy PSO implementation requirements. Overall,
6 algorithms were compared: random search, tree-structured Parzen estimator (TPE);
simulated annealing, particle-swarm optimization, harmony search, as well as genetic
search algorithms. Moreover, all of them were run and implemented within one
framework, what allows valid evaluation between them. The only one non-stochastic
algorithm here is TPE, that was taken as a benchmark to compare with and because it

Is implemented in most of wide used HP optimization frameworks. Task to compare

31

on is aspect-based sentiments analysis, and the models, that HP are optimized for, are
DNN and GRU. Parameters and experiment setup for each model was done

independently.

In the first experiment with DNN model, simulated annealing is overperformed
others with 67.5 % accuracy score and shortest computational time; what is also
significant, best score was achieved at almost last trial, however during the study its
trials have gone to plateau. The second-best algorithms with DNN HP optimization are
Harmony search and TPE with equal score of 67.1 %, while in terms of time harmony
search is better, and both algorithms got to relative plateau since the 10" trial. These
plateaus in each study are caused by pruning feature that simply abort all dead-end
trials. Thus, stochastic algorithms showed good results, although non-stochastic one
also managed to get into the top three. It is important to mention that for almost every
algorithm, there was one HP that took the highest importance of appx. 50%, and only
for Genetic search there are 2 of such hyper-parameters, number of units within layers
and learning rate, with 39 % and 38 % of importance score respectively. Moreover, for
most of algorithms the most important parameters were the last two, for some number
of epochs also plays a role, and what’s interesting, for simulated annealing the most

important parameter was number of layers.

In the second experiment, GRU model surely showed much better result because
of the higher proficiency of the model itself. Nevertheless, this time genetic search is
overperformed others with 96.3 % accuracy score but longest though still good enough
computational time; best score was achieved in the middle of the study, on 12 trial,
and after got to plateau. The second-best algorithm is non-stochastic TPE with 96 %
score and almost best computational time. All other algorithms performed almost the
same, their scores were fluctuated around 95 %, while some got to plateau already from
the first trials. It is possible, that in this situation, trials number can simply be increased
to break the initial accuracy threshold. Regarding HP importance, there are 2-3 major
HPs in each algorithm, among which number of epochs and units, dropout probability,

learning rate and sometimes optimizer. There are 2 algorithms, PSO and Genetic

32

search, that have parameters significantly predominant in importance, around 80 %,
number of epochs and learning rate respectively. Also, importance distribution for
simulated annealing caught an eye, because here number of units and epochs got same
score of 38 %. Parameter importance can be extremely useful, if the resources are
restricted, model is heavy, and we need to decrease our search space considering first

restricted number of trials.

Overall, in both experiments stochastic algorithms performed more than
satisfactorily, de facto overperformed non-stochastic algorithm, although the latter also
showed good results. As an outcome of this research, harmony search, genetic search

as well as simulated annealing, can be recommended for use in real world applications.

33

BUCHOBKH

[IpoBeneno aHamiz jiTepaTypd MIOJO0 CTOXAaCTHMYHOI ONTHUMI3aIil
rinepnapamerpiB (HP). Sk BumHO, iCHye Kyma JOCTIKEHb, IO JOCIIIKYIOTh
KOHKPETHHM CTOXaCTUYHHUM a0 MPUPOAHUN 0OUMCITIOBATBHHUM allTOPUTM JJIs IEBHOT
KOHKPETHOT npobiemMu. A came, y 11iii poO0Ti OyJ10 TOCHIAKEHO 6 MiAXO1B: TOIIYK 110
CITIIl, BUMAJIKOBHU IMOTYK, TeHeTHYHUH anroput™ (GA), onTuMizaliisi posi YaCTHHOK
(PSO), rapmoniunwmii momryk (HS) ta anropurm mtydnoi 6pxomuHoi kosoHii (ABC).
Bapto 3a3Haunty, 1110 B OUIBIIOCTI CTaTe METOAM He OyJIM peali3oBaHl sK €, yepes
HEOJHOPIAHICTh npocTopy nomryky HP. /Ins geskux anroputmiB aBTOpPH 3MIHIOIOTH
BHYTpilIHIO CTpyKTypy anroputMmy (GA, ABC, HS), Takum unHOM NBIHKOBI a0o
KaTeropiajibHi 3MIHHI MO>KHA ITEPETBOPIOBATH BIiepe 1 Ha3a; 1yist PSO HaBiTh 1€ OyI10
HEMOXJIMBO, 1 OyJ0 J0AaHO BiOOpaKe€HHS TOYHOCTI MOJENl 3a JOMOMOTOIO
baiteciBchkoi onTuMizarii. byma nuine ogHa cTaTTs, sKa MICTHTh HMOPIBHSIHHSI MIXK
METO/IaMH, ajie TYT OUTbIIMI aKIEHT OyB 3p00JIeHUI HA KOHKPETHOMY 3aB/IaHHI, 1 HE
OyJI0 TIPEICTABJICHO, 10 HAJAIITYBaHHS TecTy OyJj0 MOBHICTIO CTaHIAapTU30BaHO,
TOMY pe3yJIbTaTh MOXKHa OyJio O rMmepeHecTy Ha iHie 3aBnaHHd. binbiie Toro, 6arato
JTOCHIKEeHb BHOCATh MOJU(DIKAIIll 1O METO/IB TaKl, IK YMOBH Ta BHYTPIIIIHS OI[IHKA
MiJ] 4Yac TMOIIyKy, MO0 HEe JOCIIKYBaTU MOTEHIIWHO TYIMHKOBI HampsiMKh a0o
arperaiisi MPOMIKHHUX pe3yJbTaTiB, sIKI MOXKYTh 3MEHIIUTH CHOKHWBAHHS PECYPCIB
Tomo. TuM He MeHI, J0cl OpaKky€e MOBHOIIHHUX JOCHIIKEHbB, K1 MOTJIM O TOKa3aTu
JIOCTOBIPHY KapTHHY, 100 €(heKTUBHOCTI HA00PY CTOXaCTUYHHUX AJITOPUTMIB Ta AaTH

