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THE HUMIDITY AND STRUCTURING ADDITIVES INFLUENCE ON 
ELECTROPHYSICAL CHARACTERISTICS OF TIN DIOXIDE FILMS

The structuring additive concentration and humidity influence on the electrophysical properties of tin dioxide films 
was studied. The growth of SnO2 films, interelectrode resistance with the growth of polyvinyl acetate concentration in the 
initial solution is due to the porosity increase caused by the PVA increase in the films under study. The section of dark 
current temperature dependence, in vacuum from 110 °C with an activation energy ~ 0.7 eV, is due to the water molecules 
desorption. The resistance decrease of tin dioxide films in a wet atmosphere due to the dissociative adsorption of water 
molecules on the SnO2 layers surfaces has been established.

1.	 Introduction

Tin dioxide, an n-type semiconductor with a 
band gap of about 3.6 eV (at 300 K), belongs to the 
group of “transparent conductive oxides” (PPO), 
together with compounds such as ZnO, In2O3, 
WO3, etc. Thin films of this oxide are transparent 
in the visible and near-UV spectrum region and at 
the same time may have high electrical conduc-
tivity, which makes them enough promising and 
even necessary material for transparent electrodes 
of solar cells, flat monitors, LEDs. [1-3].

Nanostructuring of thin SnO2 films increases 
their porosity and, consequently, the effective 
area of their surface. Due to this, the conductiv-
ity of such films is particularly strongly affected 
by sorption processes occurring on their surface. 
As a result, many of the electrophysical properties 
of tin dioxide thin films prove to be highly sensi-
tive to the film’s interaction with various media, 
including gaseous and liquid media [4].

Many biological media, including various gas-
es (CO, CO2, SO2, H2S, nitrogen oxides, oxygen, 
ozone, etc.), as well as liquids (with the presence 
of different ions) interacting with tin dioxide films 
surfaces also can cause changes in their electrical 
characteristics. This property of tin dioxide makes 
it to be one of the most popular materials for the 
environment monitoring and various biological 
environments diagnostics. The influence of atmo-
spheric air humidity on the tin dioxide conduc-

tivity should always be taken into account when 
using this material, both as a sensor and an elec-
trode. 

This work is intended to study the influence of 
both the humidity and of the structural additive 
amount in a fabrication solution on the electro-
physical characteristics of tin dioxide films.

 
2.	 The film’s fabrication methods and ex-

periment

Thin films of nanostructured tin dioxide were 
obtained using polymer materials by the sol-gel 
method [5]. Bis-(acetylacetonato)dichlorotin 
(BADCT) was used as the tin precursor of tin di-
oxide [6]. Polyvinyl acetate (PVA) was used as 
a structuring polymer material. After coating the 
glass substrate by the initial solution, the samples 
were annealed to remove organic constituents and 
form a tin dioxide layer.

The registration of the electrophysical charac-
teristics of SnO2 nanofilms is based on the stan-
dard fixation of the I-U characteristics (CVC) 
and the Dark Current Temperature Dependence 
(DCTD). Indium was used as the electrode mate-
rial. It was thermally deposited on the surface of 
the films in a high vacuum in the form of two par-
allel strips. The distance between the electrodes 
was 2 mm.
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3.	 Results and discussion

Figure 1 shows the current-voltage character-
istics for two films with the same precursor con-
tent (10%) and different PVA content, measured 
at room temperature in air. It can be noted that 
they are practically linear and only in the region 
of high voltages (more than 200 V) there is a ten-
dency to a superlinear exponential current–volt-
age dependence.

Fig. 1. The current-voltage characteristics of SnO2 
samples with a precursor content of 10% and PVA 
of 1% - curve 1, PVA 0.1% - curve 2 measured in 

air (T = 293 K).

Such behavior of the CVC was described in 
[7] and is associated with a change in the barrier 
height at the grain boundaries and electron tun-
neling through surface states.

From the comparison of curves 1 and 2 (Fig.1), 
it is seen that the interelectrode resistance of the 
films increases with PVA concentration growth 
(calculated from curve 1, R = 1.2 ∙ 109 Ω, calcu-
lated from curve 2, R = 4.3 ∙ 108 Ω). This becomes 
understandable, if it is taken into acount that  
polyvinyl acetate used  in the preparation of films 
by the  sol-gel method, plays the role of an organ-
ic filler and decomposes during high-temperature 
annealing, and the products of its decomposition 
volatilize. This causes the porosity and the  devel-
opment of the resulting films surfaces, which are 

more manifested, the larger the concentration of 
PVA in the initial solution. 

Curve 1, Fig. 2 shows the current-voltage 
characteristic of SnO2 film, measured at room 
temperature in air. The interelectrode resistance 
calculated from this CVC is 1.4 ∙ 109 Ohm. Curve 
2 depicts the current-voltage characteristic of the 
same SnO2 film measured in a vacuum after the 
film was heated to a temperature of +150 °C and 
then cooled to room temperature in vacuum.

The interelectrode resistance calculated from 
it was 1.3 ∙ 108 Ohm. Thus, heat treatment in vac-
uum causes the resistances reduce of SnO2 film 
by almost an order of magnitude. This is due to 
the fact that under normal conditions, the oxygen 
adsorbed on the surface of SnO2 film, captures 
electrons from the SnO2 conduction band which 
results in  the formation  of positive space charge 
layer in the near surface region and, as a conse-
quence, the energy bands curvature is of the cut 
off type. Since the films under investigation are 
thin, this causes a noticeable increase in their re-
sistance.

Fig. 2. The current-voltage characteristic of the sam-
ple SnO2:  curve 1 – in air, curve 2 – in vacuum. The 

precursor content is 10%; PVA - 1% (T = 293 K).

The Dark Current Temperature Dependence 
(DCTD), measured in a vacuum, is of an activa-
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tion nature. That is, the current (and, hence, the 
electrical conductivity) increases with the tem-
perature, obeying the exponential law (Fig. 3).

Fig. 3. The Dark Current Temperature Dependence 
of the film SnO2, measured in vacuum (V = 500 B).

As it can be seen from Fig. 3, during the heat-
ing process in the low-temperature region, the 
current flow is controlled by donor levels with 
ionization energy (0.21-0.26) eV. According to 
the published data, they are doubly ionized va-
cancies of oxygen VO++ in the volume of SnO2 
films [8,9].

When the temperature of the sample (110-115) 
°C is reached, a sharp break is observed on the 
DCTD curve, and as the temperature increases 
further, the current grows with an activation en-
ergy Ea = (0.65-0.73) eV. The similar values of 
the conduction activation energy (0.72 eV) in the 
thin SnO2 films, were registered by the authors 
[10], but without interpretation the nature of the 
corresponding defects. 

The mentioned region may be associated with 
the water molecules desorption from the surface 
of the SnO2 film.

The latter assumption is supported by the fact 
that the section with the indicated activation en-
ergy is absent on the DCTD curve measured 
during the cooling of the sample. On the DCTD 
curve, only the section with Ea = (0.23-0.25) eV, 
associated with the oxygen vacancies in the film 

volume, is observed throughout the temperature 
range [8,9].

The behavior of the DCTD curves measured 
in air (Fig. 4) in the temperature range up to +150 
оС differs little from the DCTD curves measured 
in vacuum. However, in the region of higher 
temperatures (150 °C to 220 °C), steep regions 
with an activation energy (1.0 ± 1.4) eV appear on 
the dark current temperature dependence curves. 

Fig. 4 The dark current temperature dependence 
of the SnO2 film, measured in air (V = 500 B).

Perhaps these areas are due to dissociative ad-
sorption of water on the surface of the tin dioxide 
layers [11-13].

According to the literature, tin dioxide sen-
sors exhibit gas-sensitive properties in the tem-
perature region above 300 oC [13]. The operating 
temperatures for sensors based on thin (and, in 
particular, nanostructured) SnO2 films are much 
lower due to their porosity and the large effective 
surface area. The above given results of the Dark 
Current Temperature Dependencies make it pos-
sible to assume that these temperatures may be  
(110 ± 150) oC for the studied tin dioxide layers

Figure 5 shows the current-voltage character-
istics of a SnO2 sample measured at a temperature 
of +130 оС in an atmosphere of dry air (curve 1), 
and in the presence of water vapor (curve 2). It 
can be stated, that the film resistance in the wet 
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air atmosphere decreases several times as much. 
It is obvious, that a water vapor adsorbed on the 
tin dioxide surface leads to a resistance decrease. 

Fig. 5. The current-voltage characteristic of one 
of the SnO2 films, measured at the temperature 
+130 оС in an atmosphere of dry air (1) and in the 

presence of water vapor (2).

At a high temperature on the SnO2 microcrys-
tal surface, the water molecule dissociates into 
the hydroxyl group OH- and proton H+ [14]. Af-
ter the dissociation, the OH- group is localized on 
the surface atom of tin, giving the electron to the 
conduction band of the semiconductor. The pro-
ton H+ is captured by the O- ion adsorbed on the 
surface, forming a neutral OH group. Thus, as a 
result of the adsorption process, the water mol-
ecules form two OH hydroxyl groups and hence 
the O- ion disappears. This leads to an increase 
in conductivity. As the humidity level grows, the 
conductivity should also grow, due to the increase 
in the dissociative adsorption of water molecules 
[11], which is observed in our studies.

4.	 Conclusions

Thus, the conducted studies of the influence 
of the structuring additives concentration and hu-
midity on the electrophysical properties of tin di-

oxide films made it possible to establish a number 
of corresponding features.

The increase in the interelectrode resistance of 
SnO2 films with the corresponding polyvinyl ace-
tate concentration growth increasing in the initial 
solution is due to the growth of porosity of the 
films under study with an increase in the amount 
of PVA.

A fragment with an activation energy Ea = 
(0.65-0.73) eV, apparently associated with the 
water molecules desorption, is observed on the 
DCTD curve measured in vacuum starting from 
(110-115) оС.

A decrease in tin dioxide films resistance in a 
wet atmosphere due to the dissociative adsorption 
of water molecules on the surface of SnO2 layers 
has been established. 
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resistance in the wet air atmosphere decreases 
several times as much. It is obvious, that a 
water vapor adsorbed on the tin dioxide surface 
leads to a decrease in the resistance.  

 

U,V

 
Fig. 5. The current-voltage characteristic of one 
of the SnO2 films, measured at the temperature 
+130 оС in an atmosphere of dry air (1) and in 
the presence of water vapor (2). 

 
At a high temperature on the SnO2 

microcrystal surface, the water molecule 
dissociates into the hydroxyl group OH- and 
proton H+ [14]. After the dissociation, the OH- 
group is localized on the surface atom of tin, 
giving the electron to the conduction band of 
the semiconductor. The proton H+ is captured 
by the O- ion adsorbed on the surface, forming 
a neutral OH group. Thus, as a result of the 
adsorption process, the water molecules form 
two OH hydroxyl groups and the O- ion 
disappears. This leads to an increase in 
conductivity. As the humidity level grows, the 
conductivity should also grow, due to the 
increase in the dissociative adsorption of water 
molecules [11], which is observed in our 
studies. 

 
4. Conclusions 
Thus, the conducted studies of the 

influence of the structuring additives 
concentration and humidity on the 
electrophysical properties of tin dioxide films 

made it possible to establish a number of 
corresponding features. 

The increase in the interelectrode 
resistance of SnO2 films with the corresponding 
polyvinyl acetate concentration increasing in 
the initial solution is due to the growth of 
porosity of the films under study with an 
increase in the number of PVA. 

A fragment with an activation energy Ea = 
(0.65-0.73) eV, apparently associated with the 
water molecules desorption, is observed on the 
DCTD curve measured in vacuum starting from 
(110-115) оС. 

A decrease in tin dioxide films resistance 
in a wet atmosphere due to the dissociative 
adsorption of water molecules on the surface of 
SnO2 layers has been established.  

 
References 
1. Granqvist, C.G. Transparent conductors as 

solar energy materials: A panoramic 
review. Sol. Energy Mat. Sol. Cells 2007, 
91, 1529–1598. 

2. Handbook of Transparent 
Conductors, Ginley, D., Hosono, 
H., Paine, D. C. (Eds.), Springer US, 2011 

3. Hyung-Sik Woo, Chan Woong Na and 
Jong-Heun Lee, Design of Highly 
Selective Gas Sensors via Physicochemical 
Modification of Oxide Nanowires: 
Overview, Sensors 16, 1531 (2016); 
doi:10.3390/s16091531 

4. M. Batzill, U. Diebold. Review: The 
surface and materials science of tin oxide 
Progress in Surface Science 79 (2005) 47–
154 

5. Filevskaya L.N., Smyntyna V.A., 
Grinevich V.S. Morphology of 
nanostructured SnO2 films prepared with 
polymers employment // Photoelectronics, 
15, pp. 11-14 (2006). 

6. B. Ulug, H.M. Türkdemir, A. Ulug, O. 
Büyükgüngör, M.B. Yücel, V.A. 
Smyntyna, V.S. Grinevich, L.N. 
Filevskaya. Structure, spectroscopic and 
thermal characterization of 
bis(acetylacetonato)dichlorotin(IV) 
synthesized in aqueous solution// 
Ukrainian chemical journal. – 2010. – Т. 
76, №7. – С. 12-17. 

7. Dhage S.R., Ravi V., Date S.K. Nonlinear 
I-V characteristics study of doped SnO2. - 



9

2010. – Т. 76, №7. – С. 12-17.
7.	 Dhage S.R., Ravi V., Date S.K. Nonlinear 

I-V characteristics study of doped SnO2. 
– Bulletin of Materials Science. 2004, 
27(1), P.43-45.

8.	 Синёв И.В. Температурная зависи-
мость сопротивления тонкоплёночных 
резисторов на основе диоксида олова. 
– Дисс., Саратов, 2014, с.209.

9.	 Fonstad C.G., Rediker R.H. Electrical 
properties of high quality stannic oxide 
crystals. – Journal of Applied Physics, 
2003, Vol. 42, №  7, Р. 2911-2918.

10.	Kalinina M.V. et al. Temperature depen-
dence of the resistivity for metal-oxide 
semiconductors based on tin dioxide. 
– Glass physics and chemistry, 2003, 
Vol. 29, № 4, P. 422-427.

11.	Гаман В.И., Физика полупроводнико-
вых газовых сенсоров, Томск, «Изда-
тельство НТЛ» 2012.

12.	Алмаев А.В., Сергейченко Н.В., Ру-
дов  Ф.В. Влияние уровня влажности 
на характеристики сенсоров водорода 
на основе тонких плёнок SnO2. - Мат. 
ХХ Международной научно-практи-
ческой конф., 2014, Томск, C. 315-317.

13.	Рябцев С.В. Электрофизические и 
оптические свойства различных на-
ноформ оксида олова: Автореф. канд.
дисс., Воронеж, 2011, 32с. 

14.	Korotcenkov G., Brinzari V., Golovanov 
V., et al. Kinetics of gas response to re-
ducing gases of SnO2 films, deposited by 
spray pyrolysis  // Sensors and Actuators. 
B. – 2004. – V. 98. – P. 41-45

This article has been   received within April 2017
PACS 73.61.Le, 73.63.Bd

A. P. Chebanenko, L. M. Filevska, V. A. Smyntyna, N. S. Simanovich, V. S. Grinevych 

THE HUMIDITY AND STRUCTURING ADDITIVES INFLUENCE ON 
ELECTROPHYSICAL CHARACTERISTICS OF TIN DIOXIDE FILMS

Summary
The structuring additive concentration and humidity influence on the electrophysical properties of 

tin dioxide films was studied. The growth of SnO2 films interelectrode resistance with the growth of 
polyvinyl acetate concentration in the initial solution is due to the porosity increase caused by the PVA 
increase in the films under study. The section of dark current temperature dependence, in vacuum from 
110 °C with an activation energy ~ 0.7 eV, is due to the water molecules desorption. The resistance 
decrease of tin dioxide films in a wet atmosphere due to the dissociative adsorption of water molecules 
on the SnO2 layers surfaces has been established.

Keywords: tin dioxide, thin films, humidity.
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А. П. Чебаненко, Л. Н. Филевская, В. А. Смынтына, Н. С. Симанович, В. С. Гриневич 

ВЛИЯНИЕ ВЛАГИ И СТРУКТУРИРУЮЩЕЙ ДОБАВКИ НА 
ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛЕНОК ДИОКСИДА ОЛОВА

Резюме
Исследовано влияние концентрации структурирующей добавки и влажности на электрофи-

зические свойства пленок диоксида олова. Возрастание межэлектродного сопротивления пле-
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нок SnO2 при увеличении концентрации поливинилацетата в исходном растворе обусловлено 
увеличением пористости исследуемых пленок с ростом количества ПВА. Участок ТЗТТ, в  ва-
кууме от 110 оС с энергией активации ~0,7 эВ обусловлен десорбцией молекул воды. Установ-
лено снижение сопротивления пленок диоксида олова во влажной атмосфере, обусловленное 
диссоциативной адсорбцией молекул воды на поверхности слоев SnO2.

Ключевые слова: диоксид олова, тонкие пленки, влажность. 

PACS 73.61.Le, 73.63.Bd

А. П. Чебаненко, Л. Н. Филевська, В. А. Сминтина, Н. С. Сіманович, В. С. Гріневич

ВПЛИВ ВОЛОГИ І СТРУКТУРУЮЧОЇ ДОБАВКИ НА ЕЛЕКТРОФІЗИЧНІ 
ХАРАКТЕРИСТИКИ ПЛІВОК ДІОКСИДУ ОЛОВА

Резюме
Досліджено вплив концентрації структуруючої добавки і вологості на електрофізичні влас-

тивості плівок діоксиду олова. Зростання межелектродного опору плівок SnO2 при збільшенні 
концентрації полівінілацетату в вихідному розчині обумовлено збільшенням пористості до-
сліджуваних плівок із зростанням кількості ПВА. Ділянка ТЗТТ в вакуумі від 110 оС з енергією 
активації ~ 0,7 еВ обумовлена десорбцією молекул води. Встановлено зниження опору плівок 
діоксиду олова у вологій атмосфері, обумовлене дисоциативною адсорбцією молекул води на 
поверхні шарів SnO2.

Ключові слова: діоксид олова, тонкі плівки, вологість.



11

UDC 539.182

A. V. Glushkov1 , V. B. Ternovsky2, A. V. Smirnov1, A. A. Svinarenko1 

1Odessa State Environmental University, L’vovskaya str.15, Odessa, 65016
2Odessa National Maritime Academy, Didrikhsona str. 4, Odessa, 65001

E-mail: glushkovav@gmail.com  

GAUGE-INVARIANT RELATIVISTIC PERTURBATION THEORY APPROACH TO 
DETERMINATION OF ENERGY and SPECTRAL CHARACTERISTICS FOR HEAVY 

AND SUPERHEAVY ATOMS AND IONS: REVIEW

We reviewed an effective consistent ab initio approach to relativistic calculation of the spectra for multi-electron heavy 
and superheavy ions with an account of relativistic, correlation, nuclear, radiative effects is presented. The method is  based 
on the relativistic gauge-invariant (approximation to QED) perturbation theory (PT) and generalized effective field nuclear 
model with using the optimized one-quasiparticle  representation firstly in theory of the hyperfine structure for relativistic 
atom. The wave function zeroth basis is found from the Dirac equation with potential, which includes the core ab initio 
potential, the electric and polarization potentials of a nucleus. The correlation corrections of the high orders are taken into 
account within the Green functions method (with the use of the Feynman diagram’s technique). There have taken into ac-
count all correlation corrections of the second order and dominated classes of the higher orders diagrams (electrons screen-
ing, particle-hole interaction, mass operator iterations). The magnetic inter-electron interaction is accounted in the lowest 
on α parameter (α is the fine structure constant), approximation, the self-energy part of the Lamb shift is taken effectively 
into consideration within the Ivanov-Ivanova non-perturbative procedure, the Lamb shift polarization part - in the general-
ized Uehling-Serber approximation with accounting for the  Källen-Sabry α2 (αZ) and Wichmann-Kroll α(αZ)n corrections.

1.  Introduction

In last years a studying the spectra of heavy 
and superheavy elements atoms and ions is of a 
great interest for further development as atomic 
and nuclear theories (c.f.[1-8]). Theoretical meth-
ods used to calculate the spectroscopic character-
istics of heavy and superheavy ions may be di-
vided into three main groups: a) the multi-config-
uration Hartree-Fock method, in which relativis-
tic effects are taken into account in the Pauli ap-
proximation, gives a rather rough approximation, 
which  makes it possible to get only a qualitative 
idea on the spectra of heavy ions. b) The multi-
configuration Dirac-Fock (MCDF) approxima-
tion (the Desclaux program, Dirac package) [1,2] 
is, within the last few years, the most reliable ver-
sion of calculation for multielectron systems with 
a large nuclear charge; in these calculations one- 
and two-particle relativistic effects are taken into 
account practically precisely. The calculation pro-
gram of Desclaux is compiled with proper ac-
count of the finiteness of the nucleus size; how-
ever, a detailed description of the method of their 

investigation of the role of the nucleus size is 
lacking. In the region of small Z (Z is a charge of 
the nucleus)  the calculation error in the MCDF ap-
proximation is connected mainly with incomplete 
inclusion of the correlation and exchange effects 
which are only weakly dependent on Z; c) In the 
study of lower states for ions with Z ≤ 40 an expan-
sion into double series of the PT on the parameters 
1/Z, aZ (a is the fine structure constant) turned out 
to be quite useful. It permits evaluation of relative 
contributions of the different expansion terms: 
non-relativistic, relativistic, QED contributions as 
the functions of Z.  Nevertheless,  the serious prob-
lems in calculation of the heavy elements spectra 
are connected with developing new, high exact 
methods of account for the QED effects, in particu-
lar, the Lamb shift (LS), self-energy (SE) part of 
the Lamb shift, vacuum polarization (VP) contri-
bution, correction on the nuclear finite size for 
heavy elements and its account for different spec-
tral properties, including calculating the energies 
and constants of the hyperfine structure, derivia-
tives of the 1-electron characteristics on nuclear 
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radius, nuclear electric quadrupole, magnetic di-
pole moments etc  (c.f.[1-98]). 

In present paper we review an effective  initio 
approach to relativistic calculation of the spectra 
for multi-electron superheavy ions with an ac-
count of relativistic, correlation, nuclear, radia-
tive effects is presented. The method is  based on 
the relativistic gauge-invariant (approximation 
to QED) perturbation theory (PT) and general-
ized relativistic dynamical effective field nuclear 
model with using the optimized one-quasiparticle  
representation in theory of the hyperfine structure 
for relativistic systems [15-60]. 

The correlation corrections of the high orders 
are taken into account within the Green functions 
method (with the use of the Feynman diagram’s 
technique). There have taken into account all cor-
relation corrections of the second order and dom-
inated classes of the higher orders diagrams (elec-
trons screening, particle-hole interaction, mass 
operator iterations) [2,60-99]. The magnetic inter-
electron interaction is accounted in the lowest on 

2a  parameter, the LS polarization part - in the 
Uehling-Serber approximation, self-energy part 
of the LS is accounted effectively within the 
Ivanov-Ivanova non-perturbative procedure [5-
8]. The expressions for the energies and constants 
of the hyperfine structure, deriviatives of 1-elec-
tron characteristics on nuclear radius,  nuclear 
electric quadrupole, magnetic dipole moments Q 
etc are presented. As illustration some data for  
atom of  hydrogen 1H (test calculation) and super-
heavy H-like ion with nuclear charge Z=170,  Li-
like multicharged ions are listed. 

2.  Gauge-invariant relativistic many-body 
perturbation theory method for heavy ions

2.1. General Formalism
In atomic theory, a convenient field procedure 

is known for calculating the energy shifts DE of 
the degenerate states. Secular matrix M diagonali-
zation is used. In constructing M, the Gell-Mann 
and Low adiabatic formula for DE is used. A sim-
ilar approach, using this formula with the QED 
scattering matrix, is applicable in the relativistic 
theory. In contrast to the non-relativistic case, the 
secular matrix elements are already complex in 
the PT second order (first order of the inter-elec-
tron interaction). Their imaginary parts relate to 

radiation decay (transition) probability. The total 
energy shift of the state is usually presented as 
follows: 

             DE = ReDE + i ImDE,                      (1)

                  Im DE = -G/2,                              (2)

where G is interpreted as the level width, and the 
decay possibility P=G. The whole calculation of 
energies and decay probabilities of a non-degen-
erate excited state is reduced to calculation and 
diagonalization of the complex matrix M. To start 
with the Gell-Mann and Low formula it is neces-
sary to choose the PT zero-order approximation. 
Usually, the one-electron Hamiltonian is used, 
with a central potential that can be treated as a bare 
potential in the formally exact QED PT. There are 
many well-known attempts to find the fundamen-
tal optimization principle for construction of the 
bare one-electron Hamiltonian (for free atom or 
atom in a field) or (what is the same) for the set of 
one-quasiparticle (QP) functions, which represent 
such a Hamiltonian [1-8]. As the bare potential, 
one usually includes the electric nuclear potential 
VN and some parameterized screening potential 
VC.  The parameters of the bare potential may be 
chosen to generate the accurate eigen-energies of 
all many-QP states. In the PT second order the 
energy shift is expressed in terms of the two-QP 
matrix elements [6-8]:    

(3)

Here  Qul
lQ  is corresponding to the Coulomb 

part of interaction ( BrQl  -Breit part) :  

                                                                      (4) 

where R(1,2;4,3) is the radial integral of the Cou-
lomb inter-QP interaction with large radial Dirac 
components; the tilde denotes a small Dirac com-

nuclear electric quadrupole, magnetic dipole 
moments etc  (c.f.[1-98]). 
In present paper we review an effective 
initio approach to relativistic calculation of 
the spectra for multi-electron superheavy 
ions with an account of relativistic, 
correlation, nuclear, radiative effects is 
presented. The method is  based on the 
relativistic gauge-invariant (approximation to 
QED) perturbation theory (PT) and 
generalized relativistic dynamical effective 
field nuclear model with using the optimized 
one-quasiparticle  representation in theory of 
the hyperfine structure for relativistic 
systems [15-60]. 
The correlation corrections of the high orders 
are taken into account within the Green 
functions method (with the use of the 
Feynman diagram’s technique). There have 
taken into account all correlation corrections 
of the second order and dominated classes of 
the higher orders diagrams (electrons 
screening, particle-hole interaction, mass 
operator iterations) [2,60-99]. The magnetic 
inter-electron interaction is accounted in the 
lowest on 2α parameter, the LS polarization 
part - in the Uehling-Serber approximation, 
self-energy part of the LS is accounted 
effectively within the Ivanov-Ivanova non-
perturbative procedure [5-8]. The expressions 
for the energies and constants of the 
hyperfine structure, deriviatives of 1-electron 
characteristics on nuclear radius,  nuclear 
electric quadrupole, magnetic dipole 
moments Q etc are presented. As illustration 
some data for atom of  hydrogen 1H (test 
calculation) and superheavy H-like ion with 
nuclear charge Z=170, Li-like multicharged 
ions are listed.