MOBHMM MOPIBHSJILHUM aHaI3, 1[0 BUBHAYECHO SIK OCHOBHE 3aBJIaHHSI TOCI1IKEHHS.

VY pesynbTari bOro AOCIIKEHHs OyJio peali3oBaHo JBa ajroputmu, PSO Ta
Harmony search, oqun anroputm OyB MojauGikoBaHWl, MOJCTIOBAHHS Bianany, i
BiANMoOBiAHUN ¢peliMBopk Optuna Oyio po3mUpeHO, 100 3aJ0BOJLHUTH BUMOTH
peanizaiii PSO. 3arajiom Oys0 MOpIBHSHO 6 aJIrOPUTMIB: BUITAIKOBUM MOIIYK, tree-
structured Parzen estimator (TPE); mopmemoBaHHS Bifmany, ONTHMI3allis pPOiB
JaCTHUHOK, TAPMOHIMHHH TIOIIIYK, a TAKOX aJTOPUTM FeHETUHIHOTO TotryKy. Kpim Toro,

yC1 BOHU OyJIH 3aIlyIIeH] Ta pealli3oBaHi B OJIHIM CTPYKTYPIi, IO T03BOJISIE TIPOBOUTH

34

JIOCTOBIPHY OIIIHKY MK HUMHU. €IUHUM HeCTOXacTUIHUM anroputMmoM € TPE, skwii
OyJI0O B3STO SIK €TAJIOH JIJIs TMOPIBHSHHS, OCKUIBKH BIH peaji3oBaHUN Yy OUIBIIOCTI
HIMPOKO BUKOPUCTOBYBAaHUX cucTeM ontuMizanii HP. 3aBgaHHsM A MOpiBHSHHS €
kiacudikailis MOYyTTiB BIIHOCHO CYyTHOCTEH, a MOJEISMHU, JJIS IKUX ONTHMI3yBaIHCS
rinep-napamerpu, € DNN 1 GRU. [lapameTpu Ta HanamrTyBaHHS €KCIEPUMEHTY JJIs

KO’KHOI MOJIEJ1 MPOBOIUIUCH OKPEMO.

VY mepiiomy excriepuMenTi 3 MoaesTro DNN iMiTOBaHUH BiJnan mepeBeplIye
1HIII aJTOPUTMH 3 TTOKA3HUKOM TOYHOCTI 67,5 % 1 HAHKOPOTIIUM YacoM OOYHCIICHHS;
0 TakKoX Ba}XJIMBO, HaWKpamuid pe3ynbraT OyB JOCATHYTHMH IiJ dac
NepeIOCTaHHBOIO0 BUTPOOYBAHHS, OJTHAK T1J] 4ac TOCTIIKEHHS €KCIIEPUMEHT BUUIIIOB
Ha 1w1aTto. JpyrumMu HalkpalmuM# aaropuTMaMy 3 ONTUMI3ZAINEIO TileprnapaMmeTpiB
(HP) DNN e Harmony search i TPE 3 piBauM pe3yabratom y 67,1%, Tofi sIK 3 TOUKH
30py 4acy rapMOHIMHMI MOIIYK € KpaliuM, 1 00MABa aJlrOPUTMH JTOCSITIN BIIHOCHOTO
rwiato micig 10-ro BunpoOyBanHs. Lli miato B KOKHOMY JTOCIHIIKEHHI BUKJIMKaHI
(YHKILIEI0 YUCTKH, KA TPOCTO MPUIIMHSE BC1 O€3MepCeKTUBHI BUIPOOyBaHHs. Takum
YMHOM, CTOXaCTHYH1 aJITOPUTMH [TOKa3aJIi XOPOLi pe3yJIbTaTH, X04a HECTOXaCTUUHUN
TaKOXX 3MIT MOTPANUTH M0 TPIMKK JiAepiB. BaxIMBO 3a3HAUMUTH, IO Maibke s
KOXHOro anroputMmy OyB onuH HP, sxuii maB HaiiBuiry Bary y npuOauszno 50%, 1
JUIIE 7)1 TEHETHYHOTO TIOIIYKY € 2 TaKuX TineprapaMerpa, KUIbKICTh HEHPOHIB y
niapax 1 MBHUIAKICTh HABYaHHS, 3 OLIIHKOIO BaXXJIMBOCTI 39% 1 38% BiamosigHo. Kpim
TOTO, JJIsi OUIBIIOCTI aNrOpUTMIB HAaWBAXKJIMBIIIMMU TNapameTpamu OyJid /JBa BxkKe
3a3HAYCHHMX, JJIS JESIKUX aJITOPUTMIB I'pAa€ pojib 1 KUIBKICTh €I0X, 1 110 I[IKaBO, JJIS

MOJICJIFOBAHHS B1JINay HAMBaXXJIMBIIIMM MapaMeTpoM Oyiia came KiJIbKICTh IIapiB.

VY npyromy ekcnepumenTi mozaenb GRU, OGe3cyMHiBHO, MoOKa3aia Habarato
Kpalmuil pe3ysibTar uyepe3 OuTbI crenudiuny Ta CKIagHy CTPYKTYpYy camoi MOJeri.
TuM He MeHII, I[bOr0 pa3y TeHETUYHUH NOIIYyK IMEepEeBEepUIy€e I1HIII aJTOPUTMHU 3
MOKAa3HUKOM TOYHOCTI 96,3 %, ajie B TOM K€ yac 11¢ aIrOpuT™M MaB HaWJIOBIINI, aje
BCE 111€ JOCTaTHbO XOPOIINI Yac 00YMCIIEHHS; HAUKpaLIUil pe3yabTaT OyJI0 TOCATHYTO

B CEpeANHI TOCTIHKEHHS, Mg yac 12-To BUNpoOyBaHHs, 1 Micisa OyB BUXiJ Ha TUIATO.

35

Hpyrum Haiikpamum anroputmom € Hecroxactuunuii TPE 3 pesympraTtom 96 % 1
Maike HalKpaluM 4acoM OOYMCIICHHs. YCl 1HINI aJlrOpUTMH MPAILIOBAIIA Mailke
OJIHAKOBO, X TTOKAa3HUKHU KOJIUBAJIKUCS B pailoHi 95%, a feski BUNIIUIMA Ha IJIATO BXKE 3
nepmux BUIpoOyBanb. MOXIIUBO, 110 B I[iil CUTYyaIlli KIJIBKICTh TPOO MOKHA MPOCTO
30UIBIIMTH, 100 MOJ0JATH MoYaTKOBUM mopir TouHocTi. Illomo BaxmuBocti HP, y
KOKHOMY airoputmi € 2-3 ocaoBHi HP, cepen sikux KiTbKICTh €M0X 1 HEHpOHiB y miapi,
HMOBIipHICTh BHOYTTs mapy (dropout), mBHIKICT, HABYAHHS Ta 1HOJI ONTHUMI3aTOP.
Icnye 2 anroputmu, PSO 1 reHeTHUHMI MOIIYK, SAKI MalOTh MapaMeTpH, sIKI 3HAYHO
MEePEeBAXKAIOTh 33 BAXKIIUBICTIO 1HIII B [IUX AJITOpUTMax, 0Jin3bko 80%, KITBKICTh €1MOX
1 IIBUJKICTh, HAaBYaHHS BiAMOBIAHO. KpiM TOro, KHHYBCS B 04l PO3MOJLT BaKIUBOCTI
JUIsL IMITOBAHOTO BIJIMAy, OCKUIBKM TYT KUIBKICTh HEMpPOHIB 1 €MOX oTpuMaja
olHaKoBy OHIHKY Yy 38%. Baxmupicth mnapamerpa Moxe OyTH HaJI3BUYAITHO
KOPHCHOIO, SKIIO pecypcd OOMeXeHl, MOJeiIb Ba)Kka, Ta HEOOXIJIHO 3MEHIIUTH

IPOCTIP MOIIYKY, BPAXOBYIOUH NEPITY OOMEXEHY KIJIbKICTh BUIPOOYBaHb.

3aranom, B 000X €KCIEPUMEHTAX CTOXACTUYHI AJITOPUTMU MPALIOBAIA OUIbII
HIK 3a/JI0BUIBHO, Je-(aKTo BHUIEPEDKAIOYM HECTOXAaCTUYHUM aJrOpUTM, XOda
OCTaHHIM Tak0XX TOKa3aB XOPOII pe3yibTaTH. SIK pe3yJbTaT LbOTrO JTOCHIKEHHS,
TapMOHIWHUN TTONTYK, TEHETUYHUHN TIOMIYK, a TaKOX MOJICTIOBAHHS BiNany MOXYTb

6YTI/I peKOMeHI[OBaHi AJIsI BUKOPHUCTAHHA HA PCAJIbHUX, IIPUKIIAAHHUX 3a/la4aX.