2. Gauge-invariant relativistic many-body 
perturbation theory method for heavy ions

2.1 General Formalism
In atomic theory, a convenient field 
procedure is known for calculating the 
energy shifts ∆E of the degenerate states. 
Secular matrix M diagonalization is used. In 
constructing M, the Gell-Mann and Low 
adiabatic formula for ∆E is used. A similar 
approach, using this formula with the QED 
scattering matrix, is applicable in the 
relativistic theory. In contrast to the non-

relativistic case, the secular matrix elements 
are already complex in the PT second order 
(first order of the inter-electron interaction). 
Their imaginary parts relate to radiation 
decay (transition) probability. The total 
energy shift of the state is usually presented 
as follows: 

∆E = Re∆E + i Im∆E, (1)

Im ∆E = -Γ/2, (2)
where Γ is interpreted as the level width, and 
the decay possibility P=Γ. The whole 
calculation of energies and decay 
probabilities of a non-degenerate excited 
state is reduced to calculation and 
diagonalization of the complex matrix M. To 
start with the Gell-Mann and Low formula it 
is necessary to choose the PT zero-order 
approximation. Usually, the one-electron 
Hamiltonian is used, with a central potential 
that can be treated as a bare potential in the 
formally exact QED PT. There are many 
well-known attempts to find the fundamental 
optimization principle for construction of the 
bare one-electron Hamiltonian (for free atom 
or atom in a field) or (what is the same) for 
the set of one-quasiparticle (QP) functions, 
which represent such a Hamiltonian [1-8]. As 
the bare potential, one usually includes the 
electric nuclear potential VN and some 
parameterized screening potential VC.  The 
parameters of the bare potential may be 
chosen to generate the accurate eigen-
energies of all many-QP states. In the PT 
second order the energy shift is expressed in 
terms of the two-QP matrix elements [6-8]:
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where R(1,2;4,3) is the radial integral of the 
Coulomb inter-QP interaction with large 

nuclear electric quadrupole, magnetic dipole 
moments etc  (c.f.[1-98]). 
In present paper we review an effective 
initio approach to relativistic calculation of 
the spectra for multi-electron superheavy 
ions with an account of relativistic, 
correlation, nuclear, radiative effects is 
presented. The method is  based on the 
relativistic gauge-invariant (approximation to 
QED) perturbation theory (PT) and 
generalized relativistic dynamical effective 
field nuclear model with using the optimized 
one-quasiparticle  representation in theory of 
the hyperfine structure for relativistic 
systems [15-60]. 
The correlation corrections of the high orders 
are taken into account within the Green 
functions method (with the use of the 
Feynman diagram’s technique). There have 
taken into account all correlation corrections 
of the second order and dominated classes of 
the higher orders diagrams (electrons 
screening, particle-hole interaction, mass 
operator iterations) [2,60-99]. The magnetic 
inter-electron interaction is accounted in the 
lowest on 2α parameter, the LS polarization 
part - in the Uehling-Serber approximation, 
self-energy part of the LS is accounted 
effectively within the Ivanov-Ivanova non-
perturbative procedure [5-8]. The expressions 
for the energies and constants of the 
hyperfine structure, deriviatives of 1-electron 
characteristics on nuclear radius,  nuclear 
electric quadrupole, magnetic dipole 
moments Q etc are presented. As illustration 
some data for atom of  hydrogen 1H (test 
calculation) and superheavy H-like ion with 
nuclear charge Z=170, Li-like multicharged 
ions are listed.

2. Gauge-invariant relativistic many-body 
perturbation theory method for heavy ions

2.1 General Formalism
In atomic theory, a convenient field 
procedure is known for calculating the 
energy shifts ∆E of the degenerate states. 
Secular matrix M diagonalization is used. In 
constructing M, the Gell-Mann and Low 
adiabatic formula for ∆E is used. A similar 
approach, using this formula with the QED 
scattering matrix, is applicable in the 
relativistic theory. In contrast to the non-

relativistic case, the secular matrix elements 
are already complex in the PT second order 
(first order of the inter-electron interaction). 
Their imaginary parts relate to radiation 
decay (transition) probability. The total 
energy shift of the state is usually presented 
as follows: 

∆E = Re∆E + i Im∆E, (1)

Im ∆E = -Γ/2, (2)
where Γ is interpreted as the level width, and 
the decay possibility P=Γ. The whole 
calculation of energies and decay 
probabilities of a non-degenerate excited 
state is reduced to calculation and 
diagonalization of the complex matrix M. To 
start with the Gell-Mann and Low formula it 
is necessary to choose the PT zero-order 
approximation. Usually, the one-electron 
Hamiltonian is used, with a central potential 
that can be treated as a bare potential in the 
formally exact QED PT. There are many 
well-known attempts to find the fundamental 
optimization principle for construction of the 
bare one-electron Hamiltonian (for free atom 
or atom in a field) or (what is the same) for 
the set of one-quasiparticle (QP) functions, 
which represent such a Hamiltonian [1-8]. As 
the bare potential, one usually includes the 
electric nuclear potential VN and some 
parameterized screening potential VC.  The 
parameters of the bare potential may be 
chosen to generate the accurate eigen-
energies of all many-QP states. In the PT 
second order the energy shift is expressed in 
terms of the two-QP matrix elements [6-8]:
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where R(1,2;4,3) is the radial integral of the 
Coulomb inter-QP interaction with large 
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ponent; Sα is the angular multiplier (see details in 
Refs.[2-12]). To calculate all necessary matrix ele-
ments one must have the 1QP relativistic functions. 

2.2 The Dirac-Kohn-Sham Relativistic Wave 
Functions

Usually, a multielectron atom is defined by a  
relativistic Dirac Hamiltonian( the a.u. used):

              ( ).i i j
i i j

H h(r ) V r r
>

= +∑ ∑               (5) 

Here, h(r) is one-particle Dirac Hamiltonian 
for electron in a field of the finite size nucleus and 
V is potential of the inter-electron interaction. The 
relativistic  inter electron potential is as follows 
[7,8]:

 
             (6)      

where αij is the transition frequency;αi , αj are the 
Dirac matrices. The Dirac equation potential in-
cludes the electric potential of a nucleus and ex-
change-correlation potential. One of the variants 
is the Kohn-Sham-like  (KS) exchange relativistic 
potential, which is obtained from a Hamiltonian 
having a transverse vector potential describing 
the photons, is as follows  [33]:
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The corresponding correlation functional is 
[2,33]:
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where b is the optimization parameter (see details 
in Refs. [2-4,9,10]). 

 One-particle wave functions are found from 
solution of the Dirac equation, which is written in 
the known two-component form:
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This involves difficulties in numerical integra-
tion of the equations for r → 0. To prevent it, it is 
convenient to turn to new functions isolating main 
power dependence: c−c− == 11 , GrgFrf . The 
Dirac equation for F and G components are trans-
formed as:

                                                                (12)

Here the Coulomb units (C.u.) are used. In 
Coulomb units the atomic characteristics vary 
weakly with Z; En is one-electron energy without 
the rest energy. The boundary values of the cor-
rect solution are as:

( )( ) ( ) 1;120 =+ca−= c fZrEVg n , 0<c  

( )( ) 1;20 22 =aa−−= c gZZEVf n , 0>c      (13)

The condition 0, →gf  at r → ∞  determines 
the quantified energies En. The asymptotics of  f,g 
at r ∞→  are:  f  ,g~ ( )∗− nrexp  with effective 
quantum number 

c
∗ = nEn 21 . 

2.3. Nuclear potential and charge density
Earlier there are calculated some character-

istics of hydrogen-like ions with the nucleus in 
the form of a uniformly charged sphere; analo-
gous calculations by means of an improved mod-
el were also made [2-8]. As in refs. [33-35] we 
use the relativistic mean-field (RMF) approach, 
which is an effective field theory for nuclei below 
an energy scale of 1GeV, separating the long- and 
intermediate-range nuclear physics from short-
distance physics, involving, i.e., short-range cor-
relations, nucleon form factors, vacuum polariza-
tion etc, which is absorbed into various terms and 
coupling constants.  Usually one starts with a La-
grangian density describing Dirac spinor nucle-
ons interacting via meson and photon fields. This 
leads then to the Dirac equation with the potential 
terms describing the nucleon dynamics and the 
Klein-Gordon-type equations involving nucleon-

radial Dirac components; the tilde denotes a 
small Dirac component; Sλ is the angular 
multiplier (see details in Refs.[2-12]). To 
calculate all necessary matrix elements one 
must have the 1QP relativistic functions. 

2.2 The Dirac-Kohn-Sham Relativistic 
Wave Functions

Usually, a multielectron atom is defined by a  
relativistic Dirac Hamiltonian( the a.u. used):
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for electron in a field of the finite size 
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electron interaction. The relativistic  inter 
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where αij is the transition frequency; αi , αj
are the Dirac matrices. The Dirac equation 
potential includes the electric potential of a 
nucleus and exchange-correlation potential. 
One of the variants is the Kohn-Sham-like 
(KS) exchange relativistic potential, which is 
obtained from a Hamiltonian having a 
transverse vector potential describing the 
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Here we put the fine structure constant α =1,
χ - the Dirac number. At large χ the radial 
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Here the Coulomb units (C.u.) are used. In 
Coulomb units the atomic characteristics 
vary weakly with Z; En is one-electron 
energy without the rest energy. The boundary 
values of the correct solution are as:
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( )( ) 1;20 22 =αα−−= χ gZZEVf n , 0>χ
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The condition 0, →gf at r→ ∞ determines 
the quantified energies En. The asymptotics
of f,g at r ∞→ are: f ,g~ ( )∗− nrexp with 
effective quantum number
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2.3. Nuclear potential and charge density
Earlier there are calculated some 
characteristics of hydrogen-like ions with the 
nucleus in the form of a uniformly charged 
sphere; analogous calculations by means of 
an improved model were also made [2-8]. As 
in refs. [33-35] we use the relativistic mean-
field (RMF) approach, which is an effective 
field theory for nuclei below an energy scale 
of 1GeV, separating the long- and 
intermediate-range nuclear physics from 
short-distance physics, involving, i.e., short-
range correlations, nucleon form factors, 
vacuum polarization etc, which is absorbed 
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where αij is the transition frequency; αi , αj
are the Dirac matrices. The Dirac equation 
potential includes the electric potential of a 
nucleus and exchange-correlation potential. 
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(KS) exchange relativistic potential, which is 
obtained from a Hamiltonian having a 
transverse vector potential describing the 
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where b is the optimization parameter (see 
details in Refs. [2-4,9,10]). 
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Here we put the fine structure constant α =1,
χ - the Dirac number. At large χ the radial 
functions F and G vary rapidly as:
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Here the Coulomb units (C.u.) are used. In 
Coulomb units the atomic characteristics 
vary weakly with Z; En is one-electron 
energy without the rest energy. The boundary 
values of the correct solution are as:

( )( ) ( ) 1;120 =+χα−= χ fZrEVg n , 0<χ

( )( ) 1;20 22 =αα−−= χ gZZEVf n , 0>χ
(13)

The condition 0, →gf at r→ ∞ determines 
the quantified energies En. The asymptotics
of f,g at r ∞→ are: f ,g~ ( )∗− nrexp with 
effective quantum number

χ
∗ = nEn 21 .

2.3. Nuclear potential and charge density
Earlier there are calculated some 
characteristics of hydrogen-like ions with the 
nucleus in the form of a uniformly charged 
sphere; analogous calculations by means of 
an improved model were also made [2-8]. As 
in refs. [33-35] we use the relativistic mean-
field (RMF) approach, which is an effective 
field theory for nuclei below an energy scale 
of 1GeV, separating the long- and 
intermediate-range nuclear physics from 
short-distance physics, involving, i.e., short-
range correlations, nucleon form factors, 
vacuum polarization etc, which is absorbed 
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ic currents and densities as source terms for me-
sons and the photon. In our approach we usually 
use the NL3-NLC (see details in refs. [33,38]), 
which is among the most successful parameteri-
zations available. The resulted charge density is 
defined as:

                                    
(14a)

with the proton density ρp constructed from 
the RMF (A,μ are the numerical coefficients) and 
normalized to the charge number Z: 

   
                                                                 (14b)

All corresponding model parameters are ex-
plained and given in refs. [33]. Another effective 
model approach to determine nuclear potential 
(the nuclear density distribution) is given by the 
known Fermi model. This model gives the fol-
lowing definition of the charge distribution ( )rr : 

            )]}/)exp[(1/{)( 0 acrñrñ −+= ,      (15)

where the parameter a=0.523 fm; the param-
eter с is chosen by such a way that it is true the 
following condition for average-squared radius: 

        <r2>1/2=(0.836∙A1/3+0.5700)fm.    (16)

We assume it as some zeroth approximation. 
Further the derivatives of various characteristics 
on R are calculated. They describe the interaction 
of the nucleus with outer electron; this permits re-
calculation of results, when R varies within rea-
sonable limits. The Coulomb potential for the 
spherically symmetric density ( )Rrr  is:

                         (17)

It is determined by the following system of dif-
ferential equations [7,8]:
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with the corresponding boundary conditions.

2.4. QED corrections: Self-energy part of the 
Lamb shift and vacuum polarization correction

Procedure for an account of the radiative QED 
corrections is in details given in the refs. [2-
4,8,33-35]. Regarding the vacuum polarization 
effect let us note that this effect is usually taken 
into account in the first PT theory order by means 
of the Uehling-Serber potential.  This potential is 
usually written as follows (c.f.[2]):

 (19)

where Zrg a/= . In calculation [7-9] it has been 
used more exact approach. The  Uehling-Serber 
potential,  determined as a quadrature (19) may 
be approximated with high precision by a simple 
analytical function. The use of new approxima-
tion of the Uehling-Serber potential permits one 
to decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for the  
Källen-Sabry a2(aZ) and Wichmann-Kroll a(aZ)
n corrections [33-35]. Besides, using a  simple 
analytical function form for approximating the 
Uehling-Serber potential allows its easy  inclu-
sion into the general system of differential equa-
tions. This system   includes also the Dirac equa-
tions and the equations for  matrix elements. A 
method for calculation of the self-energy part of 
the Lamb shift is based on an idea by Ivanov-
Ivanova (c.f.[7,8]). In an atomic system the radia-
tive shift and the relativistic part of the energy 
are, in. principle, determined by one and the same 
physical field. It may be supposed that there ex-
ists some universal function that connects the 
self-energy (SE) correction and the relativistic 
energy. The SE correction for the states of a hy-
drogen-like ion was presented by Mohr  as:
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here for the states 1s2 nlj of Li-like ions. It is sup-
posed that for any ion with nlj electron over the 
core of closed shells the sought value may be pre-
sented in the form:
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into various terms and coupling constants.  
Usually one starts with a Lagrangian density 
describing Dirac spinor nucleons interacting 
via meson and photon fields. This leads then 
to the Dirac equation with the potential terms 
describing the nucleon dynamics and the 
Klein-Gordon-type equations involving 
nucleonic currents and densities as source 
terms for mesons and the photon. In our 
approach we usually use the NL3-NLC (see 
details in refs. [33,38]), which is among the 
most successful parameterizations available. 
The resulted charge density is defined as:
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with the proton density ρp constructed from 
the RMF (A,µ are the numerical coefficients) 
and normalized to the charge number Z: 

∫ = ZrdR p )(ρ . (14b)

All corresponding model parameters are 
explained and given in refs. [33]. Another 
effective model approach to determine 
nuclear potential (the nuclear density 
distribution) is given by the known Fermi 
model. This model gives the following 
definition of the charge distribution ( )rρ :
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where the parameter a=0.523 fm; the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius: 

<r2>1/2=(0.836⋅A1/3+0.5700)fm.  (16)

We assume it as some zeroth approximation. 
Further the derivatives of various 
characteristics on R are calculated. They 
describe the interaction of the nucleus with 
outer electron; this permits recalculation of 
results, when R varies within reasonable 
limits. The Coulomb potential for the 
spherically symmetric density ( )Rrρ is:
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It is determined by the following system of 

differential equations [7,8]:
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with the corresponding boundary conditions.

2.4. QED corrections: Self-energy part of 
the Lamb shift and vacuum polarization 

correction

Procedure for an account of the radiative 
QED corrections is in details given in the 
refs. [2-4,8,33-35]. Regarding the vacuum 
polarization effect let us note that this effect 
is usually taken into account in the first PT 
theory order by means of the Uehling-Serber
potential.  This potential is usually written as 
follows (c.f.[2]):
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where Zrg α/= . In calculation [7-9] it has 
been used more exact approach. The  
Uehling-Serber potential,  determined as a 
quadrature (19) may be approximated with 
high precision by a simple analytical 
function. The use of new approximation of 
the Uehling-Serber potential permits one to 
decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for 
the  Källen-Sabry α2(αZ) and Wichmann-
Kroll α(αZ)n corrections [33-35]. Besides, 
using a  simple analytical function form for 
approximating the Uehling-Serber potential 
allows its easy  inclusion into the general 

into various terms and coupling constants.  
Usually one starts with a Lagrangian density 
describing Dirac spinor nucleons interacting 
via meson and photon fields. This leads then 
to the Dirac equation with the potential terms 
describing the nucleon dynamics and the 
Klein-Gordon-type equations involving 
nucleonic currents and densities as source 
terms for mesons and the photon. In our 
approach we usually use the NL3-NLC (see 
details in refs. [33,38]), which is among the 
most successful parameterizations available. 
The resulted charge density is defined as:
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with the proton density ρp constructed from 
the RMF (A,µ are the numerical coefficients) 
and normalized to the charge number Z: 

∫ = ZrdR p )(ρ . (14b)

All corresponding model parameters are 
explained and given in refs. [33]. Another 
effective model approach to determine 
nuclear potential (the nuclear density 
distribution) is given by the known Fermi 
model. This model gives the following 
definition of the charge distribution ( )rρ :
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where the parameter a=0.523 fm; the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius: 

<r2>1/2=(0.836⋅A1/3+0.5700)fm.  (16)

We assume it as some zeroth approximation. 
Further the derivatives of various 
characteristics on R are calculated. They 
describe the interaction of the nucleus with 
outer electron; this permits recalculation of 
results, when R varies within reasonable 
limits. The Coulomb potential for the 
spherically symmetric density ( )Rrρ is:
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It is determined by the following system of 

differential equations [7,8]:
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with the corresponding boundary conditions.

2.4. QED corrections: Self-energy part of 
the Lamb shift and vacuum polarization 

correction

Procedure for an account of the radiative 
QED corrections is in details given in the 
refs. [2-4,8,33-35]. Regarding the vacuum 
polarization effect let us note that this effect 
is usually taken into account in the first PT 
theory order by means of the Uehling-Serber
potential.  This potential is usually written as 
follows (c.f.[2]):
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where Zrg α/= . In calculation [7-9] it has 
been used more exact approach. The  
Uehling-Serber potential,  determined as a 
quadrature (19) may be approximated with 
high precision by a simple analytical 
function. The use of new approximation of 
the Uehling-Serber potential permits one to 
decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for 
the  Källen-Sabry α2(αZ) and Wichmann-
Kroll α(αZ)n corrections [33-35]. Besides, 
using a  simple analytical function form for 
approximating the Uehling-Serber potential 
allows its easy  inclusion into the general 
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distribution) is given by the known Fermi 
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with the corresponding boundary conditions.

2.4. QED corrections: Self-energy part of 
the Lamb shift and vacuum polarization 

correction

Procedure for an account of the radiative 
QED corrections is in details given in the 
refs. [2-4,8,33-35]. Regarding the vacuum 
polarization effect let us note that this effect 
is usually taken into account in the first PT 
theory order by means of the Uehling-Serber
potential.  This potential is usually written as 
follows (c.f.[2]):
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where Zrg α/= . In calculation [7-9] it has 
been used more exact approach. The  
Uehling-Serber potential,  determined as a 
quadrature (19) may be approximated with 
high precision by a simple analytical 
function. The use of new approximation of 
the Uehling-Serber potential permits one to 
decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for 
the  Källen-Sabry α2(αZ) and Wichmann-
Kroll α(αZ)n corrections [33-35]. Besides, 
using a  simple analytical function form for 
approximating the Uehling-Serber potential 
allows its easy  inclusion into the general 
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Usually one starts with a Lagrangian density 
describing Dirac spinor nucleons interacting 
via meson and photon fields. This leads then 
to the Dirac equation with the potential terms 
describing the nucleon dynamics and the 
Klein-Gordon-type equations involving 
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terms for mesons and the photon. In our 
approach we usually use the NL3-NLC (see 
details in refs. [33,38]), which is among the 
most successful parameterizations available. 
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with the proton density ρp constructed from 
the RMF (A,µ are the numerical coefficients) 
and normalized to the charge number Z: 

∫ = ZrdR p )(ρ . (14b)

All corresponding model parameters are 
explained and given in refs. [33]. Another 
effective model approach to determine 
nuclear potential (the nuclear density 
distribution) is given by the known Fermi 
model. This model gives the following 
definition of the charge distribution ( )rρ :

)]}/)exp[(1/{)( 0 acrρrρ −+= , (15)

where the parameter a=0.523 fm; the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius: 

<r2>1/2=(0.836⋅A1/3+0.5700)fm.  (16)

We assume it as some zeroth approximation. 
Further the derivatives of various 
characteristics on R are calculated. They 
describe the interaction of the nucleus with 
outer electron; this permits recalculation of 
results, when R varies within reasonable 
limits. The Coulomb potential for the 
spherically symmetric density ( )Rrρ is:
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It is determined by the following system of 

differential equations [7,8]:
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with the corresponding boundary conditions.

2.4. QED corrections: Self-energy part of 
the Lamb shift and vacuum polarization 

correction

Procedure for an account of the radiative 
QED corrections is in details given in the 
refs. [2-4,8,33-35]. Regarding the vacuum 
polarization effect let us note that this effect 
is usually taken into account in the first PT 
theory order by means of the Uehling-Serber
potential.  This potential is usually written as 
follows (c.f.[2]):
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where Zrg α/= . In calculation [7-9] it has 
been used more exact approach. The  
Uehling-Serber potential,  determined as a 
quadrature (19) may be approximated with 
high precision by a simple analytical 
function. The use of new approximation of 
the Uehling-Serber potential permits one to 
decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for 
the  Källen-Sabry α2(αZ) and Wichmann-
Kroll α(αZ)n corrections [33-35]. Besides, 
using a  simple analytical function form for 
approximating the Uehling-Serber potential 
allows its easy  inclusion into the general system of differential equations. This system   

includes also the Dirac equations and the 
equations for  matrix elements. A method for 
calculation of the self-energy part of the 
Lamb shift is based on an idea by Ivanov-
Ivanova (c.f.[7,8]). In an atomic system the 
radiative shift and the relativistic part of the 
energy are, in. principle, determined by one 
and the same physical field. It may be 
supposed that there exists some universal 
function that connects the self-energy (SE) 
correction and the relativistic energy. The SE 
correction for the states of a hydrogen-like 
ion was presented by Mohr  as:

( ) ( )nljZHF
n
ZnljZHESE ,027148.0,
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The values of  F are given at  ,11010 −=Z

.2,2,2,1 2321 ppssnlj = These results are 
modified here for the states 1s2 nlj of Li-like 
ions. It is supposed that for any ion with nlj
electron over the core of closed shells the 
sought value may be presented in the form:
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(21)
The parameter ( ) RR EE ,41=ξ is the 
relativistic part of the bounding energy of the 
outer electron; the universal function 
( )nljf ,ξ does not depend on the composition 

of the closed shells and the actual potential of 
the nucleus. The procedure of generalization 
for a case of Li-like ions with finite nucleus 
consists of the following steps [2,8,35]: 
1). Calculation of the values ER and ξ for the 
states nlj of H-like ions with the point 
nucleus (in accordance with the Zommerfeld 
formula); 2). Construction of approximating 
function f by the found reference Z and the 
appropriate F(H|Z, nlj); 3). Calculation of ER
and ξ for the states nlj of Li-like ions with 
the finite nucleus; 4). Calculation of ESE for 
the sought states.  The energies of the states 
of Li-like ions are calculated twice: with a 
conventional constant of the fine structure  
α=1/137and α’=α/103. The results of latter 
calculation are considered as non-relativistic. 
This permitted isolation of ER,ξ. The above 
extrapolation method is more justified than 

using the known expansion on αZ
parameter. 