Arnpo0ariist poOoTH BiOyBanacsi Ha CHUIbHIA YKPATHChKO-KUTAMCHKIA OHJIAKH-
xoHdpepentii 1st Student Scientific Conference of Joint Research Cooperation between

Odessa I.1. Mechnikov National University and Huaiyin Institute of Technology [19].

36

REFERENCES

. Spall, J.. (2007). Introduction to Stochastic Search and Optimization.
Estimation, Simulation, and Control. Neural Networks, IEEE Transactions on.
18. 964-965. 10.1109/TNN.2007.897481.

. Natural Computing, An international Journal n.d.,
https://www.springer.com/journal/11047.

. Corne, D., Deb, K., Knowles, J. and Yao, X., 2011. Selected applications of

natural computing. Handbook of natural computing.

. Kim, J.Y. and Cho, S.B., 2019, June. Evolutionary optimization of
hyperparameters in deep learning models. In 2019 IEEE Congress on
Evolutionary Computation (CEC) (pp. 831-837). IEEE.

. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J.
Mach. Learn. Res. 2012, 13, 281-305.

. Li, C,, Jiang, J., Zhao, Y., Li, R., Wang, E., Zhang, X. and Zhao, K., 2021.
Genetic Algorithm based hyper-parameters optimization for transfer
Convolutional Neural Network. arXiv preprint arXiv:2103.03875.

. M. Suganuma, S. Shirakawa, T. Nagao. A Genetic Programming Approach to
Designing Convolutional Neural Network Architectures. In: GECCO, 2017, pp.
497.

. Woo-Young Lee, Seung-Min Park, Kwee-Bo Sim, Optimal hyperparameter
tuning of convolutional neural networks based on the parameter-setting-free
harmony search algorithm, Optik, Volume 172, 2018, Pages 359-367, ISSN
0030-4026.

. Li, Y. and Zhang, Y., 2020. Hyper-parameter estimation method with particle

swarm optimization. arXiv preprint arXiv:2011.11944.

10. Leila Zahedi, Farid Ghareh Mohammadi and M. Hadi Amini HyP-ABC: A

Novel Automated Hyper-Parameter Tuning Algorithm Using Evolutionary
Optimization TechRxiv, 2021

https://www.springer.com/journal/11047

37

11. Zahedi, Leila & Ghareh Mohammadi, Farid & Amini, M. H.. (2021). OptABC:
an Optimal Hyperparameter Tuning Approach for Machine Learning
Algorithms. 10.1109/ICMLA52953.2021.00186.

12. Elgeldawi, Enas & Sayed, Awny & Galal, Ahmed & Zaki, Alaa. (2021).
Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic
Sentiment Analysis. Informatics. 8. 10.3390/informatics8040079.

13.https://optuna.org/

14.K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist

multiobjective genetic algorithm: NSGA-II," in IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002, doi:
10.1109/4235.996017.

15.https://spacy.io/usage/processing-pipelines/

16. https://pytorch.org/
17. https://miro.medium.com/max/1400/1*UxZ0pTQW8kofL9bzPVY V1w.webp
18.Bergstra, James & Bardenet, R. & Kégl, Balazs & Bengio, Y.. (2011).

Algorithms for Hyper-Parameter Optimization.

19. Vystorobska L., Strakhov Ye., On the effectiveness analysis of Random search
optimization algorithms in machine learning, 1st Student Scientific Conference
of Joint Research Cooperation between Odessa I.I. Mechnikov National
University and Huaiyin Institute of Technology: proceedings of the conference,
May 16, 2022.

https://optuna.org/
https://spacy.io/usage/processing-pipelines/
https://pytorch.org/
https://miro.medium.com/max/1400/1*UxZ0pTQW8kofL9bzPVYV1w.webp

38

APPENDIX A
CODE SOURCES
A.1 Study class added function for PSO

def best trial from last n(self, last n: int = 5) -> FrozenTrial:
"""Return the best trial from last N in the study.
Returns:
A :class: ~optuna.FrozenTrial object of the best trial.
Raises:
:exc: RuntimeError :

If the study has more than one direction.

if self. is multi objective():
raise RuntimeError (

"A single best trial cannot be retrieved from a
multi-objective study. Consider "

"using Study.best trials to retrieve a list
containing the best trials."

)
return copy.deepcopy (
self. storage.get best trial from last n(
self. study id, last n=last n
))
A.2 Storage class added function for PSO

def get best trial from last n(self, study id: int, last n: int) ->
FrozenTrial:

"""Return the trial with the best wvalue in a sub-set of
study.

This method is valid only during single-objective
optimization.

Args:
study id:

ID of the study.

39

last n:

number of trials from tail to select the best one
from

Returns:

The trial with the best objective value among sub-set
of finished trials in the study.

Raises:
:exc: KeyError :
If no study with the matching "~ "study id = exists.
:exc: RuntimeError :
If the study has more than one direction.
:exc: ValueError :
If no trials have been completed.

mwwan

all trials

self.get all trials(study id, deepcopy=False)

all trials = [t for t in all trials[-last n:] if t.state is
TrialState.COMPLETE]
if len(all trials) == O0:

raise ValueError ("No trials are completed yet.")
directions = self.get study directions(study id)
if len(directions) > 1:

raise RuntimeError (

"Best trial <can be obtained only for single-
objective optimization."

)
direction = directions[0]
if direction == StudyDirection.MAXIMIZE:
best trial = max(
all trials, key=lambda t: cast(float, t.value))
else:
best trial = min(

all trials, key=lambda t: cast(float, t.value))

return best trial

A.3 Simulated Annealing Sampler

class SimulatedAnnealingSampler (BaseSampler) :

def init (self, temperature=100, cooldown factor=0.9,
neighbor range factor=0.1, seed=None):

self. rng = np.random.RandomState (seed)

self. independent sampler =
optuna.samplers.RandomSampler (seed=seed)

self. temperature = temperature
self.cooldown factor = cooldown factor
self.neighbor range factor = neighbor range factor

self. current trial = None

def infer relative search space(self, study, trial):

return optuna.samplers.intersection search space (study)

def sample relative(self, study, trial, search space):
if search space == {}:
return {}
prev_trial = self. get last complete trial (study)

if self. rng.uniform(0, 1) <=
self. transition probability(study, prev trial):

self. current trial = prev trial
params = self. sample neighbor params (search space)
self. temperature *= self.cooldown factor

return params

def sample neighbor params (self, search space):
params = {}

for param name, param distribution in
search space.items () :

if isinstance (param distribution,
distributions.CategoricalDistribution) :

neighbor low = neighbor high = None

else:

40

current value =
self. current trial.params[param name]

width = (

param distribution.high -
param distribution.low

) * self.neighbor range factor

neighbor low = max(current value - width,
param distribution.low)

neighbor high = min(current value + width,
param distribution.high)

params [param name] =
self. rng.uniform(neighbor low, neighbor high)

return params

def transition probability(self, study, prev trial):

if self. current trial is None:

return 1.0

prev_value = prev trial.value
current value = self. current trial.value
if study.direction == StudyDirection.MINIMIZE and

prev_value <= current value:
return 1.0

elif study.direction == StudyDirection.MAXIMIZE and
prev _value >= current value:

return 1.0

return np.exp (-abs(current value - prev value) /
self. temperature)

@staticmethod
def get last complete trial (study):

complete trials = study.get trials(deepcopy=False,
states=[TrialState.COMPLETE])

return complete trials[-1]

42

def sample independent (self, study, trial, param name,
param distribution) :

return self. independent sampler.sample independent (

study, trial, param name, param distribution

A.4 PSO Sampler

_ GENERATION KEY = "pso:generation"

class ParticleSwarmSampler (BaseSampler) :

def init (
self,

*
14

particles num: int = 5,
inertia w: float = 0.5,
cognitive coef: float = 0.2,
social coef: float = 0.3,

speed max: float = 0.9,
seed: Optional[int] = None,

constraints func: Optional[Callable[[FrozenTriall,
Sequence[float]]] = None,

particles velocities: Optional[Dict[str,
BaseDistribution]] = None

) —> None:

if not isinstance(particles num, int):

raise TypeError (" particles num must be an integer
value.")

if particles num < 2:

raise ValueError (" particles num must be greater than
or equal to 2.")

43

if not (inertia w is None or 0.0 <= inertia w <= 1.0):
raise ValueError (

""inertia w must be None or a float value within
the range [0.0, 1.0]."

1f not (0.0 <= cognitive coef <= 2.0):

raise ValueError (" cognitive coef’ must be a float
value within the range [0.0, 2.0].™)

if not (0.0 <= social coef <= 2.0):

raise ValueError (" social coef’ must be a float value
within the range [0.0, 2.0].")

if constraints func is not None:
warnings.wazrn (

"The constraints func option is an experimental
feature."

" The interface can change in the future.",

ExperimentalWarning,

self. particles num = particles num

self. inertia w = inertia w

self. cognitive coef = cognitive coef
self. social coef = social coef

self. speed max = speed max

self. random sampler = RandomSampler (seed=seed)

self. rng = np.random.RandomState (seed)

self. constraints func = constraints func
self.particles velocities: Dict[str, Dict[str: float]]
self.best in generation = None
self.best in population = None

self.generation num = -1

44

self.particles velocities = {}

self. independent sampler =
optuna.samplers.RandomSampler (seed=seed)

def reseed rng(self) -> None:
self. random sampler.reseed rng()

self. rng = np.random.RandomState ()

def infer relative search space(self, study, trial):

return optuna.samplers.intersection search space (study)

def sample relative(
self,
study: Study,
trial: FrozenTrial,
search space: Dict[str, BaseDistribution],
) —-> Dict[str, Any]:
trial id = trial. trial id
previous generation = self. collect previous squad (study)

params = {}

if self.best in population is None or previous generation
is None:

generation = self.generation num = 0

study. storage.set trial system attr(trial id,
_GENERATION KEY, generation)

for param name, param distribution in
search space.items () :

params.update ({param name:
self. random sampler.sample independent (

study, trial, param name, param distribution
) 1)
init random velocity = np.random.ranf (1) [0]

if trial id in self.particles velocities:

self.particles velocities[trial id].update ({param name:

45

(init random velocity

if
init random velocity <= self. speed max
else
self. speed max) })
else:
self.particles velocities([trial id] =
{param name:
(init random velocity
if
init random velocity <= self. speed max
else
self. speed max)}
return params
generation = self.generation num + 1
study. storage.set trial system attr(trial id,
_GENERATION KEY, generation)
previous particle params = previous generation.params
pbest params = self.best in population.params
gbest params = self.best in population.params

previous particle velocities =
self.particles velocities.get (previous generation. trial id)

for param name, param distribution in
search space.items () :

previous param =
previous particle params.get (param name, None)

pbest param = pbest params.get (param name, None)
gbest param = gbest params.get (param name, None)

previous param velocity =
previous particle velocities.get (param name, None)

46

if isinstance (param distribution,
distributions.CategoricalDistribution) :

previous param transformed =
float (param distribution.to internal repr (previous param))

pbest param transformed =
float (param distribution.to internal repr (pbest param))

gbest param transformed =
float (param distribution.to internal repr (gbest param))

new velocity = (self. inertia w *
previous param velocity +

self. cognitive coef*np.random.ranf (1) [0]* (pbest param transformed
- previous param transformed) +

self. social coef*np.random.ranf (1) [0]* (gbest param transformed-
previous param transformed))

new param transformed = previous param transformed
+ new velocity

new param transformed =

((len(param distribution.choices) - 1)
if

new param transformed > (len(param distribution.choices) - 1)
else

new param transformed)

if trial id in self.particles velocities:

self.particles velocities[trial id].update ({param name:
new velocity})

else:

self.particles velocities([trial id] =
{param name: new velocity}

params [param name] =
param distribution.to external repr (new param transformed)

else:

previous param transformed =
transform. transform numerical param(previous param,
param distribution, transform log=True)

pbest param transformed =
transform. transform numerical param(pbest param,
param distribution, transform log=True)

47

gbest param transformed =
transform. transform numerical param(gbest param,
param distribution, transform log=True)

new velocity = (self. inertia w *
previous param velocity +

self. cognitive coef*np.random.ranf (1) [0]* (pbest param transformed
- previous param transformed) +

self. social coef*np.random.ranf (1) [0]* (gbest param transformed-
previous param transformed))

new param transformed = previous param transformed
+ new velocity

if trial id in self.particles velocities:

self.particles velocities[trial id].update ({param name:
new velocity})

else:

self.particles velocities[trial id] =
{param name: new velocity}

params [param name] =
transform. untransform numerical param(new param transformed,
param distribution, transform log=True)

return params

def collect previous squad(self, study: Study) ->
List[FrozenTriall]:

trials = study.get trials(deepcopy=False)

generation to runnings = defaultdict (list)
generation to particles = defaultdict(list)
generation = -1

for trial in trials:
if GENERATION KEY not in trial.system attrs:

continue

generation = trial.system attrs[GENERATION KEY]
if trial.state != optuna.trial.TrialState.COMPLETE:

if trial.state == optuna.trial.TrialState.RUNNING:

48

generation to runnings[generation].append(trial)

continue

generation to particles[generation].append(trial)

previous generation: List[FrozenTrial] = []
while True:
particles = generation to particles[generation]

previous generation = particles[-1] 1if particles else
None

if len(particles) < self. particles num:

break

self.generation num = self.generation num + 1

self.best in generation study.best trial

self.best in population
study.best trial from last n(last n=self. particles num)

break

return previous generation

@staticmethod
def get last complete trial (study):

complete trials = study.get trials(deepcopy=False,
states=[TrialState.COMPLETE])

return complete trials[-1]

def sample independent (self, study, trial, param name,
param distribution) :

return self. independent sampler.sample independent (

study, trial, param name, param distribution

A.5 Harmony search Sampler

class HarmonySearchSampler (BaseSampler) :

def init

self,

*
’

HMCR: float = 0.5,
PAR: float = 0.2,
n triggered HMCR: int = O,
n triggered PAR: int = O,
band width: float = le-2,

harmony memory size: int = 2,

max iter size: int = o,

harmonies storage: Optional[List[FrozenTrial]] = None,
seed: Optional[int] = None,

harmonies pull: Optional[Dict[str, FrozenTrial]] = None,

constraints func: Optional[Callablel[FrozenTriall],
Sequence[float]]] = None,

) —> None:

if not (HMCR is None or 0.0 <= HMCR <= 1.0):
raise ValueError (

"*HMCR ™ must be None or a float value within the
range [0.0, 1.0]."

)

if not (PAR is None or 0.0 <= PAR <= 1.0):

raise ValueError (" PAR™ must be a float value within
the range [0.0, 1.0].")

if constraints func is not None:

warnings.wazrn (

49

feature.