2.5. The hyperfine structure parameters
Energies of quadruple (Wq) and magnetic 
dipole (Wµ) interactions to define a hyperfine 
structure (HFS) are calculated as [32,35]:

Wq=[∆+C(C+1)]B, Wµ=0,5 AC,

∆=-(4/3)(4χ-1)(I+1)/[i(I-1)(2I-1)],

C=F(F+1)-J(J+1)-I(I+1).    (22)

Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. HFS constants are expressed 
through the standard radial integrals [2,8,35]:

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,
(23)

Here gI is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial 
integrals are defined as follows:
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For calculation of potentials of the hyperfine 
interaction U(1/rn,R), we solve the following 
differential equations [7,8]: U(1/rn,R)=-
ny(r,R)/rn+1. The functions dU(1/rn,R)/dR are 
can be found by similar way. To obtain the 
corresponding value of Q one must combine 
the HFS constants data with the electric field 
gradient calculated in our approach too. The 
details of calculation are presented in [11,14, 
17,18].

2.6. Correlation effects and construction of 
optimal 1-quasiparticle representation

The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.   
One of the simplified recipes  represents, for 
example, the DFT method  (see [2,3]).
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of the closed shells and the actual potential of 
the nucleus. The procedure of generalization 
for a case of Li-like ions with finite nucleus 
consists of the following steps [2,8,35]: 
1). Calculation of the values ER and ξ for the 
states nlj of H-like ions with the point 
nucleus (in accordance with the Zommerfeld 
formula); 2). Construction of approximating 
function f by the found reference Z and the 
appropriate F(H|Z, nlj); 3). Calculation of ER
and ξ for the states nlj of Li-like ions with 
the finite nucleus; 4). Calculation of ESE for 
the sought states.  The energies of the states 
of Li-like ions are calculated twice: with a 
conventional constant of the fine structure  
α=1/137and α’=α/103. The results of latter 
calculation are considered as non-relativistic. 
This permitted isolation of ER,ξ. The above 
extrapolation method is more justified than 

using the known expansion on αZ
parameter. 

2.5. The hyperfine structure parameters
Energies of quadruple (Wq) and magnetic 
dipole (Wµ) interactions to define a hyperfine 
structure (HFS) are calculated as [32,35]:

Wq=[∆+C(C+1)]B, Wµ=0,5 AC,

∆=-(4/3)(4χ-1)(I+1)/[i(I-1)(2I-1)],

C=F(F+1)-J(J+1)-I(I+1).    (22)

Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. HFS constants are expressed 
through the standard radial integrals [2,8,35]:

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,
(23)

Here gI is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial 
integrals are defined as follows:
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For calculation of potentials of the hyperfine 
interaction U(1/rn,R), we solve the following 
differential equations [7,8]: U(1/rn,R)=-
ny(r,R)/rn+1. The functions dU(1/rn,R)/dR are 
can be found by similar way. To obtain the 
corresponding value of Q one must combine 
the HFS constants data with the electric field 
gradient calculated in our approach too. The 
details of calculation are presented in [11,14, 
17,18].

2.6. Correlation effects and construction of 
optimal 1-quasiparticle representation

The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.   
One of the simplified recipes  represents, for 
example, the DFT method  (see [2,3]).
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radiative shift and the relativistic part of the 
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supposed that there exists some universal 
function that connects the self-energy (SE) 
correction and the relativistic energy. The SE 
correction for the states of a hydrogen-like 
ion was presented by Mohr  as:

( ) ( )nljZHF
n
ZnljZHESE ,027148.0,

3

4
=

(20)
The values of  F are given at  ,11010 −=Z

.2,2,2,1 2321 ppssnlj = These results are 
modified here for the states 1s2 nlj of Li-like 
ions. It is supposed that for any ion with nlj
electron over the core of closed shells the 
sought value may be presented in the form:

( ) ( ) ( )1
3

4
,027148.0, −ξ

ξ
= cmnljf

n
nljZESE

(21)
The parameter ( ) RR EE ,41=ξ is the 
relativistic part of the bounding energy of the 
outer electron; the universal function 
( )nljf ,ξ does not depend on the composition 

of the closed shells and the actual potential of 
the nucleus. The procedure of generalization 
for a case of Li-like ions with finite nucleus 
consists of the following steps [2,8,35]: 
1). Calculation of the values ER and ξ for the 
states nlj of H-like ions with the point 
nucleus (in accordance with the Zommerfeld 
formula); 2). Construction of approximating 
function f by the found reference Z and the 
appropriate F(H|Z, nlj); 3). Calculation of ER
and ξ for the states nlj of Li-like ions with 
the finite nucleus; 4). Calculation of ESE for 
the sought states.  The energies of the states 
of Li-like ions are calculated twice: with a 
conventional constant of the fine structure  
α=1/137and α’=α/103. The results of latter 
calculation are considered as non-relativistic. 
This permitted isolation of ER,ξ. The above 
extrapolation method is more justified than 

using the known expansion on αZ
parameter. 

2.5. The hyperfine structure parameters
Energies of quadruple (Wq) and magnetic 
dipole (Wµ) interactions to define a hyperfine 
structure (HFS) are calculated as [32,35]:

Wq=[∆+C(C+1)]B, Wµ=0,5 AC,

∆=-(4/3)(4χ-1)(I+1)/[i(I-1)(2I-1)],

C=F(F+1)-J(J+1)-I(I+1).    (22)

Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. HFS constants are expressed 
through the standard radial integrals [2,8,35]:

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,
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Here gI is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial 
integrals are defined as follows:
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For calculation of potentials of the hyperfine 
interaction U(1/rn,R), we solve the following 
differential equations [7,8]: U(1/rn,R)=-
ny(r,R)/rn+1. The functions dU(1/rn,R)/dR are 
can be found by similar way. To obtain the 
corresponding value of Q one must combine 
the HFS constants data with the electric field 
gradient calculated in our approach too. The 
details of calculation are presented in [11,14, 
17,18].

2.6. Correlation effects and construction of 
optimal 1-quasiparticle representation

The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.   
One of the simplified recipes  represents, for 
example, the DFT method  (see [2,3]).
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The parameter ( ) RR EE ,41=x  is the relativis-
tic part of the bounding energy of the outer elec-
tron; the universal function ( )nljf ,x  does not de-
pend on the composition of the closed shells and 
the actual potential of the nucleus. The procedure 
of generalization for a case of Li-like ions with 
finite nucleus consists of the following steps 
[2,8,35]: 

1). Calculation of the values ER and x for the 
states nlj of H-like ions with the point nucleus (in 
accordance with the Zommerfeld formula); 

2). Construction of approximating function 
f by the found reference Z and the appropriate 
F(H|Z, nlj); 

3). Calculation of ER and x  for the states nlj of 
Li-like ions with the finite nucleus; 

4). Calculation of ESE for the sought states.  
The energies of the states of Li-like ions are cal-
culated twice: with a conventional constant of the 
fine structure  a=1/137and a’=a/103. The results 
of latter calculation are considered as non-relativ-
istic. This permitted isolation of ER,x. The above 
extrapolation method is more justified than using 
the known expansion on aZ  parameter. 

2.5. The hyperfine structure parameters
Energies of quadruple (Wq) and magnetic di-

pole (Wμ) interactions to define a hyperfine struc-
ture (HFS) are calculated as [32,35]:

Wq=[∆+C(C+1)]B,  Wμ=0,5 AC,

∆=-(4/3)(4χ-1)(I+1)/[i(I-1)(2I-1)],
 

          C=F(F+1)-J(J+1)-I(I+1).              (22)

Here I is a spin of nucleus, F is a full momen-
tum of system, J is a full electron momentum. 
HFS constants are expressed through the standard 
radial integrals [2,8,35]: 

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,
(23)

Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial integrals 
are defined as follows:

                                                                  (24)

For calculation of potentials of the hyperfine 
interaction U(1/rn,R), we solve the following dif-
ferential equations [7,8]: U(1/rn,R)=-ny(r,R)/rn+1. 
The functions dU(1/rn,R)/dR are can be found by 
similar way. To obtain the corresponding value 
of Q one must combine the HFS constants data 
with the electric field gradient calculated in our 
approach too. The details of calculation are pre-
sented in [11,14, 17,18].

2.6. Correlation effects and construction of 
optimal 1-quasiparticle representation 

The problem of the searching for the optimal 
one-electron representation is one of the oldest in 
the theory of multielectron atoms.   One of the 
simplified recipes  represents, for example, the 
DFT method  (see [2,3]).  Unfortunately,  this  
method   doesn’t provide  a  regular  refinement  
procedure  in  the  case  of  the complicated atom 
with few quasiparticles (electrons  or  vacancies  
above a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us con-
sider now the one-quasiparticle atomic system. 
The multi-quasiparticle case doesn’t contain prin-
cipally new moments. In the lowest, second order, 
of the QED PT for the DE there is the only one- 
quasiparticle Feynman  diagram a (fig.1), contrib-
uting the ImDE (the radiation decay width). 

                                                                                     

Figure 1. a: second other PT diagram contribut-
ing the imaginary energy part related to the radia-
tion transitions; b and c: fourth order QED polar-

ization  diagrams.

In  the  next, the fourth order there appear dia-
grams,  whose  contribution  into the  ImDE  ac-
count  for  the  core  polarization   effects. This 

system of differential equations. This system   
includes also the Dirac equations and the 
equations for  matrix elements. A method for 
calculation of the self-energy part of the 
Lamb shift is based on an idea by Ivanov-
Ivanova (c.f.[7,8]). In an atomic system the 
radiative shift and the relativistic part of the 
energy are, in. principle, determined by one 
and the same physical field. It may be 
supposed that there exists some universal 
function that connects the self-energy (SE) 
correction and the relativistic energy. The SE 
correction for the states of a hydrogen-like 
ion was presented by Mohr  as:
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The parameter ( ) RR EE ,41=ξ is the 
relativistic part of the bounding energy of the 
outer electron; the universal function 
( )nljf ,ξ does not depend on the composition 

of the closed shells and the actual potential of 
the nucleus. The procedure of generalization 
for a case of Li-like ions with finite nucleus 
consists of the following steps [2,8,35]: 
1). Calculation of the values ER and ξ for the 
states nlj of H-like ions with the point 
nucleus (in accordance with the Zommerfeld 
formula); 2). Construction of approximating 
function f by the found reference Z and the 
appropriate F(H|Z, nlj); 3). Calculation of ER
and ξ for the states nlj of Li-like ions with 
the finite nucleus; 4). Calculation of ESE for 
the sought states.  The energies of the states 
of Li-like ions are calculated twice: with a 
conventional constant of the fine structure  
α=1/137and α’=α/103. The results of latter 
calculation are considered as non-relativistic. 
This permitted isolation of ER,ξ. The above 
extrapolation method is more justified than 

using the known expansion on αZ
parameter. 

2.5. The hyperfine structure parameters
Energies of quadruple (Wq) and magnetic 
dipole (Wµ) interactions to define a hyperfine 
structure (HFS) are calculated as [32,35]:

Wq=[∆+C(C+1)]B, Wµ=0,5 AC,

∆=-(4/3)(4χ-1)(I+1)/[i(I-1)(2I-1)],

C=F(F+1)-J(J+1)-I(I+1).    (22)

Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. HFS constants are expressed 
through the standard radial integrals [2,8,35]:

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,
(23)

Here gI is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial 
integrals are defined as follows:
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For calculation of potentials of the hyperfine 
interaction U(1/rn,R), we solve the following 
differential equations [7,8]: U(1/rn,R)=-
ny(r,R)/rn+1. The functions dU(1/rn,R)/dR are 
can be found by similar way. To obtain the 
corresponding value of Q one must combine 
the HFS constants data with the electric field 
gradient calculated in our approach too. The 
details of calculation are presented in [11,14, 
17,18].

2.6. Correlation effects and construction of 
optimal 1-quasiparticle representation

The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.   
One of the simplified recipes  represents, for 
example, the DFT method  (see [2,3]).

Unfortunately,  this method   doesn't provide  
a  regular  refinement  procedure  in  the  
case  of  the complicated atom with few 
quasiparticles (electrons  or  vacancies  above 
a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us 
consider now the one-quasiparticle atomic 
system. The multi-quasiparticle case doesn’t 
contain principally new moments. In the 
lowest, second order, of the QED PT for the 
∆E there is the only one- quasiparticle 
Feynman  diagram a (fig.1), contributing the 
Im∆E (the radiation decay width). 

a                       b                         c
Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order QED polarization  diagrams.

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
Im∆E  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). We examine  the  
multielectron  atom with  one quasiparticle 
in the  first  excited  state,  connected  with  
the ground state  by  the  radiation  transition.  
In the PT zeroth approximation one can use 
the  one-electron bare potential:                

VN(r)+VC(r),                   (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction 
of the  with the  core of  closed  shells. The 
perturbation in terms of the  second 
quantization representation reads as

-VC(r) ψ+(r) ψ(r) - jµ(x) Aµ(x).                                    
(26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The 
latter fully defines the one electron 
representation. Moreover, all  the  results  of  
the approximate calculations are the 

functionals of the density ρC(r). Here, the 
lowest order multielectron effects, in 
particular, the gauge dependent radiative 
contribution for the certain class of the 
photon propagator gauge is  treating.  This  
value  is considered to  be  the  typical  
representative  of  the  electron correlation 
effects, whose minimization is a  reasonable
criteria in the searching for the optimal one-
electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities 
calculated with the alternative  forms  of the 
transition operator is commonly used as  a  
criterion  of  the multielectron calculations 
quality. The imaginary part of the diagram a 
(fig.1)  contribution has been presented  
previously as a sum of the partial 
contributions of α-s transitions from the 
initial state α to the final state s [10]:

Im∆Eα (a) = ∑
S

Im ∆E (α-s; a).                       

(27)
Two  fourth  order  polarization  diagrams  
b,c  (fig.1)  should be considered further.  
The  contributions   being   under 
consideration, are gauge- dependent, though  
the  results  of  the exact  calculation  of  any  
physical  quantity  must  be    gauge  
independent . All the non-invariant terms are 
multielectron by their nature.  Let us take the 
photon propagator calibration as usually:

D = DT + CDL ,

DT = δµν / ( k 0
2 - k 2 ), (28)

DL = - kµkν / ( k 0
2 - k2 ).                                      

(28)     
Here C is the gauge constant; DT represents 
the  exchange  of  electrons  by  transverse 
photons, DL that by longitudinal ones. One 
could calculate the contribution of the a,b,c 
diagrams (fig.1) into the Im ∆E taking into 
account  both the  DT and DL parts. The a 
diagram (fig.1) contribution into the Im ∆E
related to the  α -s transition reads as 

- e2

8π ∫∫ dr1dr2ψα
+ (r1) ψs

+ (r2)
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contribution describes collective effects and it is 
dependent upon the electromagnetic potentials 
gauge (the gauge non-invariant contribution). We 
examine  the  multielectron  atom  with  one qua-
siparticle in the  first  excited  state,  connected  
with  the ground state  by  the  radiation  transi-
tion.  In the PT zeroth approximation one can use 
the  one-electron bare potential:                

 
                          VN(r)+VC(r),                      (25)

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction of the  
with the  core of  closed  shells. The perturbation 
in terms of the  second quantization representa-
tion reads as

                                                                  (26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The lat-
ter fully defines the one electron representation. 
Moreover, all  the  results  of  the approximate cal-
culations are the functionals of the density ρC(r). 
Here, the lowest order multielectron effects, in 
particular, the gauge dependent radiative contri-
bution for the certain class of the photon propaga-
tor gauge is  treating.  This  value  is considered 
to  be  the  typical  representative  of  the  electron 
correlation effects, whose minimization is a  rea-
sonable  criteria in the searching for the optimal 
one-electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities cal-
culated with the alternative  forms  of the transi-
tion operator is commonly used as  a  criterion  of  
the multielectron calculations quality. The imagi-
nary part of the diagram a (fig.1)  contribution has 
been presented  previously as a sum of the partial 
contributions of α-s transitions from the initial 
state α to the final state s [10]:

                                                                   (27)

Two  fourth  order  polarization  diagrams  b,c  
(fig.1)  should be considered further.  The  contri-
butions   being   under consideration, are gauge- 
dependent, though  the  results  of  the exact  cal-
culation  of  any  physical  quantity  must  be    
gauge  independent . All the non-invariant terms 
are multielectron by their nature.  Let us take the 

photon propagator calibration as usually:

(28)     

Here C is the gauge constant; DT represents the  
exchange  of  electrons  by  transverse photons, 
DL that by longitudinal ones. One could calculate 
the contribution of the a,b,c diagrams (fig.1) into 
the Im DE taking into account  both the  DT  and 
DL parts. The a diagram (fig.1) contribution into 
the Im DE related to the α-s transition reads as 

   (30)

for D=DL , where ωαs is the α -s transition energy. 
According to the Grant theorem, the Dμυ,L contri-
bution vanishes, if  the  one-quasiparticle  func-
tions  ψα, ψs satisfy the same Dirac equation. 
Nevertheless this term is to be retained when us-
ing the distorted waves approximation, for exam-
ple. Another very important example  represents  
the  formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum without 
specifying its analytic form  [2,3].  Here the non-
invariant contribution appears already in the low-
est order. When calculating the forth order con-
tributions some approximations are inevitable. 
These approximations have been formulated in 
Refs.[10], where the polarization corrections to 
the state energies have been considered. 

Let us consider the direct polarization diagram 
b (fig.1) as an  example.  The  final  expression for 
the sought value looks as  

                                                                   (31)

Unfortunately,  this method   doesn't provide  
a  regular  refinement  procedure  in  the  
case  of  the complicated atom with few 
quasiparticles (electrons  or  vacancies  above 
a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us 
consider now the one-quasiparticle atomic 
system. The multi-quasiparticle case doesn’t 
contain principally new moments. In the 
lowest, second order, of the QED PT for the 
∆E there is the only one- quasiparticle 
Feynman  diagram a (fig.1), contributing the 
Im∆E (the radiation decay width). 

a                       b                         c
Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order QED polarization  diagrams.

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
Im∆E  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). We examine  the  
multielectron  atom with  one quasiparticle 
in the  first  excited  state,  connected  with  
the ground state  by  the  radiation  transition.  
In the PT zeroth approximation one can use 
the  one-electron bare potential:                

VN(r)+VC(r),                   (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction 
of the  with the  core of  closed  shells. The 
perturbation in terms of the  second 
quantization representation reads as

-VC(r) ψ+(r) ψ(r) - jµ(x) Aµ(x).                                    
(26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The 
latter fully defines the one electron 
representation. Moreover, all  the  results  of  
the approximate calculations are the 

functionals of the density ρC(r). Here, the 
lowest order multielectron effects, in 
particular, the gauge dependent radiative 
contribution for the certain class of the 
photon propagator gauge is  treating.  This  
value  is considered to  be  the  typical  
representative  of  the  electron correlation 
effects, whose minimization is a  reasonable
criteria in the searching for the optimal one-
electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities 
calculated with the alternative  forms  of the 
transition operator is commonly used as  a  
criterion  of  the multielectron calculations 
quality. The imaginary part of the diagram a 
(fig.1)  contribution has been presented  
previously as a sum of the partial 
contributions of α-s transitions from the 
initial state α to the final state s [10]:

Im∆Eα (a) = ∑
S

Im ∆E (α-s; a).                       

(27)
Two  fourth  order  polarization  diagrams  
b,c  (fig.1)  should be considered further.  
The  contributions   being   under 
consideration, are gauge- dependent, though  
the  results  of  the exact  calculation  of  any  
physical  quantity  must  be    gauge  
independent . All the non-invariant terms are 
multielectron by their nature.  Let us take the 
photon propagator calibration as usually:

D = DT + CDL ,

DT = δµν / ( k 0
2 - k 2 ), (28)

DL = - kµkν / ( k 0
2 - k2 ).                                      

(28)     
Here C is the gauge constant; DT represents 
the  exchange  of  electrons  by  transverse 
photons, DL that by longitudinal ones. One 
could calculate the contribution of the a,b,c 
diagrams (fig.1) into the Im ∆E taking into 
account  both the  DT and DL parts. The a 
diagram (fig.1) contribution into the Im ∆E
related to the  α -s transition reads as 
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Unfortunately,  this method   doesn't provide  
a  regular  refinement  procedure  in  the  
case  of  the complicated atom with few 
quasiparticles (electrons  or  vacancies  above 
a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us 
consider now the one-quasiparticle atomic 
system. The multi-quasiparticle case doesn’t 
contain principally new moments. In the 
lowest, second order, of the QED PT for the 
∆E there is the only one- quasiparticle 
Feynman  diagram a (fig.1), contributing the 
Im∆E (the radiation decay width). 
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fourth order QED polarization  diagrams.

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
Im∆E  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). We examine  the  
multielectron  atom with  one quasiparticle 
in the  first  excited  state,  connected  with  
the ground state  by  the  radiation  transition.  
In the PT zeroth approximation one can use 
the  one-electron bare potential:                

VN(r)+VC(r),                   (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction 
of the  with the  core of  closed  shells. The 
perturbation in terms of the  second 
quantization representation reads as

-VC(r) ψ+(r) ψ(r) - jµ(x) Aµ(x).                                    
(26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The 
latter fully defines the one electron 
representation. Moreover, all  the  results  of  
the approximate calculations are the 

functionals of the density ρC(r). Here, the 
lowest order multielectron effects, in 
particular, the gauge dependent radiative 
contribution for the certain class of the 
photon propagator gauge is  treating.  This  
value  is considered to  be  the  typical  
representative  of  the  electron correlation 
effects, whose minimization is a  reasonable
criteria in the searching for the optimal one-
electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities 
calculated with the alternative  forms  of the 
transition operator is commonly used as  a  
criterion  of  the multielectron calculations 
quality. The imaginary part of the diagram a 
(fig.1)  contribution has been presented  
previously as a sum of the partial 
contributions of α-s transitions from the 
initial state α to the final state s [10]:

Im∆Eα (a) = ∑
S

Im ∆E (α-s; a).                       

(27)
Two  fourth  order  polarization  diagrams  
b,c  (fig.1)  should be considered further.  
The  contributions   being   under 
consideration, are gauge- dependent, though  
the  results  of  the exact  calculation  of  any  
physical  quantity  must  be    gauge  
independent . All the non-invariant terms are 
multielectron by their nature.  Let us take the 
photon propagator calibration as usually:

D = DT + CDL ,

DT = δµν / ( k 0
2 - k 2 ), (28)

DL = - kµkν / ( k 0
2 - k2 ).                                      

(28)     
Here C is the gauge constant; DT represents 
the  exchange  of  electrons  by  transverse 
photons, DL that by longitudinal ones. One 
could calculate the contribution of the a,b,c 
diagrams (fig.1) into the Im ∆E taking into 
account  both the  DT and DL parts. The a 
diagram (fig.1) contribution into the Im ∆E
related to the  α -s transition reads as 
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+ (r1) ψs
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Unfortunately,  this method   doesn't provide  
a  regular  refinement  procedure  in  the  
case  of  the complicated atom with few 
quasiparticles (electrons  or  vacancies  above 
a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us 
consider now the one-quasiparticle atomic 
system. The multi-quasiparticle case doesn’t 
contain principally new moments. In the 
lowest, second order, of the QED PT for the 
∆E there is the only one- quasiparticle 
Feynman  diagram a (fig.1), contributing the 
Im∆E (the radiation decay width). 
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Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order QED polarization  diagrams.

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
Im∆E  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). We examine  the  
multielectron  atom with  one quasiparticle 
in the  first  excited  state,  connected  with  
the ground state  by  the  radiation  transition.  
In the PT zeroth approximation one can use 
the  one-electron bare potential:                

VN(r)+VC(r),                   (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction 
of the  with the  core of  closed  shells. The 
perturbation in terms of the  second 
quantization representation reads as

-VC(r) ψ+(r) ψ(r) - jµ(x) Aµ(x).                                    
(26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The 
latter fully defines the one electron 
representation. Moreover, all  the  results  of  
the approximate calculations are the 

functionals of the density ρC(r). Here, the 
lowest order multielectron effects, in 
particular, the gauge dependent radiative 
contribution for the certain class of the 
photon propagator gauge is  treating.  This  
value  is considered to  be  the  typical  
representative  of  the  electron correlation 
effects, whose minimization is a  reasonable
criteria in the searching for the optimal one-
electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities 
calculated with the alternative  forms  of the 
transition operator is commonly used as  a  
criterion  of  the multielectron calculations 
quality. The imaginary part of the diagram a 
(fig.1)  contribution has been presented  
previously as a sum of the partial 
contributions of α-s transitions from the 
initial state α to the final state s [10]:

Im∆Eα (a) = ∑
S

Im ∆E (α-s; a).                       