"The constraints func option is an experimental

"

" The interface can change in the future.",

ExperimentalWarning,

self. HMCR = HMCR

self. PAR = PAR

self. n triggered HMCR = n triggered HMCR
self. n triggered PAR = n triggered PAR
self. band width = band width
self. max iter = max iter size

self. random sampler = RandomSampler (seed=seed)
self. rng = np.random.RandomState (seed)
self. constraints func = constraints func
self.best harmony = None

self.worst harmony = None

self. independent sampler =

optuna.samplers.RandomSampler (seed=seed)

def

def

def

self. harmonies pull = None
self. harmony memory size = harmony memory size

self. harmonies storage = harmonies storage

reseed rng(self) -> None:
self. random sampler.reseed rng()

self. rng = np.random.RandomState ()

infer relative search space(self, study, trial):

return optuna.samplers.intersection search space (study)

sample relative (
self,
study: Study,

trial: FrozenTrial,

50

51

search space
) —-> Dict[str, Any]:
trial id = trial. trial id

completed trials num, random trial =
self. collect previous squad(study)

print ('completed trials num:', completed trials num)

params = {}

if random trial is None:

for param name, param distribution in
search space.items() :

params [param name] .append(self. random sampler.sample independent (
study, trial, param name, param distribution
))

return params

random trial params = random trial.params

for param name, param distribution in
search space.items () :

self. HMCR =
self.get current HMCR (completed trials num)

self. PAR = self.get current PAR(completed trials num)
hmcr rnd = self. rng.uniform(0, 1)
if self. HMCR < hmcr rnd:

self. n triggered HMCR += 1

random param = random trial params.get (param name,
None)

if isinstance (param distribution,
distributions.CategoricalDistribution):

rnd param transformed =
float (param distribution.to internal repr (random param))

rnd for test = self. rng.uniform(0, 1)

self. n triggered HMCR += 1 if self. PAR <=
rnd for test else O

52

new param transformed = (rnd param transformed

if self. PAR <=
rnd for test

else

(rnd param transformed +

self. band width* (self. rng.uniform(0, 1) - 0.5)

* (len(param distribution.choices) - 1)))

new param transformed =

((len(param distribution.choices) - 1)
if

new param transformed > (len(param distribution.choices) - 1)
else

new param transformed)

params [param name] =
param distribution.to external repr (new param transformed)

else:

rnd param transformed =
transform. transform numerical param(random param,
param distribution, transform log=True)

new param transformed = (rnd param transformed

if self. PAR <=
self. rng.uniform(0, 1)

else
(rnd_param transformed +

self. band width* (self. rng.uniform(0, 1) - 0.5)

* (param distribution.high - param distribution.low)))

params [param name] =
transform. untransform numerical param(new param transformed,
param distribution, transform log=True)

else:

params [param name] =
(self. random sampler.sample independent (

study, trial, param name, param distribution))

return params

53

def get current HMCR(self, completed trials num) :

hmcr =
min(self. n triggered HMCR/self. harmony memory size, 1)

if hmcr ==

hmcr = 1/(1 + le-7 +
np.exp (np.1log(0.01* (self. max iter-completed trials num))))

if hmcr ==

hmcr = 1/(1 + 1le-7 + np.exp (-
np.log(0.01* (self. max iter-completed trials num))))

return hmcr

def get current PAR(self, completed trials num):

par = min(self. n triggered PAR/self. harmony memory size,

if par ==

par = 1/(1 + le-7 +
np.exp (np.log(0.01* (self. max iter-completed trials num))))

1:

if par =

par = 1/(1 + 1le-7 + np.exp (-
np.log(0.01* (self. max iter-completed trials num))))

return par

def collect previous squad(self, study: Study) -> Tuple[int,
List[FrozenTrial]l]:

randomly select one of previous trials

trials = study.get trials (deepcopy=False)
completed trials = []

running trials = []

random trial = None

for trial in trials:

if trial.state != optuna.trial.TrialState.COMPLETE:

54

if trial.state == optuna.trial.TrialState.RUNNING:
running trials.append(trial)

continue

completed trials.append(trial)

completed trials.sort (key=lambda t: cast(float,
t.values[0]), reverse=True)

completed trials num = len(completed trials)

1f completed trials num ==

return completed trials num, random trial

1f completed trials num ==

return completed trials num, completed trials[-1]

1f completed trials num <= self. harmony memory size:

random trial =
completed trials[(np.random.randint (completed trials num))]

else:

self. harmonies storage =
completed trials[:self. harmony memory size]

random trial =
self. harmonies storage[(np.random.randint (self. harmony memory si
ze))]

return completed trials num, random trial

@staticmethod
def get last complete trial (study):

complete trials = study.get trials(deepcopy=False,
states=[TrialState.COMPLETE])

return complete trials[-1]

def sample independent (self, study, trial, param name,
param distribution) :

return self. independent sampler.sample independent (

study, trial, param name, param distribution

55

56

APPENDIX B

Trials intermediate results and parameters importance

B.1 DNN Results

0.68 ® (Objective Valug
/ —s— Best Value
) .

=
=3
an

=
a
=
-
-

% 0.62
% 0.6
Trial
Figure B.1.1 Optimization history for simulated annealing
3

—
=
&

optimizer,

learning_rate 0.02

0.1 0.2 0.3 0.4

=

Importance for Objective Value

Figure B.1.2 HP importance for simulated annealing

* Objective Value

‘ L . . * . —— Best Value
.

0.65 * . .
o
El .

o
>

2
Z 06

u

()

=
o
o]

0.55

[
0 10 20 30 40 50
Trial

Figure B.1.3 Optimization history for harmony search

|93ming_f3t9_ 7

n_layers|

n_units_|0|

n_epochs|

Hyperparameter

n_batch

optimizer il <0.01

0.2 03 0.4 0.5

=
=
-

Importance for Objective Value

Figure B.1.4 HP importance for harmony search

* Objective Value
0.66 ’/’/—‘ —e— Best Value

0.64

Objective Value

Trial

Figure B.1.5 Optimization history for PSO

n_units_l0| 0.41

learning_rate 0.26

optimizer|

n_batch|

Hyperparameter

n_layers|

n_epachs

=}
e
=
)

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Importance for Objective Value

Figure B.1.6 HP importance for PSO

58

-— ® Objective Value
0.66 ~—e— Best Value
.

Trial
Figure B.1.7 Optimization history for Genetic Search
n_units_|0
learning_rate
% optimizer
% n_batch
T n_epochs|
n_layers 0.02
Importance for Objective Value
Figure B.1.8 HP importance for Genetic Search
® Objective value
0.66 —e— Best Value
§ .64 A i

Trial

Figure B.1.9 Optimization history for TPE

n_units_|0

0.64

\eaming_rate_ o2
]

2

v

£ n_epochs|
o

il

T

o

& n_layers
o

-

I

optimizer 0.02

n_batch 0.02

o
=)
-
=)
i

0.3 0.4 0.5 0.6

Importance for Objective Value

Figure B.1.10 HP importance for TPE

® QObjective Value
0.66 —s— Best Value
.

0.64

Objective value

0.6

Trial

Figure B.1.11 Optimization history for Random search

n_units_l0 0.38

ﬂ_EDUChS_ 028
.
[
3
o .
E Ieal-mng_rate_u20
o
L
o
E "_bat(h_ 008
o
-
I

Dptimizer_ 005

n_layers <0.01

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Importance for Objective Value

Figure B.1.12 HP importance for Random search

B.2 GRU Results

® Objective Value

a0 . . —e— Best Value
é 80
Trial
Figure B.2.1 Optimization history for simulated annealing
g\eaming_rate_ 4
3

embed_dim

<0.01

0 0.05

optimizer,

0.1 0.15 0.2 0.25 0.3 0.35

Importance for Objective Value

Figure B.2.2 HP importance for simulated annealing

® (Objective Value

90 —a— Best Value
.
80

o
2
3
. .
b=
[¥]
L
o e .
o] .

50 -+

.
40 *
0 5 10 15 20 25
Trial

Figure B.2.3 Optimization history for harmony search

61

n_epochs| 0.33

g\eaming_rate_ﬂﬂi'
. optimizer- !

embed_dim. i

0 0.05 0.1 0.15 0.2 0.25 0.3
Importance for Objective Value
Figure B.2.4 HP importance for harmony search
Objective Value

o ._,/- . c . —e— Best Value

§ 80
Trial
Figure B.2.5 Optimization history for PSO

optimizer, 5

L
L
©
s erDOUt- ‘
[
L
a
5 learning_rate l
o
-
I

n_unit ¥

embed_dim}§ <0.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7

=

Importance for Objective Value

Figure B.2.6 HP importance for PSO

62

® Objective Value

L . I ~s— Best Value

20
[
% 80
>
w
-
= 70
=
@
o
3

60

50

.
0 3 10 15 20 23

Trial

Figure B.2.7 Optimization history for Genetic Search

\eaminu_ratE_ e

embed_dim 0.09

n_unit|

0.02

n_epachs

Hyperparameter

optimizer| <0.01

dropout]| <0.01

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

=

Importance for Objective Value

Figure B.2.8 HP importance for Genetic Search

(Objective Valus
~—e— Best Value

96

95

94 . .

93

Objective value

92

0 5 10 15 20

Trial

Figure B.2.9 Optimization history for TPE

(o)}
w
=
=

dropout

o
i
=)

n_unit]

=
.
ra

n_epachs|

optimizer,

Hyperparameter

e
=1
=]

learning_rate

embed_dim

=
=
=1

0.1 0.15 0.2 0.25 0.3

=]
=
=]
o

Importance for Objective Value

Figure B.2.10 HP importance for TPE

o (bjective Value

'_r'_'-._’_r_._.ﬂ_—- * ‘ —e— Best Value

g 80
Trial
Figure B.2.11 Optimization history for Random search
- ﬂ_epochs_O.US

embed_dimj§ <0.01

0.05 0.1 0.15 0.2 0.25 0.3 0.35

o

Importance for Objective Value

Figure B.2.12 HP importance for Random search