(27)
Two  fourth  order  polarization  diagrams  
b,c  (fig.1)  should be considered further.  
The  contributions   being   under 
consideration, are gauge- dependent, though  
the  results  of  the exact  calculation  of  any  
physical  quantity  must  be    gauge  
independent . All the non-invariant terms are 
multielectron by their nature.  Let us take the 
photon propagator calibration as usually:

D = DT + CDL ,

DT = δµν / ( k 0
2 - k 2 ), (28)

DL = - kµkν / ( k 0
2 - k2 ).                                      

(28)     
Here C is the gauge constant; DT represents 
the  exchange  of  electrons  by  transverse 
photons, DL that by longitudinal ones. One 
could calculate the contribution of the a,b,c 
diagrams (fig.1) into the Im ∆E taking into 
account  both the  DT and DL parts. The a 
diagram (fig.1) contribution into the Im ∆E
related to the  α -s transition reads as 

- e2

8π ∫∫ dr1dr2ψα
+ (r1) ψs

+ (r2)

1 1 2

12

− α α
r

sin (ωαs r12 ) ψα (r2) ψs (r1),                

(29)
for   D = DT, and      
- e2

8π ∫∫ dr1 dr2  ψα
+ (r1) ψs

+ (r2) {[(1- α1 n12⋅

⋅α2 n12 )/ r12 ] sin (ωαs r12 )+ωαs ⋅

(1+ α1 n12α2n12)×cos(ωαsr12)}ψα(r2)ψs(r1),                           

(30)
for D=DL , where ωαs is the α -s transition 
energy. According to the Grant theorem, the 
Dµν,L contribution vanishes, if  the  one-
quasiparticle  functions  ψα , ψs satisfy the 
same Dirac equation. Nevertheless this term 
is to be retained when using the distorted 
waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [2,3].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable. These 
approximations have been formulated in 
Refs.[10], where the polarization corrections 
to the state energies have been considered. 
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  The final 
expression for the sought value looks as  
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(31)       
Expression (31) can be represented in the 
form of sum of the following terms: 

( )smnmWsnnsWm αωωαα ±∑ 21
(32)

With four different combinations of operators 
W1 and W2 (see [7-10]).  In (31) it should be 
performed summation over the bound and 
upper continuum atomic states. To evaluate 
this  sum,  one can use the analytic relation  
between the atomic electron Fermi level  and  
the  core  electron  density ρ c (r), appropriate  
to the homogeneous   nonrelativistic  electron 
gas. Now the sum ∑n>f, m<f can be calculated 
analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [10]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [2,3]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im δEninv (b+c) leads to the 
integro-differential equation for the ρ c (the  
Dirac-like equations for electron density). In 
result we obtain the optimal one-quasiparticle 
representation. In concrete calculation it is 
sufficient to use the simplified procedure, 
which is reduced to functional minimization 
using the variation of the parameter b in 
Eq.(9) [2,10]. Let us further to come back to 
the complex  secular matrix M in the form:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + + (33)                                  

Here ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-
quasiparticle diagrams respectively. ( )0M is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. It is 
usually assumed ( )0 0.M = The diagonal 
matrix ( )1M can be presented as a sum of the 
independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have 
summarized  all the contributions of the one -
quasiparticle  diagrams of all orders of the 
formally exact relativistic PT. The first two 
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(30)
for D=DL , where ωαs is the α -s transition 
energy. According to the Grant theorem, the 
Dµν,L contribution vanishes, if  the  one-
quasiparticle  functions  ψα , ψs satisfy the 
same Dirac equation. Nevertheless this term 
is to be retained when using the distorted 
waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [2,3].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable. These 
approximations have been formulated in 
Refs.[10], where the polarization corrections 
to the state energies have been considered. 
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  The final 
expression for the sought value looks as  

)()()()(

))]})((1)]((cos[

)(sin[/)))(({[(

/)1)(()()()()1

1(
4

)|(Im

1243

3443433412

34123434434343

12214321

4321

2

rrrr

nnrr

rrrnn

rrrrr

drdrdrdrCeAsE

snm

nsm
mn

mn
dninv

n

nn

s

s

ΨΨΨΨ⋅

⋅++

⋅++⋅−

⋅−ΨΨΨΨ
−

+

+
+

−=

++++

∑∫∫∫ ∫

α

α

αα

α
α

α

ααω

ωωαααα

αα
ωω

ωωπ
α

(31)       
Expression (31) can be represented in the 
form of sum of the following terms: 

( )smnmWsnnsWm αωωαα ±∑ 21
(32)

With four different combinations of operators 
W1 and W2 (see [7-10]).  In (31) it should be 
performed summation over the bound and 
upper continuum atomic states. To evaluate 
this  sum,  one can use the analytic relation  
between the atomic electron Fermi level  and  
the  core  electron  density ρ c (r), appropriate  
to the homogeneous   nonrelativistic  electron 
gas. Now the sum ∑n>f, m<f can be calculated 
analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [10]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [2,3]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im δEninv (b+c) leads to the 
integro-differential equation for the ρ c (the  
Dirac-like equations for electron density). In 
result we obtain the optimal one-quasiparticle 
representation. In concrete calculation it is 
sufficient to use the simplified procedure, 
which is reduced to functional minimization 
using the variation of the parameter b in 
Eq.(9) [2,10]. Let us further to come back to 
the complex  secular matrix M in the form:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + + (33)                                  

Here ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-
quasiparticle diagrams respectively. ( )0M is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. It is 
usually assumed ( )0 0.M = The diagonal 
matrix ( )1M can be presented as a sum of the 
independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have 
summarized  all the contributions of the one -
quasiparticle  diagrams of all orders of the 
formally exact relativistic PT. The first two 
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Expression (31) can be represented in the form 
of sum of the following terms: 

                                        
              (32)

With four different combinations of operators  
W1 and W2 (see [7-10]).  In (31) it should be per-
formed summation over the bound and upper con-
tinuum atomic states. To evaluate this  sum,  one 
can use the analytic relation  between the atom-
ic electron Fermi level  and  the  core  electron  
density ρc (r), appropriate  to the homogeneous   
nonrelativistic  electron gas. Now the sum Σn>f, m<f 
can be calculated analytically, its value becomes 
a functional of the core electron density.  The  re-
sulting  expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the active 
quasiparticle with  the  closed  shells.  Neverthe-
less,  its calculation is reducible to the  solving  of  
the  system  of  the ordinary differential equations 
(1-D procedure) [10]. The most important refine-
ments can be introduced by accounting for the 
relativistic and the density gradient corrections to 
the Tomas- Fermi formula (see  Refs. [2,3]).  The  
same  program  is realized  for other polarization 
diagrams. The minimization of the functional 
Im dEninv (b+c) leads to the integro-differential 
equation for the ρc (the  Dirac-like equations for 
electron density). In result we obtain the optimal 
one-quasiparticle representation. In concrete cal-
culation it is sufficient to use the simplified proce-
dure, which is reduced to functional minimization 
using the variation of the parameter b in Eq.(9) 
[2,10]. Let us further to come back to the complex  
secular matrix M in the form:  

                                          
            ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +       (33)                                  

Here ( )0M  is the contribution of the vacuum di-
agrams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three- quasiparticle 
diagrams respectively. ( )0M  is a real matrix, pro-
portional to the unit matrix. It determines only the 

general level shift. It is usually assumed ( )0 0.M =  
The diagonal matrix ( )1M  can be presented as a 
sum of the independent one-quasiparticle contri-
butions. For simple systems (such as alkali atoms 
and ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have summarized  
all the contributions of the one -quasiparticle  dia-
grams of all orders of the formally exact relativis-
tic PT. The first two order corrections to ( )2Re M  
have been analyzed previously [2,5-9] using the 
Feynman diagrams technique. The contributions 
of the first-order diagrams have been completely 
calculated. In the second order, there are two 
kinds of diagrams: polarization and ladder ones.
The polarization diagrams take into account the 
quasiparticle interaction through the polarizable 
core, and the ladder diagrams account for the im-
mediate quasiparticle interaction. An effective 
form for the two-particle polarizable operator has 
been presented in Ref. [2]; it looks as:

(34)

where 0
cr  is the core electron density (without ac-

count for the quasiparticle), X is numerical coef-
ficient, c is the light velocity. The similar approx-
imate potential representation has been received 
for the exchange polarization interaction of quasi-
particles. Some of the ladder diagram contribu-
tions as well as some of the three-quasiparticle 
diagram contributions in all PT orders have the 
same angular symmetry as the two-quasiparticle 
diagram contributions of the first order. These 
contributions have been summarized by a modifi-
cation of the central  potential, which  must now 
include the  screening (anti-screening) of the core 
potential  of each particle by the others (look 
Refs. [2,3,7-10,33-35]). The calculation of all the 
radial integrals reduces to solving a system of dif-
ferential equations with known boundary condi-
tions at 0=r . Consider the master integral: 

1 1 2

12

− α α
r

sin (ωαs r12 ) ψα (r2) ψs (r1),                

(29)
for   D = DT, and      
- e2

8π ∫∫ dr1 dr2  ψα
+ (r1) ψs

+ (r2) {[(1- α1 n12⋅

⋅α2 n12 )/ r12 ] sin (ωαs r12 )+ωαs ⋅

(1+ α1 n12α2n12)×cos(ωαsr12)}ψα(r2)ψs(r1),                           

(30)
for D=DL , where ωαs is the α -s transition 
energy. According to the Grant theorem, the 
Dµν,L contribution vanishes, if  the  one-
quasiparticle  functions  ψα , ψs satisfy the 
same Dirac equation. Nevertheless this term 
is to be retained when using the distorted 
waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [2,3].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable. These 
approximations have been formulated in 
Refs.[10], where the polarization corrections 
to the state energies have been considered. 
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  The final 
expression for the sought value looks as  
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(31)       
Expression (31) can be represented in the 
form of sum of the following terms: 

( )smnmWsnnsWm αωωαα ±∑ 21
(32)

With four different combinations of operators 
W1 and W2 (see [7-10]).  In (31) it should be 
performed summation over the bound and 
upper continuum atomic states. To evaluate 
this  sum,  one can use the analytic relation  
between the atomic electron Fermi level  and  
the  core  electron  density ρ c (r), appropriate  
to the homogeneous   nonrelativistic  electron 
gas. Now the sum ∑n>f, m<f can be calculated 
analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [10]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [2,3]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im δEninv (b+c) leads to the 
integro-differential equation for the ρ c (the  
Dirac-like equations for electron density). In 
result we obtain the optimal one-quasiparticle 
representation. In concrete calculation it is 
sufficient to use the simplified procedure, 
which is reduced to functional minimization 
using the variation of the parameter b in 
Eq.(9) [2,10]. Let us further to come back to 
the complex  secular matrix M in the form:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + + (33)                                  

Here ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-
quasiparticle diagrams respectively. ( )0M is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. It is 
usually assumed ( )0 0.M = The diagonal 
matrix ( )1M can be presented as a sum of the 
independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have 
summarized  all the contributions of the one -
quasiparticle  diagrams of all orders of the 
formally exact relativistic PT. The first two 
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for D=DL , where ωαs is the α -s transition 
energy. According to the Grant theorem, the 
Dµν,L contribution vanishes, if  the  one-
quasiparticle  functions  ψα , ψs satisfy the 
same Dirac equation. Nevertheless this term 
is to be retained when using the distorted 
waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [2,3].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable. These 
approximations have been formulated in 
Refs.[10], where the polarization corrections 
to the state energies have been considered. 
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  The final 
expression for the sought value looks as  

)()()()(

))]})((1)]((cos[

)(sin[/)))(({[(

/)1)(()()()()1

1(
4

)|(Im

1243

3443433412

34123434434343

12214321

4321

2

rrrr

nnrr

rrrnn

rrrrr

drdrdrdrCeAsE

snm

nsm
mn

mn
dninv

n

nn

s

s

ΨΨΨΨ⋅

⋅++

⋅++⋅−

⋅−ΨΨΨΨ
−

+

+
+

−=

++++

∑∫∫∫ ∫

α

α

αα

α
α

α

ααω

ωωαααα

αα
ωω

ωωπ
α

(31)       
Expression (31) can be represented in the 
form of sum of the following terms: 

( )smnmWsnnsWm αωωαα ±∑ 21
(32)

With four different combinations of operators 
W1 and W2 (see [7-10]).  In (31) it should be 
performed summation over the bound and 
upper continuum atomic states. To evaluate 
this  sum,  one can use the analytic relation  
between the atomic electron Fermi level  and  
the  core  electron  density ρ c (r), appropriate  
to the homogeneous   nonrelativistic  electron 
gas. Now the sum ∑n>f, m<f can be calculated 
analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [10]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [2,3]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im δEninv (b+c) leads to the 
integro-differential equation for the ρ c (the  
Dirac-like equations for electron density). In 
result we obtain the optimal one-quasiparticle 
representation. In concrete calculation it is 
sufficient to use the simplified procedure, 
which is reduced to functional minimization 
using the variation of the parameter b in 
Eq.(9) [2,10]. Let us further to come back to 
the complex  secular matrix M in the form:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + + (33)                                  

Here ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-
quasiparticle diagrams respectively. ( )0M is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. It is 
usually assumed ( )0 0.M = The diagonal 
matrix ( )1M can be presented as a sum of the 
independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have 
summarized  all the contributions of the one -
quasiparticle  diagrams of all orders of the 
formally exact relativistic PT. The first two 

order corrections to ( )2Re M have been 
analyzed previously [2,5-9] using the 
Feynman diagrams technique. The 
contributions of the first-order diagrams have 
been completely calculated. In the second 
order, there are two kinds of diagrams: 
polarization and ladder ones.The polarization 
diagrams take into account the quasiparticle 
interaction through the polarizable core, and 
the ladder diagrams account for the 
immediate quasiparticle interaction. An 
effective form for the two-particle 
polarizable operator has been presented in 
Ref. [2]; it looks as:

( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ),

,

31)0(31)0(

31)0(

2

31)0(

1

31)0(

21

31)0(

21

∫

∫∫

∫

=







−′′
′′′′′′

′−
′′′

−







−
−′⋅′−

′′′
=

rrdr

rr
rrrd

rr
rrrd

rrrr
rrrdXrrV

cc

c
cc

cd
pol

θρρ

ρ
θρθρ

θρ

( ) ( )[ ] 21
232)0(231








⋅+= crr cρπθ ,

(34)
where 0

cρ is the core electron density 
(without account for the quasiparticle), X is 
numerical coefficient, c is the light velocity. 
The similar approximate potential 
representation has been received for the 
exchange polarization interaction of 
quasiparticles. Some of the ladder diagram 
contributions as well as some of the three-
quasiparticle diagram contributions in all PT 
orders have the same angular symmetry as 
the two-quasiparticle diagram contributions 
of the first order. These contributions have 
been summarized by a modification of the 
central  potential, which  must now include 
the  screening (anti-screening) of the core 
potential  of each particle by the others (look 
Refs. [2,3,7-10,33-35]). The calculation of all 
the radial integrals reduces to solving a 
system of differential equations with known 
boundary conditions at 0=r . Consider the 
master integral:
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which enter the polarization contribution.
This is the most complicated integral of a 
task. Let us note: )(lim rYR

r

d

∞→
= . According

to [9], function )(rY can be found from
solution of system of six differential 
equations with the boundary conditions: 

rYZrY /))1(( 1
)1(2

1
/

1 +−= λρ λ ,

rYZrY /))1(( 2
)1(2

2
/

2 +−= λρ λ ,

                                        rYZZrY c /))12(( 3
)1()1(23/1/

3 +−= λρ λλ ,

rYZZYYrY c /))1((( 4
)2()1(

2
3/1

3
2

2
/

4 +−+= λρρ λλ ,

rYZZYYrY c /))1((( 5
)2()1(

1
3/1

3
2

1
/

5 +−+= λρρ λλ ,

)2()2(
21

23/1
5

2
24

2
1

/ )()( λλρρρ ZZYYrYrYrrY c++= .

(36)
A complete system of equations also includes 
equations for the modified Bessel functions
Z(i) and for 1QP radial functions (see [2-8]).

3 Some illustration results and conclusion

In table 1 we present the experimental [8,32-
25] an theoretical (our test calculation) 
results for hyperfine splitting energies  for 1s, 
2s levels of hydrogen atom. There is 
physically reasonable agreement between 
theory and experiment. 

Table 1. Experimental and theoretical data 
for HFS energies for 1s, 2s H-atom levels

Electron 
term 

Quantum 
numbers of 

total 
moment

Experiment
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

Theory [13]
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

1s 2S1/2
(1,0)

1420,406
47, 379

1419,685
47, 355

2s 2S1/2
(1,0)

177,557
5, 923

177,480
5, 920

In table 2 there are listed the results of  
calculation for the hyperfine structure 
parameters (plus derivatives of the energy 
contribution on nuclear radius) for the 
superheavy H-like ion with nuclear charge 
Z=170. We have used the denotations [7,8]:
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A complete system of equations also includes 

equations for the modified Bessel functions Z(i) 
and for 1QP  radial functions (see [2-8]).

3 Some illustration results and conclusion

In table 1 we present the experimental [8,32-
25] an theoretical (our test calculation) results for 
hyperfine splitting energies  for 1s, 2s levels of 
hydrogen atom. There is physically reasonable 
agreement between theory and experiment. 

Table 1 
Experimental and theoretical data  for 

HFS energies for 1s, 2s H-atom levels

Electron 
term 

Quantum 
numbers of 
total moment

Experiment
Dn(F,F’), 
MHz

DE(F,F’), 
10-3 cm-1 

Theory 
[13]

Dn(F,F’), 
MHz

DE(F,F’), 
10-3 cm-1

1s 2S1/2  (1,0) 1420,406
47, 379

1419,685
47, 355

2s 2S1/2  (1,0) 177,557
5, 923

177,480
5, 920

In table 2 there are listed the results of  calcu-
lation for the hyperfine structure parameters (plus 
derivatives of the energy contribution on nuclear 
radius) for the superheavy H-like ion with nuclear 
charge Z=170. We have used the denotations [7,8]:   

Table 2
Parameters of one-electron states for H-like 

ion with Z=170 (data from [8,35])

1s1/2 2s1/2 2p1/2 2p3/2

A 4337 831 3867 1,59
DA 1039 228 941 0,0001
B 9091 1897 8067 0,07

DB 7245 1557 6405 0,0008
DV 1255 273 1108 0,0011
U 1453 282 1301 1,31

DU 2343 503 2071 0,0015
1s1/2 3s 1/2 3p1/2 3p3/2

A 4337 207 322 0,615
DA 1039 56,8 84,0 0,0001
B 9091 475 707 0,04

DB 7245 395 574 0,0003
DV 1255 67,7 98,3 0,0005
U 1453 69,3 109 0,62

DU 2343 127 185 0,0007

In table 3 there are listed the nuclear corrections 
into energy of the low transitions for Li-like ions. 

order corrections to ( )2Re M have been 
analyzed previously [2,5-9] using the 
Feynman diagrams technique. The 
contributions of the first-order diagrams have 
been completely calculated. In the second 
order, there are two kinds of diagrams: 
polarization and ladder ones.The polarization 
diagrams take into account the quasiparticle 
interaction through the polarizable core, and 
the ladder diagrams account for the 
immediate quasiparticle interaction. An 
effective form for the two-particle 
polarizable operator has been presented in 
Ref. [2]; it looks as:
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(34)
where 0

cρ is the core electron density 
(without account for the quasiparticle), X is 
numerical coefficient, c is the light velocity. 
The similar approximate potential 
representation has been received for the 
exchange polarization interaction of 
quasiparticles. Some of the ladder diagram 
contributions as well as some of the three-
quasiparticle diagram contributions in all PT 
orders have the same angular symmetry as 
the two-quasiparticle diagram contributions 
of the first order. These contributions have 
been summarized by a modification of the 
central  potential, which  must now include 
the  screening (anti-screening) of the core 
potential  of each particle by the others (look 
Refs. [2,3,7-10,33-35]). The calculation of all 
the radial integrals reduces to solving a 
system of differential equations with known 
boundary conditions at 0=r . Consider the 
master integral:
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which enter the polarization contribution.
This is the most complicated integral of a 
task. Let us note: )(lim rYR
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= . According

to [9], function )(rY can be found from
solution of system of six differential 
equations with the boundary conditions: 
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A complete system of equations also includes 
equations for the modified Bessel functions
Z(i) and for 1QP radial functions (see [2-8]).

3 Some illustration results and conclusion

In table 1 we present the experimental [8,32-
25] an theoretical (our test calculation) 
results for hyperfine splitting energies  for 1s, 
2s levels of hydrogen atom. There is 
physically reasonable agreement between 
theory and experiment. 

Table 1. Experimental and theoretical data 
for HFS energies for 1s, 2s H-atom levels

Electron 
term 

Quantum 
numbers of 

total 
moment

Experiment
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

Theory [13]
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

1s 2S1/2
(1,0)

1420,406
47, 379

1419,685
47, 355

2s 2S1/2
(1,0)

177,557
5, 923

177,480
5, 920

In table 2 there are listed the results of  
calculation for the hyperfine structure 
parameters (plus derivatives of the energy 
contribution on nuclear radius) for the 
superheavy H-like ion with nuclear charge 
Z=170. We have used the denotations [7,8]:

order corrections to ( )2Re M have been 
analyzed previously [2,5-9] using the 
Feynman diagrams technique. The 
contributions of the first-order diagrams have 
been completely calculated. In the second 
order, there are two kinds of diagrams: 
polarization and ladder ones.The polarization 
diagrams take into account the quasiparticle 
interaction through the polarizable core, and 
the ladder diagrams account for the 
immediate quasiparticle interaction. An 
effective form for the two-particle 
polarizable operator has been presented in 
Ref. [2]; it looks as:
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where 0

cρ is the core electron density 
(without account for the quasiparticle), X is 
numerical coefficient, c is the light velocity. 
The similar approximate potential 
representation has been received for the 
exchange polarization interaction of 
quasiparticles. Some of the ladder diagram 
contributions as well as some of the three-
quasiparticle diagram contributions in all PT 
orders have the same angular symmetry as 
the two-quasiparticle diagram contributions 
of the first order. These contributions have 
been summarized by a modification of the 
central  potential, which  must now include 
the  screening (anti-screening) of the core 
potential  of each particle by the others (look 
Refs. [2,3,7-10,33-35]). The calculation of all 
the radial integrals reduces to solving a 
system of differential equations with known 
boundary conditions at 0=r . Consider the 
master integral:
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which enter the polarization contribution.
This is the most complicated integral of a 
task. Let us note: )(lim rYR
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to [9], function )(rY can be found from
solution of system of six differential 
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A complete system of equations also includes 
equations for the modified Bessel functions
Z(i) and for 1QP radial functions (see [2-8]).

3 Some illustration results and conclusion

In table 1 we present the experimental [8,32-
25] an theoretical (our test calculation) 
results for hyperfine splitting energies  for 1s, 
2s levels of hydrogen atom. There is 
physically reasonable agreement between 
theory and experiment. 

Table 1. Experimental and theoretical data 
for HFS energies for 1s, 2s H-atom levels

Electron 
term 

Quantum 
numbers of 

total 
moment

Experiment
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

Theory [13]
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

1s 2S1/2
(1,0)

1420,406
47, 379

1419,685
47, 355

2s 2S1/2
(1,0)

177,557
5, 923

177,480
5, 920

In table 2 there are listed the results of  
calculation for the hyperfine structure 
parameters (plus derivatives of the energy 
contribution on nuclear radius) for the 
superheavy H-like ion with nuclear charge 
Z=170. We have used the denotations [7,8]:

A=108A/Z3gI,(eV);

DA=(10-2/Z4gI)(∂A/∂R), (eV/cm);

B=(107BI(2I-1))/Z3Q, (eV/Barn);

DB=[(10-3I(2I-1))/Z4Q](∂B/∂R), (eV/Barn cm);                          

U=-(104/Z4)<U(r,R)>, (eV);

DU=(10-1/Z5)(∂<U(r,R)>/∂R), (eV/cm);.

DV=[10-8/Z3](∂<V>/∂R), (eV/cm);

Table 2. Parameters of one-electron states for 
H-like ion with Z=170 (data from [8,35])

1s1/2 2s1/2 2p1/2 2p3/2
A 4337 831 3867 1,59

DA 1039 228 941 0,0001
B 9091 1897 8067 0,07

DB 7245 1557 6405 0,0008
DV 1255 273 1108 0,0011
U 1453 282 1301 1,31

DU 2343 503 2071 0,0015
1s1/2 3s 1/2 3p1/2 3p3/2

A 4337 207 322 0,615
DA 1039 56,8 84,0 0,0001
B 9091 475 707 0,04

DB 7245 395 574 0,0003
DV 1255 67,7 98,3 0,0005
U 1453 69,3 109 0,62

DU 2343 127 185 0,0007

In table 3 there are listed the nuclear 
corrections into energy of the low transitions 
for Li-like ions. 
Table 3. Nuclear finite size corrections into 

energy  (сm –1)  for Li-like ions and values of 
the effective radius of nucleus (10 –13 cm)

Z 2s1/2-2p1/2 2s1/2-2p3/2 R
20 - 15,1 - 15,5 3,26
41 - 659,0 - 670,0 4,14
69 - 20 690,0 - 21 712,0 4,93
79 - 62 315,0 - 66 931,0 5,15
92 - 267 325,0 - 288 312,0 5,42

The calculation showed also that a variation 
of the nuclear radius on several persents 
could lead to changing the transition energies 

on dozens of thousands 103cm-1 . In [8,32,35]
there are listed the results of  calculating the 
constants of the hyperfine interaction: the 
electric quadruple constant B, the magnetic 
dipole constant A with inclusion of nuclear 
finiteness and the Uehling-Serber potential 
for some Li-like ions. In table 4 data on the 
HFS constants for lowest excited states of  
Li-like ions are listed. Similar data for other 
states were listed earlier (see ref. [8,32,34]),
but there another model for a charge 
distribution in a nucleus and method of 
treating the QED corrections were used.
Table 4. Constants of the hyperfine electron-

nuclear interaction: A=Z3gI A cm-1,
B= B

II
QZ

)12(

3

−
cm-1 

nlj Z 20 79 92
2s A 93 –03 215 -02 314 -02
3s A 26 –03 63 –03 90 –03

2p1/2 A 25 –03 71 –03 105 –02
3p1/2 A 81 –04 20 –03 31 –03
2p3/2 A 50 –04 71 –04 72 –04

B 9 –04 15 –04 17 –04
3p3/2 A 13 –04 21 –04 22 –04

B 31 –05 55–05 62 –05
3d3/2 A 88 –05 11 –04 12 –04

B 51 –06 10 –05 11 –05
3d5/2 A 36 –05 50 –05 52 –05

B 21 –06 39 –06 40 –06
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The calculation showed also that a variation 
of the nuclear radius on several persents could 
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ens of thousands 103cm-1 . In [8,32,35] there are 
listed the results of  calculating the constants of 
the hyperfine interaction: the electric quadruple 
constant B, the magnetic dipole constant A with 
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4 data on the HFS constants for lowest excited 
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but there another model for a charge distribution 
in a nucleus and method of treating the QED cor-
rections were used.
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GAUGE-INVARIANT RELATIVISTIC PERTURBATION THEORY APPROACH TO 
DETERMINATION OF ENERGY and SPECTRAL CHARACTERISTICS FOR HEAVY 

AND SUPERHEAVY ATOMS AND IONS: REVIEW

Summary
We reviewed an effective consistent ab initio approach to relativistic calculation of the spectra for 

multi-electron heavy and superheavy ions with an account of relativistic, correlation, nuclear, radia-
tive effects is presented. The method is  based on the relativistic gauge-invariant (approximation to 
QED) perturbation theory (PT) and generalized effective field nuclear model with using the optimized 
one-quasiparticle  representation firstly in theory of the hyperfine structure for relativistic atom. The 
wave function zeroth basis is found from the Dirac equation with potential, which includes the core ab 
initio potential, the electric and polarization potentials of a nucleus. The correlation corrections of the 
high orders are taken into account within the Green functions method (with the use of the Feynman 
diagram’s technique). There have taken into account all correlation corrections of the second order 
and dominated classes of the higher orders diagrams (electrons screening, particle-hole interaction, 
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mass operator iterations). The magnetic inter-electron interaction is accounted in the lowest on a pa-
rameter (a is the fine structure constant), approximation, the self-energy part of the Lamb shift is taken 
effectively into consideration within the Ivanov-Ivanova non-perturbative procedure, the Lamb shift 
polarization part - in the generalized Uehling-Serber approximation with accounting for the  Källen-
Sabry  a2(aZ) and Wichmann-Kroll a(aZ)n corrections.

Keywords: Relativistic perturbation theory, Heavy ions, Relativistic energy formalism

УДК 539.182

А. В. Глушков, В. Б. Терновский,  А. В. Смирнов,  А. А. Свинаренко

МЕТОД КАЛИБРОВОЧНО-ИНВАРИАНТНОЙ РЕЛЯТИВИСТСКОЙ ТЕОРИИ 
ВОЗМУЩЕНИЙ  К ОПРЕДЕЛЕНИЮ ЭНЕРГЕТИЧЕСКИХ И СПЕКТРАЛЬНЫХ 

ХАРАКТЕРИСТИК ТЯЖЕЛЫХ И СВЕРХТЯЖЕЛЫХ АТОМОВ И ИОНОВ: ОБЗОР

Резюме
В работе обзорно изложены основы эффективного, последовательного ab initio подхода к 

релятивистскому вычислению спектров многоэлектронных тяжелых и сверхтяжелых ионов 
с учетом релятивистских, корреляционных, ядерных, радиационных эффектов. Метод осно-
ван на релятивистской калибровочно-инвариантной (КЭД) теории возмущений, обобщенной 
эффективной полевой модели  ядра с использованием оптимизированного одноквазичастич-
ного представления впервые в теории сверхтонкой структуры cпектра релятивистского атома. 
Базис волновых функций нулевого приближения определяется решениями Dirac уравнения с 
потенциалом, который включает в ​​себя самосогласованный ab initio электронный потенциал, 
электрический и поляризационный потенциалы ядра. Корреляционные поправки высших по-
рядков учитываются в рамках метода функций Грина (с использованием техники диаграмм 
Feynman). Учтены все корреляционные поправки второго порядка и доминирующие классы 
диаграмм высших порядков (экранирование электронов, взаимодействие частицы с дыркой, 
итерации массового оператора). Магнитное межэлектронное взаимодействие учитывается в 
низшем по параметру a (a - постоянная тонкой структуры)приближении, собственно-энерге-
тическая часть лэмбовского сдвига эффективно учитывается в рамках обобщенной непертур-
бативной процедуры Ivanov-Ivanova,  эффект поляризации вакуума лэмбовского сдвига  - в 
приближении Uehling-Serber с учетом поправок Källen-Sabry a2(aZ) и  Wichmann-Kroll a(aZ)n 

(Z – заряд ядра).
Ключевые слова: Калибровочно-инвариантная релятивистская теория возмущений, Тяже-

лые ионы, Релятивистский энергетический формализм

УДК 539.182

О. В. Глушков, В. Б. Терновський,  А. В. Смірнов, А. А. Свинаренко

МЕТОД КАЛІБРУВАЛЬНО-ІНВАРІАНТНОЇ РЕЛЯТИВІСТСЬКОЇ ТЕОРІЇ ЗБУРЕНЬ 
ДО ВИЗНАЧЕННЯ ЕНЕРГЕТИЧНИХ І СПЕКТРАЛЬНИХ ХАРАКТЕРИСТИК 

ВАЖКИХ І НАДВАЖКИХ АТОМІВ ТА ИОНОВ: ОГЛЯД

Резюме
В роботі оглядово викладені основи ефективного, послідовного ab initio підходу до реля-

тивістського обчислення спектрів багатоелектронних важких і надважких іонів з урахуванням 
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релятивістських, кореляційних, ядерних, радіаційних ефектів. Метод заснований на реляти-
вістської калібрувально-інваріантної (КЕД) теорії збурень, узагальненої ефективної польової 
моделі ядра з використанням оптимізованого одноквазічастинкового представлення  вперше 
в теорії надтонкої структури спектру релятивістського атома. Базис хвильових функцій нульо-
вого наближення визначається рішеннями Dirac рівняння з потенціалом, який включає в себе 
самоузгоджений ab initio електронний потенціал, електричний і поляризаційний потенціали 
ядра. Кореляційні поправки вищих порядків враховуються в рамках методу функцій Гріна (з 
використанням техніки діаграм Feynman). Враховано всі кореляційні поправки другого поряд-
ку і домінуючі класи діаграм вищих порядків (екранування електронів, взаємодія частинки з 
діркою, ітерації масового оператора). Магнітна міжелектронна взаємодія враховується в ниж-
чому за параметром a (a - стала тонкої структури) наближенні, власне-енергетична частина 
лембовського зсуву ефективно враховується в рамках узагальненої непертурбативної проце-
дури Ivanov-Ivanova, ефект поляризації вакууму лембовського зсуву - в наближенні Uehling-
Serber з урахуванням поправок Källen-Sabry a2(aZ) та  Wichmann-Kroll a(aZ)n (Z – заряд ядра).

Ключові слова: Калібрувально-інваріантна релятивістська теорія збурень, Важкі іони, Ре-
лятивістський енергетичний формалізм
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NEW NONLINEAR CHAOS-DYNAMICAL ANALYSIS OF ATMOSPHERIC RADON 222RN  
CONCENTRATION TIME SERIES FROM  BETA PARTICLES ACTIVITY DATA OF 

RADON MONITORS

The work is devoted to the development of the theoretical foundations of new  universal  complex chaos-dynamical 
approach to analysis and prediction of the atmospheric radon 222Rn  concentration changing from  beta particles activity 
data of radon monitors (with pair of the Geiger-Müller counters). The approach presented consistently includes a number 
of  new or improved methods of analysis (correlation integral, fractal analysis, algorithms of average mutual information, 
false nearest neighbors, Lyapunov exponents, surrogate data, non-linear prediction schemes, spectral methods, etc.) to solve 
problems quantitatively complete modeling and analysis of temporal evolution of the atmospheric radon 222Rn  concentra-
tion . There are firstly received data on topological and dynamical invariants for the time series of the 222Rn  concentration, 
discovered a deterministic chaos  phenomenon using detailed data of measurements of the radon concentrations at SMEAR 
II station of the Finnish Meteorological Institute.

1. Introduction

At present time one of the extremely important 
and too complex areas of elements, systems and 
devices physics and sensor electronics is study of 
regular and chaotic dynamics dynamics of non-
linear processes in the different classes of quan-
tum, quantum-generating systems and devices 
and quantum (atomic-molecular systems in an ex-
ternal electromagnetic field) [1-20]. It is worth to 
mention fulfilled by our group numerous study-
ing of dynamics of the different quantum systems 
in external electromagnetic field, which has the 
features of the random, stochastic kind and its re-
alization does not require the specific conditions. 

The importance of studying a phenomenon of 
stochasticity or quantum chaos in dynamical sys-
tems is provided by a whole number of technical 
applications, including a necessity of understand-
ing chaotic features in a work of different elec-
tronic devices and systems. New field of inves-
tigations of the quantum and other systems has 
been provided by a great progress in a develop-
ment of a chaos theory methods [1-12]. In pre-
vious our papers [5-20] we have given a review 
of new methods and algorythms to analysis of 
different systems of quantum physics, electron-
ics and photonics and used the nonlinear method 

of chaos theory and the recurrence spectra for-
malism to study quantum stochastic futures and 
chaotic elements in dynamics of atomic, mo-
lecular, nuclear systems in an free state and an 
external electromagnetic field,  atmospheric and 
even environmental systems [21-71].  There were 
discovered non-trivial manifestations of a chaos 
phenomenon. 

The work is devoted to the development of the 
theoretical foundations of new  universal  com-
plex chaos-dynamical approach to analysis and 
prediction of the atmospheric radon 222Rn  con-
centration changing from  beta particles activity 
data of radon monitors (with pair of the Geiger-
Müller counters). The approach presented con-
sistently includes a number of  new or improved 
methods of analysis (correlation integral, fractal 
analysis, algorithms, average mutual information, 
false nearest neighbors, Lyapunov exponents, 
surrogate data, non-linear prediction, spectral 
methods, etc.) to solve problems quantitatively 
complete modeling and analysis of temporal evo-
lution of the atmospheric radon 222Rn  concentra-
tion . There are firstly received data on topological 
and dynamical invariants for the time series of the 
222Rn  concentration, discovered a deterministic 
chaos  phenomenon using detailed data of mea-
surements of the radon concentrations at SMEAR 
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II station of the Finnish Meteorological Institute 
(see details in Refs. [72-75]).

2. Universal chaos-dynamical approach in 
analysis of chaotic dynamics of the radon con-
centration time series 

As many blocks of the presented approach 
have been developed earlier and are needed 
only to be reformulated regarding the problem 
studied in this paper,  here we are limited only 
by the key moments following to Refs. [5-20]. 
Let us formally consider scalar measurements 
s(n) = s(t0 + nDt) = s(n), where t0 is the start time, 
Dt is the time step, and is n the number of the mea-
surements. Further it is necessary to reconstruct 
phase space using as well as possible informa-
tion contained in the s(n).  Such a reconstruction 
results in a certain set of d-dimensional vectors 
y(n) replacing the scalar measurements. Packard 
et al.  introduced the method of using time-delay 
coordinates to reconstruct the phase space of an 
observed dynamical system. The direct use of the 
lagged variables s(n + t), where t is some integer 
to be determined, results in a coordinate system in 
which the structure of orbits in phase space can be 
captured. Then using a collection of time lags to 
create a vector in d dimensions,

(1)

the required coordinates are provided. In a non-
linear system, the s(n  +  jt) are some unknown 
nonlinear combination of the actual physical vari-
ables that comprise the source of the measure-
ments. The dimension d is called the embedding 
dimension, dE. Aany time lag will be acceptable 
is not terribly useful for extracting physics from 
data. If t is chosen too small, then the coordinates 
s(n + jt) and s(n + (j + 1)t) are so close to each 
other in numerical value that they cannot be dis-
tinguished from each other. Similarly, if t is too 
large, then s(n + jt) and s(n + (j + 1)t) are com-
pletely independent of each other in a statistical 
sense. Also, if t is too small or too large, then the 
correlation dimension of attractor can be under- 
or overestimated respectively [3]. It is therefore 
necessary to choose some intermediate (and more 

appropriate) position between above cases. First 
approach is to compute the linear autocorrelation 
function
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and to look for that time lag where CL(d) first 
passes through zero. This gives a good hint of 
choice for t at that s(n + jt) and s(n + (j + 1)t) 
are linearly independent. However, a linear in-
dependence of two variables does not mean that 
these variables are nonlinearly independent since 
a nonlinear relationship can differs from linear 
one. It is therefore preferably to utilize approach 
with a nonlinear concept of independence, e.g. 
the average mutual information. Briefly, the con-
cept of mutual information can be described as 
follows. Let there are two systems, A and B, with 
measurements ai and bk. The amount one learns in 
bits about a measurement of ai from measurement 
of bk is given by arguments of information theory 
[2,8,9] 
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where the probability of observing a out of the set 
of all A is PA(ai), and the probability of finding b 
in a measurement B is PB(bi), and the joint prob-
ability of the measurement of a and b is PAB(ai, bk). 
The mutual information I of two measurements ai 
and bk is symmetric and non-negative, and equals 
to zero if only the systems are independent. The 
average mutual information between any value ai 
from system A and bk from B is the average over 
all possible measurements of IAB(ai, bk),
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To place this definition to a context of observa-
tions from a certain physical system, let us think 
of the sets of measurements s(n) as the A and of 
the measurements a time lag t later, s(n + t), as 

logical Institute (see details in Refs. [72-75]). 
2. Universal chaos-dynamical approach in 
analysis of chaotic dynamics of the radon 

concentration time series  
 
As many blocks of the presented approach 
have been developed earlier and are needed 
only to be reformulated regarding the prob-
lem studied in this paper,  here we are limited 
only by the key moments following to Refs. 
[5-20]. Let us formally consider scalar mea-
surements s(n) = s(t0 + nt) = s(n), where t0 is 
the start time, t is the time step, and is n the 
number of the measurements. Further it is ne-
cessary to reconstruct phase space using as 
well as possible information contained in the 
s(n).  Such a reconstruction results in a cer-
tain set of d-dimensional vectors y(n) replac-
ing the scalar measurements. Packard et al.  
introduced the method of using time-delay 
coordinates to reconstruct the phase space of 
an observed dynamical system. The direct use 
of the lagged variables s(n + ), where  is 
some integer to be determined, results in a 
coordinate system in which the structure of 
orbits in phase space can be captured. Then 
using a collection of time lags to create a vec-
tor in d dimensions, 
 

y(n) = [s(n), s(n + ), s(n + 2), …,      
                  s(n + (d1))],                  (1) 

the required coordinates are provided. In a 
nonlinear system, the s(n + j) are some un-
known nonlinear combination of the actual 
physical variables that comprise the source of 
the measurements. The dimension d is called 
the embedding dimension, dE. Aany time lag 
will be acceptable is not terribly useful for 
extracting physics from data. If  is chosen 
too small, then the coordinates s(n + j) and 
s(n + (j + 1)) are so close to each other in 
numerical value that they cannot be distin-
guished from each other. Similarly, if  is too 
large, then s(n + j) and s(n + (j + 1)) are 
completely independent of each other in a 
statistical sense. Also, if  is too small or too 
large, then the correlation dimension of at-
tractor can be under- or overestimated respec-
tively [3]. It is therefore necessary to choose 
some intermediate (and more appropriate) 

position between above cases. First approach 
is to compute the linear autocorrelation func-
tion 
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and to look for that time lag where CL() first 
passes through zero. This gives a good hint of 
choice for  at that s(n + j) and 
s(n + (j + 1)) are linearly independent. How-
ever, a linear independence of two variables 
does not mean that these variables are nonli-
nearly independent since a nonlinear relation-
ship can differs from linear one. It is there-
fore preferably to utilize approach with a 
nonlinear concept of independence, e.g. the 
average mutual information. Briefly, the con-
cept of mutual information can be described 
as follows. Let there are two systems, A and 
B, with measurements ai and bk. The amount 
one learns in bits about a measurement of ai 
from measurement of bk is given by argu-
ments of information theory [2,8,9]  
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where the probability of observing a out of 
the set of all A is PA(ai), and the probability 
of finding b in a measurement B is PB(bi), and 
the joint probability of the measurement of a 
and b is PAB(ai, bk). The mutual information I 
of two measurements ai and bk is symmetric 
and non-negative, and equals to zero if only 
the systems are independent. The average 
mutual information between any value ai 
from system A and bk from B is the average 
over all possible measurements of IAB(ai, bk), 
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To place this definition to a context of obser-
vations from a certain physical system, let us 
think of the sets of measurements s(n) as the 

logical Institute (see details in Refs. [72-75]). 
2. Universal chaos-dynamical approach in 
analysis of chaotic dynamics of the radon 

concentration time series  
 
As many blocks of the presented approach 
have been developed earlier and are needed 
only to be reformulated regarding the prob-
lem studied in this paper,  here we are limited 
only by the key moments following to Refs. 
[5-20]. Let us formally consider scalar mea-
surements s(n) = s(t0 + nt) = s(n), where t0 is 
the start time, t is the time step, and is n the 
number of the measurements. Further it is ne-
cessary to reconstruct phase space using as 
well as possible information contained in the 
s(n).  Such a reconstruction results in a cer-
tain set of d-dimensional vectors y(n) replac-
ing the scalar measurements. Packard et al.  
introduced the method of using time-delay 
coordinates to reconstruct the phase space of 
an observed dynamical system. The direct use 
of the lagged variables s(n + ), where  is 
some integer to be determined, results in a 
coordinate system in which the structure of 
orbits in phase space can be captured. Then 
using a collection of time lags to create a vec-
tor in d dimensions, 
 

y(n) = [s(n), s(n + ), s(n + 2), …,      
                  s(n + (d1))],                  (1) 

the required coordinates are provided. In a 
nonlinear system, the s(n + j) are some un-
known nonlinear combination of the actual 
physical variables that comprise the source of 
the measurements. The dimension d is called 
the embedding dimension, dE. Aany time lag 
will be acceptable is not terribly useful for 
extracting physics from data. If  is chosen 
too small, then the coordinates s(n + j) and 
s(n + (j + 1)) are so close to each other in 
numerical value that they cannot be distin-
guished from each other. Similarly, if  is too 
large, then s(n + j) and s(n + (j + 1)) are 
completely independent of each other in a 
statistical sense. Also, if  is too small or too 
large, then the correlation dimension of at-
tractor can be under- or overestimated respec-
tively [3]. It is therefore necessary to choose 
some intermediate (and more appropriate) 

position between above cases. First approach 
is to compute the linear autocorrelation func-
tion 
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and to look for that time lag where CL() first 
passes through zero. This gives a good hint of 
choice for  at that s(n + j) and 
s(n + (j + 1)) are linearly independent. How-
ever, a linear independence of two variables 
does not mean that these variables are nonli-
nearly independent since a nonlinear relation-
ship can differs from linear one. It is there-
fore preferably to utilize approach with a 
nonlinear concept of independence, e.g. the 
average mutual information. Briefly, the con-
cept of mutual information can be described 
as follows. Let there are two systems, A and 
B, with measurements ai and bk. The amount 
one learns in bits about a measurement of ai 
from measurement of bk is given by argu-
ments of information theory [2,8,9]  
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where the probability of observing a out of 
the set of all A is PA(ai), and the probability 
of finding b in a measurement B is PB(bi), and 
the joint probability of the measurement of a 
and b is PAB(ai, bk). The mutual information I 
of two measurements ai and bk is symmetric 
and non-negative, and equals to zero if only 
the systems are independent. The average 
mutual information between any value ai 
from system A and bk from B is the average 
over all possible measurements of IAB(ai, bk), 
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To place this definition to a context of obser-
vations from a certain physical system, let us 
think of the sets of measurements s(n) as the 

logical Institute (see details in Refs. [72-75]). 
2. Universal chaos-dynamical approach in 
analysis of chaotic dynamics of the radon 

concentration time series  
 
As many blocks of the presented approach 
have been developed earlier and are needed 
only to be reformulated regarding the prob-
lem studied in this paper,  here we are limited 
only by the key moments following to Refs. 
[5-20]. Let us formally consider scalar mea-
surements s(n) = s(t0 + nt) = s(n), where t0 is 
the start time, t is the time step, and is n the 
number of the measurements. Further it is ne-
cessary to reconstruct phase space using as 
well as possible information contained in the 
s(n).  Such a reconstruction results in a cer-
tain set of d-dimensional vectors y(n) replac-
ing the scalar measurements. Packard et al.  
introduced the method of using time-delay 
coordinates to reconstruct the phase space of 
an observed dynamical system. The direct use 
of the lagged variables s(n + ), where  is 
some integer to be determined, results in a 
coordinate system in which the structure of 
orbits in phase space can be captured. Then 
using a collection of time lags to create a vec-
tor in d dimensions, 
 

y(n) = [s(n), s(n + ), s(n + 2), …,      
                  s(n + (d1))],                  (1) 

the required coordinates are provided. In a 
nonlinear system, the s(n + j) are some un-
known nonlinear combination of the actual 
physical variables that comprise the source of 
the measurements. The dimension d is called 
the embedding dimension, dE. Aany time lag 
will be acceptable is not terribly useful for 
extracting physics from data. If  is chosen 
too small, then the coordinates s(n + j) and 
s(n + (j + 1)) are so close to each other in 
numerical value that they cannot be distin-
guished from each other. Similarly, if  is too 
large, then s(n + j) and s(n + (j + 1)) are 
completely independent of each other in a 
statistical sense. Also, if  is too small or too 
large, then the correlation dimension of at-
tractor can be under- or overestimated respec-
tively [3]. It is therefore necessary to choose 
some intermediate (and more appropriate) 

position between above cases. First approach 
is to compute the linear autocorrelation func-
tion 
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and to look for that time lag where CL() first 
passes through zero. This gives a good hint of 
choice for  at that s(n + j) and 
s(n + (j + 1)) are linearly independent. How-
ever, a linear independence of two variables 
does not mean that these variables are nonli-
nearly independent since a nonlinear relation-
ship can differs from linear one. It is there-
fore preferably to utilize approach with a 
nonlinear concept of independence, e.g. the 
average mutual information. Briefly, the con-
cept of mutual information can be described 
as follows. Let there are two systems, A and 
B, with measurements ai and bk. The amount 
one learns in bits about a measurement of ai 
from measurement of bk is given by argu-
ments of information theory [2,8,9]  
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where the probability of observing a out of 
the set of all A is PA(ai), and the probability 
of finding b in a measurement B is PB(bi), and 
the joint probability of the measurement of a 
and b is PAB(ai, bk). The mutual information I 
of two measurements ai and bk is symmetric 
and non-negative, and equals to zero if only 
the systems are independent. The average 
mutual information between any value ai 
from system A and bk from B is the average 
over all possible measurements of IAB(ai, bk), 
  

                                                                  

          


ki ba
kiABkiABAB baIbaPI

,
),(),()(
    (4)                                                                    

To place this definition to a context of obser-
vations from a certain physical system, let us 
think of the sets of measurements s(n) as the 
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B set. The average mutual information between 
observations at n and n + t is then  
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Now we have to decide what property of I(t) we 
should select, in order to establish which among 
the various values of t we should use in making 
the data vectors y(n). One could remind that the 
autocorrelation function and average mutual in-
formation can be  considered as analogues of the 
linear redundancy and general redundancy, re-
spectively, which was applied in the test for non-
linearity. The general redundancies detect all de-
pendences in the time series, while the linear 
redundancies are sensitive only to linear struc-
tures. Further, a possible nonlinear nature of pro-
cess resulting in the vibrations amplitude level 
variations can be concluded. 

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded 
without ambiguity. In accordance with the em-
bedding theorem, the embedding dimension, dE, 
must be greater, or at least equal, than a dimen-
sion of attractor, dA, i.e. dE > dA. However, two 
problems arise with working in dimensions larger 
than really required by the data and time-delay 
embedding [1-20]. First, many of computations 
for extracting interesting properties from the data 
require searches and other operations in Rd whose 
computational cost rises exponentially with d. 
Second, but more significant from the physical 
point of view, in the presence of noise or other 
high dimensional contamination of the observa-
tions, the extra dimensions are not populated by 
dynamics, already captured by a smaller dimen-
sion, but entirely by the contaminating signal. In 
too large an embedding space one is unnecessar-
ily spending time working around aspects of a 
bad representation of the observations which are 
solely filled with noise. It is therefore necessary 
to determine the dimension dA. There are several 
standard approaches to reconstruct the attractor 
dimension (see, e.g., [1-9]), but let us consider in 
this study two methods only. The correlation inte-
gral analysis is one of the widely used techniques 
to investigate the signatures of chaos in a time 

series. The analysis uses the correlation integral, 
C(r), to distinguish between chaotic and stochas-
tic systems. To compute the correlation integral, 
the algorithm of Grassberger and Procaccia is the 
most commonly used approach. According to this 
algorithm, the correlation integral is 
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where H is the Heaviside step function with 
H(u) = 1 for u > 0 and H(u) = 0 for u ≤ 0, r is the 
radius of sphere centered on yi or yj, and N is the 
number of data measurements. If the time series 
is characterized by an attractor, then the integral 
C(r) is related to the radius r given by
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where d is correlation exponent that can be de-
termined as the slop of line in the coordinates 
log  C(r) versus log  r by a least-squares fit of a 
straight line over a certain range of r, called the 
scaling region. 

If the correlation exponent attains saturation 
with an increase in the embedding dimension, 
then the system is generally considered to exhibit 
chaotic dynamics. The saturation value of the cor-
relation exponent is defined as the correlation di-
mension (d2) of the attractor. The method of sur-
rogate data [1,8,9] is an approach that makes use 
of the substitute data generated in accordance to 
the probabilistic structure underlying the original 
data. 

Often, a significant difference in the estimates 
of the correlation exponents, between the origi-
nal and surrogate data sets, can be observed. In 
the case of the original data, a saturation of the 
correlation exponent is observed after a certain 
embedding dimension value (i.e., 6), whereas the 
correlation exponents computed for the surrogate 
data sets continue increasing with the increasing 
embedding dimension. It is worth consider an-
other method for determining dE that comes from 
asking the basic question addressed in the em-
bedding theorem: when has one eliminated false 
crossing of the orbit with itself which arose by 
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virtue of having projected the attractor into a too 
low dimensional space? By examining this ques-
tion in dimension one, then dimension two, etc. 
until there are no incorrect or false neighbours 
remaining, one should be able to establish, from 
geometrical consideration alone, a value for the 
necessary embedding dimension. Advanced ver-
sion is presented in Refs. [8,9]. 

The Lyapunov’s exponents (LE) are the dy-
namical invariants of the nonlinear system. In a 
general case, the orbits of chaotic attractors are 
unpredictable, but there is the limited predictabil-
ity of chaotic physical system, which is defined 
by the global and local LE. A negative exponent 
indicates a local average rate of contraction while 
a positive value indicates a local average rate of 
expansion. In the chaos theory, the spectrum of 
LE is considered a measure of the effect of per-
turbing the initial conditions of a dynamical sys-
tem. In fact, if one manages to derive the whole 
spectrum of the LE, other invariants of the sys-
tem, i.e. Kolmogorov entropy (KE) and attrac-
tor’s dimension can be found. The inverse of the 
KE is equal to an average predictability. Estimate 
of dimension of the attractor is provided by the 
Kaplan and Yorke conjecture:

                             || 1

1

+

=a
a

l

l
+=

∑
j

j

L jd
,                      (8)

where j is such that  ∑
=

>
j

1
0

a
al  and ∑

+

=

<
1

1
0

j

a
al , and 

the LE la are taken in descending order. There are 
a few approaches to computing the LE. One of 
them computes the whole spectrum and is based 
on the Jacobi matrix of system. In the case where 
only observations are given and the system func-
tion is unknown, the matrix has to be estimated 
from the data. In this case, all the suggested meth-
ods approximate the matrix by fitting a local map 
to a sufficient number of nearby points. To calcu-
late the spectrum of the LE from the amplitude 
level data, one could determine the time delay t 
and embed the data in the four-dimensional space. 
In this point it is very important to determine the 
Kaplan-Yorke dimension and compare it with the 
correlation dimension, defined by the Grassberger-

Procaccia algorithm.  The estimations of the KE 
and average predictability can further show a lim-
it, up to which the amplitude level data can be on 
average predicted.  Other details can be found in 
Refs. [5-20]. 

3. Data on chaotic elements in time series of 
the radon concentration and conclusion

The concentration of atmospheric radon 222Rn  
was determined by measuring the activity of 
beta particles in atmospheric aerosol using ra-
don monitors. Measurements of the radon con-
centrations at SMEAR II station (61 ° 51’N, 24 ° 
17’E, 181 m above sea level; near the  Hyytiälä, 
Southern Finland) was done by group of experts 
of the Finnish Meteorological Institute (FMI) 
and was actually integrated into the system long-
term measurements (see details in Ref.[74] and 
[75-77] too). The continuous measurement was 
performed during 2000-2006 on the seventh 
heights (from 4.2 m to 127 m). Technologically 
for the detection of beta particles there are used 
the device with a pair of the Geiger-Müller coun-
ters, arranged in the lead corymbs. Registration 
of the beta particles was cumulatively carried  in 
10-minutes  intervals. Effectiveness of a detection 
was 0.96% and 4.3% for beta radiation from 214Pb 
and 214Bi respectively. Estimate of the  1-σ statis-
tical  counting - ± 20% for stable concentrations 
of 222Rn (1 Bq/m3). The mean-daily values ​​of at-
mospheric 222Rn concentrations were in the range 
from <0.1 to 11 Bq/m3. In fact, the lower limit 
of this range was limited by a hardware detection 
limit of the radon monitors. The corresponding data 
meet the log-normal distribution with a geometric 
mean of 2.5 Bq/m3 (a standard geometric deviation 
of 1.7 Bq/m3). The average geometric value for the 
daily average radon concentrations was  amounted 
to 2.3 to 2.6 Bq× m-3 per year. In general during 
2000-2006 as hourly, as daily values of a param-
eter, which corresponds to the radon concentration, 
were ranged from about 1 to 5 Bq/m3. In Figure 1 
there is presented the typical time dependent curve 
of the radon concentration , received on the base of 
measurements at SMEAR II station (61 ° 51’N, 24 
° 17’E, 181 m above sea level; near the  Hyytiälä, 
Southern Finland) (see [74]).
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Figure 1. Time dependent curve of the radon con-
centration, received on the base of measurement 

(SMEAR II station)

Below in Table 1 we list the results of com-
puting different dynamical and topological invri-
ants and parameters (Time delay t,correlation 
dimension (d  2),  embedding space dimension 
(d  E),  Lyapunov exponent (li), Kolmogorov en-
tropy (Кent ), Kaplan-York dimension (d  L),  the 
predictability limit (Pr  maх)  and chaos indicator 
(Kсh ) for radon concentration time series (2001).

Table 1. Time delay t,correlation dimension 
(d 2), embedding space dimension (d E), Lyapunov 
exponent (li), Kolmogorov entropy (Кent ), 
Kaplan-York dimension (d  L),  the predictability 
limit (Pr maх) and chaos indicator (Kсh ) for the ra-
don concentration time series (2001)

Year t d 2 d E

2001 12 5,48 6

Year λ1 λ2 Кent

2001 0,0182 0,0058 0,024

Year d L Pr maх K

2001 5,36 42 0,80

The resulting Kaplan- York dimension is very 
close to the correlation dimension, which is de-
termined by the algorithm by Grassberger and 
Procaccia; Moreover, the Kaplan-York dimen-
sion is smaller than the dimension of attachment, 
which confirms the correctness of the choice 
of the latter. Therefore, using the new uniform 

chaos-dynamical approach we have carried out 
modeling and analysis of temporal evolution of 
the atmospheric radon 222Rn  concentration, firstly 
received data on topological and dynamical in-
variants for the time series of the 222Rn  concen-
tration and discovered a deterministic chaos  phe-
nomenon. The results are of great theoretical and 
practical interest as for the dynamical systems 
and chaos theories for applied scientific applica-
tions such as nuclear physics, photoelectronics, 
atmospheric and environmental (environmental 
radioactivity) sciences etc. 
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NEW NONLINEAR CHAOS-DYNAMICAL ANALYSIS OF ATMOSPHERIC RADON 
222Rn  CONCENTRATION TIME SERIES FROM  BETA PARTICLES ACTIVITY DATA OF 

RADON MONITORS

Summary
 The work is devoted to the development of the theoretical foundations of new  universal  com-

plex chaos-dynamical approach to analysis and prediction of the atmospheric radon 222Rn  concen-
tration changing from  beta particles activity data of radon monitors (with pair of the Geiger-Müller 
counters). The approach presented consistently includes a number of  new or improved methods of 
analysis (correlation integral, fractal analysis, algorithms of average mutual information, false near-
est neighbors, Lyapunov exponents, surrogate data, non-linear prediction schemes, spectral methods, 
etc.) to solve problems quantitatively complete modeling and analysis of temporal evolution of the 
atmospheric radon 222Rn  concentration . There are firstly received data on topological and dynamical 
invariants for the time series of the 222Rn  concentration, discovered a deterministic chaos  phenom-
enon using detailed data of measurements of the radon concentrations at SMEAR II station of the 
Finnish Meteorological Institute.
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НЕЛИНЕЙНЫЙ ХАОС-ДИНАМИЧЕСКИЙ АНАЛИЗ ВРЕМЕННЫХ РЯДОВ 
КОНЦЕНТРАЦИЙ АТМОСФЕРНОГО РАДОНА 222Rn НА ОСНОВЕ ДАННЫХ 

АКТИВНОСТИ БЕТА ЧАСТИЦ  РАДОНОВЫХ МОНИТОРОВ

Резюме
 Работа посвящена разработке теоретических основ нового универсального комплексного 

хаос-динамического подхода к анализу и прогнозированию временных изменений концентрации 
атмосферного радона 222Rn на основе данных активности бета-частиц радоновых мониторов (с 
парой счетчиков Гейгера-Мюллера). Подход последовательно включает в себя ряд новых или 
улучшенных методов анализа (метод корреляционного интеграла, фрактальный анализ, алго-
ритмы средней взаимной информации, ложных ближайших соседей, показателей Ляпунова, 
схемы нелинейного прогнозирования, спектральные методы и т.д.) для решения проблемы коли-
чественно полного моделирования и анализа временной эволюции концентрации атмосферной 
радона 222Rn. Впервые получены данные о топологических и динамических инвариантах для 
временных рядов концентрации 222Rn, открыт феномен детерминированного хаоса, используя 
подробные данные измерений концентраций радона на станции SMEAR II Финского метеоро-
логического института

Ключевые слова: Хаотическая динамика, временные ряды концентрации 222Rn, универ-
сальный комплексный хаос-динамический подход, анализ и прогнозирование
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НЕЛІНІЙНИЙ ХАОС-ДИНАМІЧНИЙ АНАЛІЗ ЧАСОВИХ СЕРІЙ КОНЦЕНТРАЦІЙ 
АТМОСФЕРНОГО РАДОНУ 222Rn   НА ОСНОВІ ДАНИХ АКТИВНОСТІ БЕТА 

ЧАСТИНОК  РАДОНОВИХ МОНІТОРІВ

Резюме
 Робота присвячена розробці теоретичних основ нового універсального комплексного хаос-

динамічного підходу  до аналізу та прогнозування часових змін концентрації атмосферного 
радону 222Rn  на основі  даних активності бета-частинок радонових моніторів (з парою лічиль-
ників Гейгера-Мюллера). Підхід послідовно включає в себе ряд нових або поліпшених методів 
аналізу (метод кореляційного інтегралу, фрактальний аналіз, алгоритми середньої  взаємної 
інформації, помилкових найближчих сусідів, показників Ляпунова,  схеми нелінійного прогно-
зування, спектральні методи і т.і.) для вирішення проблеми кількісно повного моделювання та 
аналізу часової еволюції концентрації атмосферної радону 222Rn. Вперше отримані дані про то-
пологічні і динамічні інваріанти для часових рядів концентрації 222Rn, відкрито феномен детер-
мінованого хаосу, використовуючи детальні дані вимірювань концентрацій радону на SMEAR 
II станції Фінського метеорологічного інституту.

Ключові слова: Хаотична динаміка, часові ряди концентрації 222Rn, універсальний комплек-
сний хаос-динамічний підхід, аналіз і прогнозування
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SYNTHESIS AND LUMINESCENCE PROPERTIES OF ZnSe:Al
NANOPARTICLES

Colloidal nanocrystals of ZnSe:Al were synthesized in organic polymer matrices. The optical absorption and long-
wavelength luminescence were studied, the average sizes of nanoparticles were determined, the efficiency of the transition 
from bulk crystals to nanocrystals was shown, and the types of optical transitions were determined.

Introduction

Semiconductor colloidal nanocrystals of the 
A2B6 group are promising materials for biomedi-
cal marking and visualization. The most widely 
represented in the studies are CdS and CdSe na-
nocrystals [1,2], which have tunable, wide and 
intense emission bands. However, many results 
show that any leakage of cadmium from na-
nocrystals will be toxic and fatal to biological 
systems. In connection with this, the synthesis of 
nanomaterials, not cadmium entities, is topical. 
Such materials include zinc chalcogenides, and 
zinc selenide in particular. 

Being a wide-band semiconductor, ZnSe is ide-
ally suited for the creation on its basis of optoelec-
tronics devices and biomedical imaging. Doping 
ZnSe allows the realization of luminescent radia-
tion in the visible and near infrared wavelengths. 
At present, ZnSe nanocrystals doped with transi-
tion elements such as Cu, Mn, Co have been suc-
cessfully synthesized [3] At the same time, there 
is no information on the preparation of zinc sel-
enide nanoparticles doped with Group III donor 
elements (Al, Ga, In). Investigations of the pho-
toluminescence of bulk ZnSe: Al crystals showed 
that in zinc selenide an Al impurity is the best ac-
tivator in the visible range [4]. So the preparation 
and investigation of the luminescent properties of 
ZnSe: Al nanocrystals is relevant.

The purpose of this work is the development 
of an ecological approach to the synthesis of 
ZnSe:Al nanocrystals, the study of their lumines-
cent properties and the establishment of natural 
emission transitions in these nanocrystals.

Experimental

The study used commercial reagents Beijing 
Reagent Company. ZnCl2 was the source of zinc 
ions. The source of Se2- ions was sodium seleno-
sulfate Na2SeSO3, which was prepared with an 
aqueous Na2SO3 solution and powdered Se (99%). 
Polyvinyl alcohol, gelatin or lactose was used as 
the growth stabilizer of nanoparticles. The doping 
with Al ions was carried out by the addition of 
Al2Cl3. The resulting colloidal solution contain-
ing ZnSe and ZnSe:Al nanoparticles was depos-
ited on quartz substrates, then the solvent evapo-
rated, forming membranes for measuring optical 
absorption and photoluminescence.

The optical absorption and photoluminescence 
spectra were recorded with an MDR-6 monochro-
mator with a 2400 grove· mm–1 diffraction grat-
ings in the ultraviolet and 1200 grove· mm–1 in the 
visible range. 

Investigation of the optical absorption

The optical density spectra of ZnSe and 
ZnSe:Al nanocrystals were studied. It is estab-
lished that in all the samples studied the absorp-
tion edge is shifted to the region of high energies 
in comparison with the absorption edge of single 
crystals of ZnSe, which indicates the presence 
of quantum size effects in the samples. The in-
fluence of the ratio of the concentrations of zinc 
and selenium sources on the position of the ab-
sorption edge was established. The maximum 
displacement was observed at a ratio of ZnCl2 to 
Na2SeSO3 of 10:1.
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The mean radius of the ZnSe, ZnSe:Al par-
ticles was estimated from the change in the band 
gap (ΔEg) relative to the bulk crystal, using the 
effective-mass approximation using the equation 
[5] 

                     8ì g

hR
E

=
D

.                       (1)

There h is the Planck constant; μ = ((me*)
−1 + 

(mh* )
−1)−1, where me*= 0.17me, mh* = 0.6me are, 

respectively, the effective masses of the electron 
and hole in zinc selenide, me is the mass of the 
free electron; ΔEg is the difference between the 
width of the band gap in the nanoparticle and the 
bulk crystal of ZnSe (2.68 eV). The results of cal-
culations showed that the minimum ZnSe nano-
particles size (3.5 nm) is reached just at the ratio 
of ZnCl2 to Na2SeSO3 10: 1 (Fig. 1, curve 1).

Doping of ZnSe nanocrystals with aluminum 
leads to a shift in the absorption edge to the region 
of lower energies. The magnitude of the displace-
ment increased with increasing concentration of 
the aluminum source (Fig. 1, curves 2,3). A simi-
lar dependence of the width of the forbidden band 
on the concentration of the dopant was observed 
earlier in bulk ZnSe crystals containing the donor 
impurity In, the impurity ions of the transition el-

ements, and was explained by the presence of an 
impurity Coulomb interaction [6]. Using relation 
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where: e – electron charge, N – concentration of 
impurities in cm-3, es= 8.66 is zinc selenide static 
dielectric constant, the concentration of alumi-
num impurity in the investigated nanocrystals is 
determined. 5% solution of Al2Cl3 corresponds to 
the concentration of aluminum in nanocrystals of 
1018 cm-3, and 10% solution of Al2Cl3 is a concen-
tration of 1019 cm-3.

Investigation of long-wavelength photolu-
minescence

Investigation of ZnSe nanocrystals photolumi-
nescence spectra is showed the presence of broad 
photoluminescence bands localized in the 550-
850 nm region. The change in the temperature of 
nanocrystals from 300 to 430 K did not cause a 
shift in the spectra studied. The position of the 
spectra remained unchanged even with a change 
in the width of the forbidden band of nanocrys-
tals. The presence of a number of bend and a large 
(~ 150 nm) half-width of the bands indicate their 
non-elementary nature. The decomposition into 
elementary Gaussian components in the Origin-
Pro 7 program revealed a series of elementary 
emission lines localized at 580, 600, 630, 680, 
700, 750 and 800 nm (Fig. 2, a). The identical 
elementary emission lines were observed earlier 
in bulk ZnSe single crystals (Fig. 2, b) [4]. 

Emission at a wavelength of 580 nm appears 
due to associative native defects (VZnVSe)

-. The 
emission line at a wavelength of 600 nm appears 
due to associative defects (VZnDSe)

- where the do-
nor is either VSe or an uncontrolled donor impu-
rity, an IIV group element, for example, Cl, Br, 
I. The other emission lines were associated with 
defects (VZnDZn)

- with different distances between 
donors and acceptors. Here the donor, according 
to [4], is the uncontrolled impurities Al, In, Ga.

Doping with aluminum during the growth of 
nanocrystals leads to an increase in the emission 
intensity in the 500-1000 nm region. Further in-
crease of the emission intensity with increasing 
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calculations showed that the minimum ZnSe 
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where: e – electron charge, N – concentration of 
impurities in cm-3, s= 8.66 is zinc selenide stat-
ic dielectric constant, the concentration of alu-
minum impurity in the investigated nanocrystals 
is determined. 5% solution of Al2Cl3 corre-
sponds to the concentration of aluminum in 
nanocrystals of 1018 cm-3, and 10% solution of 
Al2Cl3 is a concentration of 1019 cm-3. 

 
INVESTIGATION OF LONG-

WAVELENGTH PHOTOLUMINES-
CENCE 

Investigation of ZnSe nanocrystals photolu-
minescence spectra is showed the presence of 
broad photoluminescence bands localized in the 
550-850 nm region. The change in the tempera-
ture of nanocrystals from 300 to 430 K did not 
cause a shift in the spectra studied. The position 
of the spectra remained unchanged even with a 
change in the width of the forbidden band of 
nanocrystals. The presence of a number of bend 
and a large (~ 150 nm) half-width of the bands 
indicate their non-elementary nature. The de-
composition into elementary Gaussian compo-
nents in the OriginPro 7 program revealed a se-
ries of elementary emission lines localized at 
580, 600, 630, 680, 700, 750 and 800 nm (Fig. 
2, a). The identical elementary emission lines 
were observed earlier in bulk ZnSe single crys-
tals (Fig. 2, b) [4].  

Emission at a wavelength of 580 nm appears 
due to associative native defects (VZnVSe)-. The 
emission line at a wavelength of 600 nm ap-
pears due to associative defects (VZnDSe)- where 
the donor is either VSe or an uncontrolled donor 
impurity, an IIV group element, for example, 
Cl, Br, I. The other emission lines were associ-
ated with defects (VZnDZn)- with different dis-
tances between donors and acceptors. Here the 
donor, according to [4], is the uncontrolled im-
purities Al, In, Ga. 

Fig.1. Optical absorption spectra of (1) ZnSe 
nanocrystals and (2, 3) ZnSe:Al nanocrystals. 
The Al2Cl3 dopant concentrations are 2% (2) 
and (3) 5%. 
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Al2Cl3 concentration is explained by an increase 
of the donor impurity concentration in investigat-
ed nanocrystals. 

In the emission spectra of ZnSe:Al nanocrys-
tals, elementary emission lines are emitted at 580, 
600, 630, 680, and 700 nm. The same emission 
lines were detected in bulk crystals of ZnSe:Al 
(Fig. 3, b).

It is established that a change of Al2Cl3 con-
centration, the choice of the stabilizing matrix 
type does not lead to a shift of the elementary 
and integral emission lines to the short-wave or 
long-wave region. The change in technological 

conditions leads to a change in the intensity of the 
elementary emission lines, which is explained by 
the redistribution of the concentration of native 
and impurity defects that make up the associa-
tive centers. The shift of the emission integrated 
maximum to the smaller wavelengths region with 
increasing Al2Cl3 concentration from 2 to 10% 
can be explained by increasing in the intensity of 
the elementary emission line at 600 nm due to as-
sociative defects (VZnClSe) 

-.

Doping with aluminum during the growth of 
nanocrystals leads to an increase in the emission 
intensity in the 500-1000 nm region. Further in-
crease of the emission intensity with increasing 
Al2Cl3 concentration is explained by an increase 
of the donor impurity concentration in investi-
gated nanocrystals.  

In the emission spectra of ZnSe:Al nanocrys-
tals, elementary emission lines are emitted at 
580, 600, 630, 680, and 700 nm. The same emis-
sion lines were detected in bulk crystals of 
ZnSe:Al (Fig. 3, b). 

It is established that a change of Al2Cl3 con-
centration, the choice of the stabilizing matrix 
type does not lead to a shift of the elementary 

and integral emission lines to the short-wave or 
long-wave region. The change in technological 
conditions leads to a change in the intensity of 
the elementary emission lines, which is ex-
plained by the redistribution of the concentra-
tion of native and impurity defects that make up 
the associative centers. The shift of the emis-
sion integrated maximum to the smaller wave-
lengths region with increasing Al2Cl3 concen-
tration from 2 to 10% can be explained by in-
creasing in the intensity of the elementary emis-
sion line at 600 nm due to associative defects 
(VZnClSe) -. 

 
CONCLUSIONS 
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Conclusions

ZnSe and ZnSe: Al nanoparticles up to 3.5 nm 
in diameter were successfully synthesized using 
the “green” synthesis method and organic stabi-
lizing agents. It is shown that ZnSe:Al nanopar-
ticles possess effective long-wave emission and 
can be used as fluorescent labels. The nature of 
the radiative transitions in ZnSe and ZnSe:Al 
nanocrystals is established. It has been experi-
mentally confirmed that when the transition from 
bulk crystals to nanocrystals does not occur, the 
emission lines shift toward donor-acceptor pairs.
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СИНТЕЗ ТА ЛЮМІНЕСЦЕНТНІ ВЛАСТИВОСТІ НАНОКРИСТАЛІВ ZnSe:Al 

Анотація
Колоїдні наночастинки ZnSe:Al були синтезовані в органічній полімерній матриці. Були до-

сліджені оптичне поглинання та довгохвильова фотолюмінесценція. За зсувом ширини заборо-
неної зони визначений середній розмір наночастинок. Визначена природа випромінювальних 
переходів.

Ключові слова: ZnSe, ZnSe:Al, наночастинки, колоїдний синтез, оптичні властивості, люмі-
несценція, біомаркери.
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СИНТЕЗ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА НАНОКРИСТАЛЛОВ ZnSe:Al 

Аннотация
Коллоидные наночастицы ZnSe:Al были синтезированы в органиче6ской полимерной ма-

трице. Были исследованы оптическое поглощение идлинноволновая люминесценция. По сме-
щению ширины запрещенной зоны определялся средний раз мер наночастиц. Определена при-
рода излучательных переходов.
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OPTIMIZED RELATIVISTIC DIRAC-FOCK APPROACH TO 
CALCULATING THE HYPERFINE LINE SHIFT AND BROADENING 

FOR HEAVY ATOMS IN THE BUFFER GAS

It is presented a new  consistent relativistic approach to description of the energetic and spectral properties of the heavy 
atoms in an atmosphere of the inert gases, based on the atomic gauge-invariant relativistic perturbation theory with the 
optimized Dirac-Fock zeroth approximation with density functional correlation potential and the exchange perturbation 
theory for construction of the interatomic potential function. As illustration it is applied to calculating the interatomic po-
tentials, hyperfine structure line collision shift and broadening for alkali and thallium atoms, in an atmosphere of the buffer 
inert gas. It is shown that an  accurate  accounting of   relativistic and exchange-correlation  provides physically reasonable 
description of the energetic and spectral properties of the heavy atoms in an atmosphere of the inert gases.

1.	 Introduction

In Ref. [1-3] It has been presented a new  con-
sistent relativistic approach to hyperfine structure 
line collision shift and broadening for heavy atoms 
in an atmosphere of the buffer inert gas, based on 
the atomic gauge-invariant relativistic perturba-
tion theory and the optimal construction of the 
interatomic potential function within exchange 
perturbation theory . As illustration it has been 
applied to calculating the interatomic potentials, 
hyperfine structure line collision shift for heavy 
atoms, namely, rubidium, cesium etc in an atmo-
sphere of the buffer inert gas (He). It was shown 
that the consistent,  accurate  accounting the the 
relativistic and exchange-correlation, continuum 
pressure effects has to be done to get an adequate 
description of the energetic and spectral properties 
of the heavy atoms in an atmosphere of the heavy 
inert gases. 

Let us remind that the broadening and shift of 
atomic spectral lines by collisions with neutral 
atoms has been studied extensively since the very 
beginning of atomic physics, physics of collisions 
etc [4–36]. These studied are of a great interest 
for modern atomic and molecular spectroscopy, 
quantum chemistry, laser physics and quantum 
electronics, astrophysics and metrology as well as 
for studying a role of weak interactions in atomic 

optics and heavy-elements chemistry [37-48]. It 
is very important point that the computing the 
hyperfine structure line shift and broadening al-
lows to check a quality of the orbitals basis and 
understand physical aspects of accounting the rela-
tivistic and correlation effects to the energetic and 
spectral characteristics of the two-center (multi-
center) atomic systems. One of the known and 
widely used quantum methods to compute atomic 
parameters and spectral lines characteristics is 
the Dirac-Fock method. However, because of the 
known points connected with generation of non-
optimized basis of wave functions and other ones 
(for example, the slow convergence of the cor-
responding PT series with the Dirac-Fock zeroth 
approximation, necessity of accurate accounting 
for the correlation effects etc)  this method should 
be seriously improved. The most known improve-
ment is in using the multiconfiguration Dirac-Fock 
approach.  

In this paper we present a new  consistent rela-
tivistic approach to description of the energetic 
and spectral properties of the heavy atoms in an 
atmosphere of the inert gases, based on the atomic 
gauge-invariant relativistic perturbation theory 
with the optimized Dirac-Fock zeroth approxima-
tion with density functional correlation potential 
and the exchange perturbation theory for con-
struction of the interatomic potential function. As 
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illustration it is applied to calculating the, hyper-
fine structure line shift and broadening for alkali 
atoms in an atmosphere of the buffer inert gas. It is 
shown that an  accurate  accounting of   relativistic 
and exchange-correlation  provides physically rea-
sonable description of the energetic and spectral 
properties of the heavy atoms in an atmosphere of 
the inert gases

2.	 Method

The basic expressions for the collision shift 
and broadening hyperfine structure spectral lines 
are taken from the kinetic theory of spectral lines 
[6,7,11,12]. In order to calculate a collision 
shift of the hyperfine structure spectral lines 
one can use the following expression known in 
the kinetic theory of spectral lines shape (see 
Refs. [1-7]): 

                                                      

Here U(R) is an effective potential of intera-
tomic interaction, which has the central symmetry 
in a case of the systems A—B (in our case, for 
example,  A=Rb,Cs; B=He); T is a tempera-
ture, w0 is a frequency of the hyperfine struc-
ture transition in an isolated active atom; 
dω(R)=Dw(R)/w0 is a relative local shift of the 
hyperfine structure line; ( ( )1 g R+ ) is a tempera-
ture form-factor. 

The local shift is caused due to the disposi-
tion of the active atoms (say, the alkali atom 
and helium He) at the distance R. In order to 
calculate an effective potential of the intera-
tomic interaction further we use the exchange 
perturbation theory formalism (the modified 
version ЕL-НАV) [4-6]). 

Since we are interested by the alkali (this atom 
can be treated as a  one-quasiparticle systems, i.e. 
an atomic system with a single valence electron 
above a core of the closed shells) and the rare-
earth atoms (here speech is about an one-, two- or 
even three-quasiparticle system), we use the clas-

sical model for their consideration. The interaction 
of alkali (A) atoms with a buffer (B) gas atom is 
treated in the adiabatic approximation and the 
approximation of the rigid cores. Here it is worth 
to remind very successful model potential simu-
lations of the studied systems (see, for example, 
Refs. [13-26]). 

In the hyperfine interaction Hamiltonian one 
should formally consider as a magnetic dipole 
interaction of moments of the electron and the 
nucleus of an active atom as an electric quadru-
pole interaction (however, let us remind that, as 
a rule, the moments of nuclei of the most (buffer) 
inert gas isotopes equal to zero).

The necessity of the strict treating relativ-
istic effects causes using the following ex-
pression for a hyperfine interaction operator 
HHF (see, eg., [3,5]): 

 НHF= ∑
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where  І – the operator of the nuclear spin active 
atom, αi – Dirac matrices, mp – proton mass, m  - 
moment of the nucleus of the active atom, ex-
pressed in the nuclear Bohr magnetons. Of 
course, the summation in (2) is over all states 
of the electrons of the system, not belonging 
to the cores. The introduced model of consid-
eration of the active atoms is important to de-
scribe an  effective interatomic interaction po-
tential (an active atom – an passive atom), 
which is centrally symmetric (JА=1/2) in our 
case (the interaction of an alkali atom with an 
inert gas atom). Let us underline that such an 
approximation is also acceptable in the case 
system “thallium atom – an inert gas atom” 
and some rare-earth atoms, in spite of the 
presence of p-electrons in the thallium (in the 
case of rare-earth atoms, the situation is more 
complicated).One of the most correct methods to 
describe  heavy atoms in an atmosphere of inert 
gases is the relativistic Dirac-Fock one or the 
Dirac-Kohn-Sham method. It is obvious that 
more sophisticated relativistic many-body meth-
ods should be used for correct treating relativistic, 
exchange-correlation and even nuclear effects in 
heavy atoms (including the many-body correla-
tion effects, intershell correlations, possibly the 
continuum pressure etc]).  In our calculation we 

lustration it is applied to calculating the, 
hyperfine structure line shift and broadening 
for alkali atoms in an atmosphere of the buf-
fer inert gas. It is shown that an  accurate  ac-
counting of   relativistic and exchange-
correlation  provides physically reasonable 
description of the energetic and spectral 
properties of the heavy atoms in an atmos-
phere of the inert gases 
 

2. Method. 
The basic expressions for the collision shift 
and broadening hyperfine structure spectral 
lines are taken from the kinetic theory of 
spectral lines [6,7,11,12]. In order to calcu-
late a collision shift of the hyperfine 
structure spectral lines one can use the fol-
lowing expression known in the kinetic the-
ory of spectral lines shape (see Refs. [1-7]):  
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Here U(R) is an effective potential of intera-
tomic interaction, which has the central 
symmetry in a case of the systems A—B (in 
our case, for example,  A=Rb,Cs; B=He); 
T is a temperature, w0 is a frequency of 
the hyperfine structure transition in an 
isolated active atom; d(R)=Dw(R)/w0 is a 
relative local shift of the hyperfine structure 
line; (  1 g R ) is a temperature form-factor.  
The local shift is caused due to the disposi-
tion of the active atoms (say, the alkali atom 
and helium He) at the distance R. In order to 
calculate an effective potential of the intera-
tomic interaction further we use the exchange 
perturbation theory formalism (the modified 
version ЕL-НАV) [4-6]).  
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atom can be treated as a  one-quasiparticle 
systems, i.e. an atomic system with a single 
valence electron above a core of the closed 
shells) and the rare-earth atoms (here speech 
is about an one-, two- or even three-

quasiparticle system), we use the classical 
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atom is treated in the adiabatic approxima-
tion and the approximation of the rigid cores. 
Here it is worth to remind very successful 
model potential simulations of the studied 
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In the hyperfine interaction Hamiltonian one 
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tric quadrupole interaction (however, let us 
remind that, as a rule, the moments of nuclei 
of the most (buffer) inert gas isotopes equal 
to zero). 
The necessity of the strict treating relati-
vistic effects causes using the following 
expression for a hyperfine interaction op-
erator HHF (see, eg., [3,5]):  
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where  І – the operator of the nuclear spin 
active atom,  i – Dirac matrices, mp – proton 
mass,   - moment of the nucleus of the ac-
tive atom, expressed in the nuclear Bohr 
magnetons. Of course, the summation in 
(2) is over all states of the electrons of 
the system, not belonging to the cores. 
The introduced model of consideration of 
the active atoms is important to describe 
an  effective interatomic interaction po-
tential (an active atom – an passive 
atom), which is centrally symmetric 
(JА=1/2) in our case (the interaction of an 
alkali atom with an inert gas atom). Let 
us underline that such an approximation 
is also acceptable in the case system 
“thallium atom – an inert gas atom” and 
some rare-earth atoms, in spite of the 
presence of p-electrons in the thallium (in 
the case of rare-earth atoms, the situation 
is more complicated).One of the most cor-
rect methods to describe  heavy atoms in an 
atmosphere of inert gases is the relativistic 
Dirac-Fock one or the Dirac-Kohn-Sham me-
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have used the relativistic functions, which are 
generated within the optimized Dirac-Fock zeroth 
approximation of the relativistic many body per-
turbation theory [38].  The potential  of the inter-
electron interaction with accounting the retarding 
effect and magnetic interaction in the lowest or-
der on parameter α2 (the fine structure constant) is 
as follows:   

        (3)

where ωij is the transition frequency; αi ,αj are the 
Dirac matrices. The PT zeroth approximation is 
the optimized Dirac-Fock one (plus additional 
correlation potential [15])   with using the consist-
ent relativistic energy approach in order to con-
struct the optimal relativistic orbitals basis (for 
details see Refs. [37-49]). The optimization  is 
reduced to minimization of the gauge dependent 
multielectron contribution ImδEninv of the lowest 
relativistic perturbation theory corrections to the 
radiation widths of atomic levels. The minimiza-
tion of the functional ImδEninv leads to the Dirac-
Fock-like equations for the electron density that 
are numerically solved. The further elaboration 
of the method can be reached by means of using 
the Dirac-Sturm  approach [5]. To calculate an ef-
fective potential of the interatomic interaction we 
use a method of the exchange perturbation theory 
(in the modified version ЕL-НАV [2,5,6]). Within 
exactness to second order terms on potential of 
Coulomb interaction of the valent electrons and 
atomic cores a local shift can be written as:   

(4)

where values W1, W2 are the non-exchange and 
exchange non-perturbation sums of the first or-
der correspondingly, which express through the 
matrix elements of the hyperfine interaction op-
erator.  The other details are in Refs.[1-11].

3.	 Results and conclusion

Further  we present some test results of our 
studying hyperfine line collisional shift for  alkali 
atoms (rubidium and caesium) in the atmosphere 

of the helium gas. In Table 1 and we present our 
theoretical results for the hyperfine line observed 
shift fp (1/Torr) in a case of the Cs-He pairs. The 
experimental and alternative theoretical results by 
Batygin et al [5] for fp are listed too. At present 
time there are no precise experimental data for 
a wide interval of temperatures in the literature. 
The theoretical data from Refs. [5] are obtained 
on the basis of calculation within the exchange 
perturbation theory with using the He wave func-
tions in the Clementi-Rothaane approximation 
(column: Theorya),  and in the Z-approximation 
(column: Theoryb), and in the Löwdin approxima-
tion (column: Theoryc).

Table 1
  

The observed fρ (10-9 1/Torr) shifts for the sys-
tems of the Cs-He and corresponding theo-

retical data (see text)

T, K Exp  a b c This

223 - 164 142 169 173

323 135 126 109 129 134

423 - 111 96 114 121

523 - 100 85 103 109

623 - 94 78 96 102

723 - - - - 95

823 - - - - 90

Note:a –calculation with the He wave functions 
in the Clementi-Rothaane approximation; b – the 
Z-approximation; c –Löwdin approximation [5];

In Tables 2 there are listed the values of the  ob-
served fr (10-9 1/Torr) shifts for the systems of the 
pair:  TI- He: С –our data,  B- data by Mishchenko 
et al [7], А- data by Batygin-Sokolov [6]. In Table 
3 there are listed the calculated adiabatic broaden-
ing values Га/р (in Hz/Tor)  for the thallium spec-
tral lines for different temperatures  and  pairs TI- 
He, Kr, Xe. 

thod. It is obvious that more sophisticated 
relativistic many-body methods should be 
used for correct treating relativistic, ex-
change-correlation and even nuclear effects in 
heavy atoms (including the many-body corre-
lation effects, intershell correlations, possibly 
the continuum pressure etc]).  In our calcula-
tion we have used the relativistic functions, 
which are generated within the optimized Di-
rac-Fock zeroth approximation of the relati-
vistic many body perturbation theory [38].  
The potential  of the inter-electron interaction 
with accounting the retarding effect and 
magnetic interaction in the lowest order on 
parameter 2 (the fine structure constant) is 
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Table 2

The observed fρ (10-9 1/Torr) shifts for the sys-
tems of the pair:  TI- He: С –our data,  B- data 
by Mischenko et al [7], А- data by Batygin-

Sokolov [6].

T, K A B C

700 155 137 133,1

800 151 134 130,2

900 147.5 131 128,0

1000 143 126 123,4

Note: Exp. Value (Tl-He, T=700K): 130±10;

Table 3

Adiabatic broadening values Га/р (in Hz/Tor)  
for the thallium spectral lines for different 

temperatures (pair:  TI- He, TI-Kr, TI-Xe).

Т, К TI-He
[4]

TI-He
Our

TI-Kr
Our

TI- Xe
Our

700
800
900
1000

2.83
2.86
2.90
2.89

2.49
2.52
2.56
2.53

6.79
5.88
5.24
5.22

17.27
14.58
12.87
11.48

Our data confirm violation of the known Foli 
relationship between the observed fr shift and  the 
adiabatic broadening value (Га/р~ fr ) in the stan-
dard theory of spectral lines, for spectral. One 
culd see, that for example, (Га/р)/ fр ~1/60 for 
system of TI-He etc. Qualitatively similar , but 
quantitatively a little other estimates have been 
obtained in Refs. [3,4]. 

To conclude, let us underline  that  using the 
optimized relativistic orbitals basis (in our ap-
proach speech is about the optimized Dirac-Fock 
zeroth approzimation with additional correlation 
potential) and consistent precise accounting for 
the exchange-correlation and other effects is prin-

cipally necessary for the physically reasonable 
description of the energetic and spectral proper-
ties of the heavy atoms in an atmosphere of the 
inert gases.
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OPTIMIZED RELATIVISTIC DIRAC-FOCK APPROACH TO CALCULATING THE 
HYPERFINE LINE SHIFT AND BROADENING FOR HEAVY ATOMS IN THE BUFFER GAS

Summary
It is presented a new  consistent relativistic approach to description of the energetic and spectral 

properties of the heavy atoms in an atmosphere of the inert gases, based on the atomic gauge-invariant 
relativistic perturbation theory with the optimized Dirac-Fock zeroth approximation with density func-
tional correlation potential and the exchange perturbation theory for construction of the interatomic 
potential. As illustration it is applied to calculating the hyperfine structure line collision shift and 
broadening for alkali and thallium atoms in an atmosphere of the buffer inert gas. It is shown that an  
accurate  accounting of   relativistic and exchange-correlation  provides physically reasonable descrip-
tion of the energetic and spectral properties of the heavy atoms in an atmosphere of the inert gases.

Keywords: Relativistic many-body perturbation theory, Dirac-Fock approximation, hyperfine line 
collision shift 

УДК 539.184

В. Ф. Мансарлийский, Е. В. Терновский, А. В. Игнатенко, Е. Л. Пономаренко

НОВЫЙ РЕЛЯТИВИСТСКИЙ ПОДХОД К ОПРЕДЕЛЕНИЮ СДВИГА И  
УШИРЕНИЯ ЛИНИЙ СВЕРХТОНКОЙ СТРУКТУРЫ В ТЯЖЕЛЫХ АТОМАХ  В 

БУФЕРНЫХ ГАЗАХ

Резюме
Представлен новый релятивистский подход к определению сдвига и уширения линии сверх-

тонкой структуры тяжелых  атомов в атмосфере буферных газов, который базируется на атом-
ной калибровочно-инвариантной релятивистской теории возмущений с оптимизированным 
нулевым приближением Дирака-Фока с дополнительным корреляционным потенциалом и об-
менной теории возмущений для построения межатомного потенциала. В качестве иллюстрации 
приведены результаты расчета сдвига и уширения сверхтонких линий ряда тяжелых атомов, в 
частности, щелочных и атома таллия, в атмосфере буферных инертных газов. Показано, что 
аккуратный  учет релятивистских, обменно-корреляционных эффектов обеспечивает адекват-
ное описание энергетических и спектральных свойств тяжелых атомов в атмосфере тяжелых 
инертных газов.  

Ключевые слова:  релятивистская теория возмущений, приближение Дирака-Фока, стол-
кновительный сдвиг линий сверхтонкой структуры
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В. Ф. Мансарлійський, Є. В. Терновський, Г. В. Ігнатенко, О. Л. Пономаренко

НОВИЙ РЕЛЯТИВІСТСЬКИЙ ПІДХІД ДО ВИЗНАЧЕННЯ ЗСУВУ ТА УШИРЕННЯ 
ЛІНІЙ НАДТОНКОЇ СТРУКТУРИ У ВАЖКИХ АТОМАХ  В БУФЕРНИХ ГАЗАХ

Резюме
Представлений новий релятивістський підхід до визначення зсуву і уширення лінії надтон-

кої структури важких атомів в атмосфері буферних газів, який базується на атомній калібру-
вально-інваріантній релятивістській теорії збурень з оптимізованим нульовим наближенням 
Дірака-Фока з додатковим кореляційним потенціалом і обмінній теорії збурень для побудови 
міжатомного потенціалу. Як ілюстрація, наведені результати розрахунку зсуву і уширення над-
тонких ліній ряду важких атомів, зокрема, лужних і атома талію, в атмосфері буферних інерт-
них газів. Показано, що акуратне урахування  релятивістських, обмінно-кореляційних ефектів 
забезпечує адекватний опис енергетичних і спектральних властивостей важких атомів в атмос-
фері важких інертних газів.

Ключові слова: релятивістська теорія збурень, наближення Дірака-Фока, зсув за рахунок 
зіткнень ліній надтонкої структури
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SPECTROSCOPY OF COOPERATIVE ELECTRON-γ- NUCLEAR EFFECTS IN 
MULTIATOMIC MOLECULES: MOLECULE XY4

The consistent quantum approach to calculating the electron-nuclear g transition spectra (a set of 
the vibration-rotational satellites in a molecule) of a nucleus in the multiatomic molecules is used to 
get the accurate spectroscopic data on the vibration-nuclear transition probabilities in a case of the 
emission and absorption spectrum of nucleus 186Re (E(0)

g = 186.7 keV) in the molecule of ReO4. the 
main difficulty during calculating corresponding matrix elements is connected with definition of the 
values bsσ of the normalized shifts of γ- active decay. It is known that if a molecule has the only normal 
vibration of the given symmetry type, then the corresponding values of bsσ can be found from the well 
known Eccart conditions, normalization one and data about the molecule symmetry.

1. Introduction

Any alteration of the molecular state must be 
manifested in the quantum transitions, for exam-
ple, in a spectrum of the γ-radiation of a nucleus. 
It is well known that it is possible the transfer of 
part of a nuclear energy to atom or molecule un-
der radiating (absorption) the γ quanta by a nucle-
us  (c.f.[1-36]).  A  spectrum contains a set of the 
electron-vibration-rotation satellites, which are 
due to an alteration of the state of system interact-
ing with photon. A mechanism of forming satel-
lites in the molecule is connected with a shaking 
of the electron shell resulting from the interaction 
between a nucleus and g quantum. This paper is 
going on our studying the co-operative dynami-
cal phenomena (c.f.[6б7]) due the interaction be-
tween atoms, ions, molecule electron shells and 
nuclei nucleons. A consistent quantum- mechani-
cal approach to calculation of the electron-nucle-
ar g transition spectra of a nucleus in the multia-
tomic molecules has been earlier proposed [2-5]. 
It generalizes the well known Letokhov-Minogin 
model [2]. Estimates of the vibration-nuclear 

transition probabilities in a case of the emission 
and absorption spectrum of nucleus 188Os in the 
OsO4  and 191Ir in the  IrO4 were  listed . Here we 
present the first accurate data on the vibration-nu-
clear transition probabilities in a case of the emis-
sion and absorption spectrum of the nucleus 186Re 
(E(0)

g= 186.7 keV) in the ReO4.

2. The electron-nuclear γ transition spectra 
of nucleus in multi-atomic molecule 

As the method of computing is earlier pre-
sented in details [2-6], here we consider only by 
the key topics. Hamiltonian of interaction of the 
gamma radiation with a system of nucleons for 
the first nucleus can be expressed through the co-
ordinates of nucleons rn

’ in a system of the mass 
centre of one nucleus [2,3]: 

)exp()()( uikrHrH nn g−′= ,

where kg is a wave vector of the g quantum; u is 
the shift vector from equality state  (coinciding 
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with molecule mass centre) in system of co-ordi-
nates in the space. 

The matrix element for transition from the ini-
tial state “a” to the final state “b” is presented as :
 
                •>YY< ab H ||* >YY< −

a
uik

b å ||* g           (1)

where a and b is a set of quantum numbers, 
which define the vibrational and rotational states 
before and after interaction (with g quantum). The 
first multiplier in (1) is defined by the g transition 
of nucleus and is not dependent on an internal 
structure of molecule in a good approximation. 

The second  multiplier is the matrix element 
of transition from the initial state “a” to the final 
state “b”:

  >YY=< )(|)(*
eaebba rrM   

         >YY<• − ),(||),( 2121
* 1 RReRR a

Rik
b

g             (2)
  

The expression (2) gives a general formula 
for calculating the probability of changing the 
internal state of molecule during  absorption or 
emitting g quantum by a nucleus. It determines an 
intensity of the corresponding g-satellites. Their 
positions are fully determined as: 

)(0
ab EEvkREE −±+±= ggg 

.

Here M is the molecule mass, v is a velocity 
of molecule before interaction of nucleus with g 
quantum;  Ea and Eb are the energies of the mol-
ecule before and after interaction; Eg is an energy 
of nuclear transition; Rom is an energy of recoil: 

Rom= [(Eγ
(o)] 2/2Mc2.

One can suppose that only single non-generat-
ed normal vibration (vibration quantum ω ) is 
excited and initially a molecule is on the vibra-
tional level va =0. If we denote a probability of 
the corresponding excitation as P(vb, va)  and use 
expression for shift u of the γ-active nucleus 
through the normal co-ordinates, then an aver-
aged energy for excitation of the single normal 
vibration is as follows: 
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where 

,cos]/)[/( 2 ϑω mmMRz −= 

and m is the mass of γ-active nucleus, ϑ  is an 
angle between nucleus shift vector and wave vec-
tor of γ-quantum and  line in E vib means averag-
ing on orientations of molecule (or on angles ϑ ). 
To estimate an averaged energy for excitation of 
the molecule rotation, one must not miss the mol-
ecule vibrations as they provide non-zeroth mo-
mentum L=kvusinϑ , which is transferred to a 
molecule by γ-quantum. In supposing that a nu-
cleus is only in the single non-generated normal 
vibration and vibrational state of a molecule is not 
changed va=vb=0, one could evaluate an averaged 
energy for excitation of the molecule rotations as 
follows:

(4)

A shift u of the γ-active nucleus can be ex-
pressed through the normal co-ordinates  σsQ  of a 
molecule:
                           ∑=

σ
σσ

s
ss Qb

m
u 1                      (5)

where m is a mass of the γ-active nucleus; com-
ponents of the vector bsF  of nucleus shift due to 
the F-component of  “s” normal vibration of a 
molecule are the elements of matrix b [2]; it real-
izes the orthogonal transformation of the normal 
co-ordinates matrix Q to matrix of masses of the 
weighted Cartesian components of the molecule 
nuclei shifts q. According to (2), the matrix ele-
ment can be written as multiplying the matrix ele-
ments on molecule normal vibration, which takes 
contribution to a shift of the γ-active nucleus:

  
       ab H ||*  

a
uik

b е ||*        (1) 
 
where a and b is a set of quantum numbers, 
which define the vibrational and rotational 
states before and after interaction (with  
quantum). The first multiplier in (1) is 
defined by the  transition of nucleus and is 
not dependent on an internal structure of 
molecule in a good approximation. The 
second  multiplier is the matrix element of 
transition from the initial state “a” to the final 
state “b”: 
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The expression (2) gives a general formula 
for calculating the probability of changing the 
internal state of molecule during  absorption 
or emitting  quantum by a nucleus. It 
determines an intensity of the corresponding 
-satellites. Their positions are fully 
determined as:  
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Here M is the molecule mass, v is a velocity 
of molecule before interaction of nucleus 
with  quantum;  Ea and Eb are the energies 
of the molecule before and after interaction; 
E is an energy of nuclear transition; Rom is an 
energy of recoil:  
 

Rom= [(E
(o)] 2/2Mc2. 

 
One can suppose that only single non-
generated normal vibration (vibration 
quantum  ) is excited and initially a 
molecule is on the vibrational level va =0. If 
we denote a probability of the corresponding 
excitation as P(vb, va)  and use expression for 
shift u of the -active nucleus through the 
normal co-ordinates, then an averaged energy 
for excitation of the single normal vibration 
is as follows:  
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(3) 
where  
 

,cos]/)[/( 2 mmMRz    
 
and m is the mass of -active nucleus,   is 
an angle between nucleus shift vector and 
wave vector of -quantum and  line in E vib 
means averaging on orientations of molecule 
(or on angles  ). To estimate an averaged 
energy for excitation of the molecule 
rotation, one must not miss the molecule 
vibrations as they provide non-zeroth 
momentum L=kvusin , which is transferred 
to a molecule by -quantum. In supposing 
that a nucleus is only in the single non-
generated normal vibration and vibrational 
state of a molecule is not changed va=vb=0, 
one could evaluate an averaged energy for 
excitation of the molecule rotations as 
follows: 
 

                                     E rot= 
]/))[(/(sin 2

12222 mmMBRuBkBL                              

(4) 
A shift u of the -active nucleus can be 
expressed through the normal co-ordinates  

sQ  of a molecule: 
                                                                                          

                       

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s

ss Qb
m
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where m is a mass of the - active nucleus; 
components of the vector bs  of nucleus shift 
due to the -component of  “s” normal 
vibration of a molecule are the elements of 
matrix b [2]; it realizes the orthogonal 
transformation of the normal co-ordinates 
matrix Q to matrix of masses of the weighted 
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It is obvious that missing molecular rotations 

means missing the rotations which are connected 
with the degenerated vibrations. Usually wave 
functions of a molecule can be written for non-
degenerated vibration as: 

)(| svss Qv Φ= ,

for double degenerated vibration as
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where  sss vvv =+
21 σσ  and analogously for triple 

degenerated vibration.  In the simple approxima-
tion function )( σσ

Φ sv Qs
 can be chosen in a form of 

the linear harmonic oscillator one. More exact 
calculating requires a numerical determination of 
these functions. Taking directly the wave func-

tions a
sv  and b

sv , calculating the matrix ele-

ment (6) is reduced to a definition of the matrix 
elements  on each component γ of the normal vi-
bration.

3. Results and conclusions

Below we present the advanced data on the 
vibration-nuclear transition probabilities in a case 
of the emission and absorption spectrum of nucle-
us 191Ir (E(0)

g= 82 keV) in the molecule IrO4. Note 
that the main difficulty during calculating (6) is 
connected with definition of the values bsσ- of the 
normalized shifts of γ-active decay. It is known 
that if a molecule has the only normal vibration of 
the given symmetry type, then the corresponding 
values of bsσ can be found from the well known 
Eccart conditions, normalization one and data 
about the molecule symmetry. For several normal 
vibrations of the one symmetry type, a definition 
of bsσ requires solving the secular equation for 
molecule |GF-λE|=0. We have used the results of 
advanced theoretical calculating electron struc-
ture of the studied system within an advanced 
relativistic scheme of the Xα- scattered waves 
method (see details in Refs.[21-23]). In table 1 
we present the  results of calculating probabilities 

of the first several vibration-nuclear transitions in 
a case of the emission and absorption spectrum 
of nucleus the nucleus 186Re (E(0)

g= 186.7 keV) in 
the ReO4. 

Table 1 
Probabilitites of the vibrational-nuclear tran-

sitions in spectrum of the ReO4.

Vibration transition
v3

a ,v4
a – v3

b, v4
b P ( v3

a ,v4
a – v3

b, v4
b)

0,0  –  0,0 0.74

1,0  –  0,0 0.014

0,1  –  0,0 0.067

1,0  –  1,0 0.68

0,1  –  0,1 0.61

References
1.	 Letokhov V. S., Laser Spectroscopy,  

Academic Press, N.-Y., 1997.  
2.	 Letokhov V.S., Minogin V., Spectrum 

of gamma transitions of a nucleus 
in symmetric polyatomic molecule//
JETP.-1995.-Vol.69.-P.1569-1581.

3.	 Glushkov A.V., Khetselius O.Y., Mali-
novskaya S.V., Spectroscopy of coop-
erative laser-electron nuclear effects in 
multiatomic molecules// Molec. Phys.-
2008.  -Vol.106.-N9-10.-P.1257-1260. 

4.	 Glushkov A.V., Khetselius O.Y., Ma-
linovskaya  S.V.,  New laser-electron 
nuclear effects in the nuclear γ transi-
tion spectra in atomic and molecular 
systems// Frontiers in Quantum Sys-
tems in Chemistry and Physics. Series: 
Progress in Theoretical Chemistry and 
Physics , Eds. S.Wilson, P.J.Grout,  J. 
Maruani, G. Delgado-Barrio, P. Piecuch 
(Springer).-2008.-Vol.18.- 525 p.

5.	 Glushkov A.V., Khetselius O.Yu., Svin-
arenko A.A., Prepelitsa G.P. , Shakhman 
A., Spectroscopy of cooperative laser-
electron nuclear processes in diatomic 
and multiatomic molecules//Spec-
tral Lines Shape (AIP, USA).-2010.-



58

Vol.16.-P.269-273.
6.	 Glushkov A.V., Kondratenko P.A., Buy-

adzhi V.,  Kvasikova A.S., Shakhman 
A., Sakun T., Spectroscopy of coop-
erative laser electron-γ-nuclear pro-
cesses in polyatomic molecules// Jour-
nal of Physics: C Series (IOP, London, 
UK).-2014.-Vol.548.-P. 012025 (5p.).

7.	 Glushkov A.V., Kondratenko P.A., 
Lopatkin Yu., Buyadzhi V., Kvasikova 
A., Spectroscopy of cooperative la-
ser electron- γ -nuclear processes in 
diatomics and multiatomic molecules 
// Photoelectronics.-2014.-Vol.23.-
P.142-146.

8.	 Khetselius O.Yu., Optimized perturba-
tion theory to calculating the hyperfine 
line shift and broadening for heavy atoms 
in the buffer gas// Frontiers in Quantum 
Methods and Applications in Chemistry 
and Physics. Ser.: Progress in Theor. 
Chem. and Phys., Eds. M.Nascimento, 
J.Maruani, E.Brändas, G.Delgado-Bar-
rio (Springer).-2015-Vol.29.-P.55-76.

9.	 Khetselius O.Yu., Relativistic ener-
gy approach to cooperative electron-
γ-nuclear processes: NEET Effect// 
Quantum Systems in Chemistry and 
Physics: Progress in Methods and Ap-
plications.  Ser.: Progress in Theor. 
Chem. and Phys., Eds. K.Nishikawa, J. 
Maruani, E.Brandas, G. Delgado-Bar-
rio, P.Piecuch (Springer).-2012-Vol.26.-
P.217-229. 

10.	Buyadzhi V.V., Glushkov A.V., Lovett 
L., Spectroscopy of atoms and nu-
clei in a strong laser field: AC Stark 
effect and multiphoton resonances//
Photoelectronics.-2014.-Vol.23.-P. 38-
43. 

11.	Khetselius O., Spectroscopy of coopera-
tive electron-gamma-nuclear processes  
in heavy atoms: NEET effect// J. Phys.: 
Conf. Ser.-2012.- Vol.397.-P.012012

12.	Glushkov A.V., Khetselius O.Yu., Lo-
boda A.V., Svinarenko  A.A., QED ap-
proach to atoms in a laser field: Multi-
photon resonances and above threshold 

ionization// Frontiers in Quantum Sys-
tems in Chemistry and Physics, Ser.: 
Progress in Theoretical Chemistry and 
Physics; Eds. S.Wilson, P.J.Grout,  J. 
Maruani, G. Delgado-Barrio, P. Piecuch 
(Springer), 2008.-Vol.18.-P.543-560.

13.	Glushkov A.V., Khetselius O.Yu.,  
Svinarenko A.A., Prepelitsa G.P., En-
ergy approach to atoms in a laser field 
and quantum dynamics with laser puls-
es of different shape//In: Coherence 
and Ultrashort Pulse Laser Emission, 
Ed. by Dr. F. Duarte (InTech).-2010.-
P.159-186. 

14.	Glushkov A.V., Khetselius O.,  Svin-
arenko A, Relativistic theory of cooper-
ative muon-g gamma-nuclear processes: 
Negative muon capture and metastable 
nucleus discharge// Advances in the 
Theory of Quantum Systems in Chem-
istry and Physics. Ser.: Progress in The-
or. Chem. and Phys., Eds. P.Hoggan, 
E.Brandas, J.Maruani, G. Delgado-
Barrio, P.Piecuch (Springer).-2012.-
Vol.22.-P.51.  

15.	Glushkov A.V., Khetselius O.Yu., Pre-
pelitsa G., Svinarenko A.A., Geometry 
of Chaos: Theoretical basis's of a con-
sistent combined approach to treating 
chaotic dynamical systems and their 
parameters determination //Proc. of  In-
ternational Geometry Center".-2013.-
Vol.6, N1.-P.43-48.

16.	Malinovskaya S.V., Glushkov A.V., 
Dubrovskaya Yu.V., Vitavetskaya L.A., 
Quantum calculation of cooperative 
muon-nuclear processes: discharge of 
metastable nuclei during negative muon 
capture// Recent Advances in the The-
ory of Chemical and Physical Systems 
(Springer).-2006.-Vol.15.-P.301-307. 

17.	Malinovskaya S.V., Glushkov A.V., 
Khetselius O.Yu.,  Lopatkin Yu., Lobo-
da A., Svinarenko A., Nikola L., Pere-
lygina T., Generalized energy approach 
to calculating electron collision cross-
sections for multicharged ions in a plas-
ma: Debye shielding model// Int. Journ. 



59

Quant. Chem.-2011.-Vol.111,N2.-
P.288-296.

18.	Malinovskaya S.V., Glushkov A.V., 
Khetselius O.Yu., Svinarenko A.A., 
Mischenko E.V., Florko T.A.,   Opti-
mized perturbation theory scheme for 
calculating the interatomic potentials 
and hyperfine lines shift for heavy at-
oms in the buffer inert gas//Int. Journ. 
Quant.Chem.-2009.-Vol.109,N14.-
P.3325-3329.

19.	Glushkov A.V., Khetselius O.Yu., Svin-
arenko A., Prepelitsa G., Mischenko E., 
The Green’s functions and density func-
tional approach to vibrational structure 
in the photoelectron spectra for mol-
ecules// AIP Conf. Proceedings.-2010.-
Vol.1290.-P. 263-268. 

20.	Khetselius O.Yu., Florko T.A., Svin-
arenko A.A., Tkach T.B., Radiative 
and collisional spectroscopy of hy-
perfine lines of the Li-like heavy ions 
and Tl atom in an atmosphere of inert 
gas//Phys.Scripta.-2013.-Vol.T153-
P.014037.  

21.	Glushkov A.V., Relativistic and cor-
relation effects in spectra of atomic 
systems.-Odessa: Astroprint.-2006.-
400P.  

22.	Glushkov A.V., Atom in electromagnet-
ic field.-Kiev: KNT, 2005.-450P. 

23.	Khetselius O.Yu., Hyperfine structure 
of atomic spectra.-Odessa: Astroprint, 
2008.-210P.

24.	Khetselius O.Yu., Hyperfine structure 
of radium// Photoelectronics.-2005.-
N14.-P. 83-85.

25.	Glushkov A.V, Malinovskaya S.,Co-op-
erative laser nuclear processes: border 
lines effects// In:  New projects and new 
lines of research in nuclear physics. 
Eds. G.Fazio, F.Hanappe, Singapore: 
World Scientific.-2003.-P.242-250. 

26.	Glushkov A.V., Lovett L., Khetselius 
O., Gurnitskaya E., Dubrovskaya Yu., 
Loboda A., Generalized multiconfigu-
ration model of decay of multipole giant 
resonances applied to analysis of reac-
tion (m-n) on the nucleus 40Ca// Internat. 

Journ. Modern  Physics A.-2009.- Vol. 
24, N.2-3.-P.611-615.

27.	Glushkov A.V., Malinovskaya S.V., 
Sukharev D.E., Khetselius O.Yu., Lo-
boda A.V., Lovett L., Green’s function 
method in quantum chemistry: New 
numerical algorithm for the Dirac equa-
tion with complex energy and Fermi-
model nuclear potential//Int.Journ. 
Quant.Chem.-2009.- Vol. 109.-N8.-
P.1717-1727.

28.	Glushkov A.V., Malinovskaya S.V, 
Gurnitskaya E.P., Khetselius O.Yu., Du-
brovskaya Yu.V., Consistent quantum 
theory of  the recoil induced excitation 
and ionization in atoms during capture 
of neutron// Journal of Physics: Conf. 
Series (IOP).-2006.- Vol.35.-P.425-430.  

29.	Glushkov A.V., Khetselius O.Yu., Gur-
nitskaya E.P., Loboda A.V., Sukharev 
D.E.,  Relativistic quantum chemis-
try of heavy ions and hadronic atomic 
systems: spectra and energy shifts//
Theory and Applications of Com-
putational Chemistry. AIP Confer-
ence Proceedings.-2009.-Vol.1102.-
P.168-171. 

30.	Khetselius O.Yu., Turin A.V., Sukharev 
D.E., Florko T.A., Estimating of  X-
ray spectra for kaonic atoms as tool for 
sensing the nuclear  structure// Sensor 
Electr. and Microsyst. Techn.-2009.-
N1.-P.30-35. 

31.	Glushkov A.V., Effective quasi-parti-
cle valence hamiltonian of molecules 
in the comprehensive semi-empirical 
theory// Sov. Journ. Str. Chem.-1998.-
Vol.29,N4.-P.3-9.

32.	Khetselius O.Yu., Quantum Geometry: 
New approach to quantization of the 
quasistationary states of Dirac equation 
for super heavy ion and calculating hy-
per fine structure parameters// Proc.  Int.
Geometry Center.-2012.-Vol.5,№ 3-4.-
P.39-45.   

33.	Glushkov A.V., Khetselius O.Yu., Svin-
arenko  A.A., Theoretical spectroscopy 
of autoionization resonances in spectra 
of lanthanide atoms//  Physica Scripta.-
2013.-Vol.T153.-P.014029.



60

34.	Gedasimov V N, Zelenkov A G, Kulakov 
V M et al 1994 JETP. 86 1169; Solda-
tov A A 1983 Preprint of I.V.Kurchatov 
Institute for Atomic Energy IAE-3916, 
Moscow

35.	Glushkov A.V., Rusov V.D., Ambrosov 
S.V., Loboda A.,Resonance states of 
compound super-heavy nucleus and 
EPPP in heavy nucleus collisions//New 
projects and new lines of research in nu-
clear physics. Eds. G.Fazio, F.Hanappe, 
Singapore : World Scientific.-2003.-
P.126-132.  

36.	Glushkov A.V., Kondratenko P.A., 
Lepikh Ya., Fedchuk A.P., Svinaren-
ko A.A., Lovett L., Electrodynamical 
and quantum - chemical approaches 
to modelling the electrochemical and 
catalytic processes on  metals, metal 
alloys and semiconductors// Int. J. 
Quantum Chem..-2009.-Vol.109, N14.-
P.3473-3481.

This article has been   received in May  2017.  

UDC 539.186

Yu. V. Dubrovskaya, A. A. Kuznetsova, A. S. Kvasikova, T. N. Sakun

SPECTROSCOPY OF COOPERATIVE ELECTRON-γ-NUCLEAR EFFECTS IN 
MULTIATOMIC MOLECULES: MOLECULE XY4

Summary
The consistent quantum approach to calculating the electron-nuclear g transition spectra (a set of 

the vibration-rotational satellites in a molecule) of a nucleus in the multiatomic molecules is used to 
get the accurate spectroscopic data on the vibration-nuclear transition probabilities in a case of the 
emission and absorption spectrum of nucleus 186Re (E(0)

g= 186.7 keV) in the molecule of ReO4. the 
main difficulty during calculating corresponding matrix elements is connected with definition of the 
values bsγ- of the normalized shifts of γ-active decay. It is known that if a molecule has the only normal 
vibration of the given symmetry type, then the corresponding values of bsγ can be found from the well 
known Eccart conditions, normalization one and data about the molecule symmetry.

Key words electron-nuclear g transition spectra, vibration-nuclear transition probabilities

УДК 539.186

Ю. В. Дубровская, А. А. Кузнецова, А. С. Квасикова, Т. Н. Сакун

СПЕКТРОСКОПИЯ КООПЕРАТИВНЫХ ЭЛЕКТРОН-ГАММА-ЯДЕРНЫХ 
ЭФФЕКТОВ В МНОГОАТОМНЫХ МОЛЕКУЛАХ: МОЛЕКУЛА XY4

Резюме
Последовательный  квантовый подход к вычислению спектров электронно-гамма-ядерных  

переходов (набора колебательно-вращательных сателлитов в молекуле) в многоатомных 
молекулах применен к определению спектроскопических данных о вероятностях колебательно-
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ядерных переходов  при излучении и поглощении ядра 186Re (E(0)
g= 186.7 кэВ) в молекуле ReO4. 

Основная трудность при оценке соответствующих матричных элементов связана с определением 
значений bsγ- нормированных сдвигов гамма-активного распада. Известно, что если молекула 
имеет единственное нормальное колебание данного типа симметрии, то соответствующие 
значения bsγ- могут быть найдены из хорошо известных условий Эккарта, условия нормировки 
и данных о симметрии молекулы. 

Ключевые слова: электронно-гамма-ядерный спектр, вероятность колебательно-ядерных 
переходов

УДК 539.186

Ю. В. Дубровська, Г. О. Кузнецова, Г. С. Квасикова, Т. М. Сакун

СПЕКТРОСКОПІЯ КООПЕРАТИВНИХ ЕЛЕКТРОН-ГАММА-ЯДЕРНИХ ЕФЕКТІВ В 
БАГАТОАТОМНИХ МОЛЕКУЛАХ: МОЛЕКУЛА XY4

Резюме
Послідовний квантовий підхід до обчислення спектрів електронно-гамма-ядерних переходів 

(набору колебательно-обертальних сателітів в молекулі) в багатоатомних молекулах застосова-
ний до визначення спектроскопічних даних про ймовірності колебательно-ядерних переходів 
при випромінюванні і поглинанні ядра 186Re (E(0)

g= 186.7 кеВ ) в молекулі ReO4. Основні труд-
нощі при оцінці відповідних матричних елементів пов’язана з визначенням значень bsγ- – нор-
мованих зрушень гамма-активного розпаду. Відомо, що якщо молекула має єдине нормальне 
коливання даного типу симетрії, то відповідні значення bsγ- – можуть бути знайдені з добре 
відомих умов Еккарта, умови нормування і даних про симетрію молекули.

Ключові слова: електрон-гамма-ядерний спектр, ймовірність коливально-ядерних 
переходів
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The work is focused on technology and characterization issues of silicon pillar nanostructures in combination with metal 
oxides, such as ZnO and TiO2, for various applications in field of biosensor and solar energy. The metal-assisted chemical 
etching method (MACE) modified with latex nanobeads lithography and spin-coating technique, was used to fabricate the 
uniform silicon nanopillar arrays. Atomic layer deposition technique (ALD) which is utilized for formation of oxide layers 
displays uniform coverage of the arrays and provides thin film formation independently on surface peculiarities. Therefore, 
it can be applied both for planar samples and 3D patterned substrates with porous media.

Introduction

The technological processing and investiga-
tion on nanostructured silicon and its composites 
with TiO2 and ZnO, for use in solar energy and 
biosensing was performed by our group. As a 
basic material for the research, it was decided to 
use nanostructured silicon pillars, which could be 
fabricated with porous surface and, thus, signifi-
cantly increase the effective area of the interac-
tion, which is a crucial factor for use in biosens-
ing approach.

Application of silicon nanopillars, especially 
with porous surface, can be implemented in the 
form of optical or electro-physical detection of 
molecules, including complex biomolecules.

Resent data published in literature demonstrate 
the advantage of the column structure compared 
to conventional porous substrate [1-3]. The con-
tact area for molecule detection is fixed depend-
ing on changes in the electrical conductivity of 
the sensor material. The usage of arrays with par-
allel oriented nanopillars could reduce the signal-
to-noise ratio, and thereby increase the sensitivity 
of the sensor [4].

The next prospective application for arrays of 
aligned silicon nanopillars is utilization for high 
efficiency solar cells. The main principle is based 
on irradiation of radial p-n junction obtained on 

silicon nanopillar coated by semiconductor ma-
terial. In this approach any semiconductor may 
be used but silicon is an obvious choice due to 
low cost and relatively simple processing. In case 
of nanowires the quantum confinement effect is 
more noticeable and utilization of silicon more 
profitable, taking into account triviality and readi-
ness of chemical methods, such as electrochemi-
cal and metal-assisted etching [5].

One of the prominent applications of wire/pil-
lar based structures is a photoanode material in 
the process of water splitting, the separation of 
water into H2 and O2 under the sunlight. Currently 
promising option in this direction is the using of 
n-type silicon contact with n-type titanium diox-
ide, where charge carriers concentration could be 
increased by additional N-doping. Therefore, us-
ing of TiO2 or ZnO nanocomposite structure can 
greatly improve the quality of the photoanode.

Silicon nano-pillars technology

The process of fabrication of aligned silicon 
nanopillar arrays is based on the method called 
metal-assisted chemical etching (MACE), which 
was studied by our research group in recent years 
[6-8].

A chemical treatment of silicon implies a top-
down approach and realized by silicon wafer 
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etching in a solution of hydrofluoric acid and oxi-
dizing agent (hydrogen peroxide in this research). 
To control the morphology of Si wafer the mask 
of polystyrene nanobeads (about 800 nm) was 
deposited onto the hydrophilic silicon surface. 
Hydrophilicity was achieved by RCA treatment 
which is a standard process for cleaning of silicon 
wafers. After obtaining of nanobead monolayer 
the reactive ion etching in oxygen atmosphere 
was applied for convergence of the nanosphere 
sizes up to 600 nm.    Photoelectron lithography 
could be used with the same success but our ap-
proach is faster and comparatively cheaper.

A thin layer of gold was used as a catalyst. Any 
of the noble metals could be used in this process, 
but the only difference lays in the dynamics of 
etching and peculiarities of chemical reactions.

During the practical implementation of the 
MACE method, it was solved a number of techni-
cal problems related to the formation of the nano-
spheres monolayer, the dynamics of the etching 
process, and so on.

The fabrication features

SEM images show a periodic structure of 
nanopillar arrays fabricated onto p-type silicon 
wafer (Fig.  1). Due to crucial influence on the 
etching process, which exerts by holes, the po-
rous nanopillars could be obtained much easier 
for p-type Si. However, for the n-type Si it is pos-
sible to choose conditions that can be also leading 
to the formation of a porous structure. For the n-
type Si the peculiarities of the surface processes, 
including barrier properties at the interface sili-
con – etching solution are very important. With 
sufficient electron density and presence of bend-
ing zones at the interface, the etching process oc-
curs even more intensive than for p-type silicon. 
These conditions are achievable by increasing the 
concentration of oxidizers that leads to increasing 
of the silicon oxidation rate.

Formation of the nanobead monolayer is the 
first important technological stage. It can be 
achieved by the spin-coating technique under 
high-speed rotation of the substrate. According to 
nanosphere size and total area of the sample this 
stage may be consisted of few successive steps 
with different rotation rates. 

Fig 1. Nanopillar arrays fabricated on p-type sili-
con wafer

Figure 2 a shows SEM image of formed self-
ordered monolayer, the border and point defects 
are clearly seen. Almost defect-free film is form-
ing after adding methanol into the nanobeads 
solution before the spin-coating process. The ob-
tained film shows quite dense hexagonal packing 
that is suitable for further processing.

The surface of the silicon after reactive ion 
etching in the oxygen plasma and deposition of 
a gold layer by magnetron sputtering is shown in 
Fig. 2 b, partially sphere removed surface shows 
the final etching pattern. The coated area is etch-
ing faster and as a result an aligned array of sili-
con nanopillars is emerging. The nanospheres 
could be removed in an ultrasonic bath by placing 
the sample in ethanol.

 

Fig. 2 a. SEM image of formed self-ordered monolayer                                          
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quantum confinement effect is more 
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Formation of the nanobead monolayer is 

the first important technological stage. It can 
be achieved by the spin-coating technique 
under high-speed rotation of the substrate. 
According to nanosphere size and total area of 
the sample this stage may be consisted of few 
successive steps with different rotation rates.  

Figure 2 a shows SEM image of formed 
self-ordered monolayer, the border and point 
defects are clearly seen. Almost defect-free 
film is forming after adding methanol into the 
nanobeads solution before the spin-coating 

process. The obtained film shows quite dense 
hexagonal packing that is suitable for further 
processing. 

The surface of the silicon after reactive 
ion etching in the oxygen plasma and 
deposition of a gold layer by magnetron 
sputtering is shown in Fig. 2 b, partially 
sphere removed surface shows the final 
etching pattern. The coated area is etching 
faster and as a result an aligned array of 
silicon nanopillars is emerging. The 
nanospheres could be removed in an 
ultrasonic bath by placing the sample in 
ethanol. 
 

  
 
Fig. 2 a. SEM image of formed self-
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Fig. 2 b. Final etching pattern                                           
 
As a result of all treatments and 

subsequent etching the evenly distributed 
hexagonal straight aligned porous nanopillar 
arrays are formed. By choosing the etching 
parameters and conditions a set of samples 
suitable for subsequent deposition of titanium 

dioxide and zinc oxide were obtained, and 
investigation on optical, structural and 
biosensing properties were performed. 

For application of this type of structures in 
the solar energy the nanopillar arrays with 
bundle packed structure were obtained. These 
structures possess a high absorption 
coefficient due to additional absorption of the 
radiation reflected from the surface of the 
substrate. The advantage of such a structure 
over the conventional vertical arrays described 
in the literature and is widely studied at the 
present time [9]. 

The morphology of an individual 
nanopillar was investigated in details. For this 
purpose nanopillar arrays was decomposed in 
ultrasonic bath and investigated by SEM. The 
porous surface of a single pillar is shown in 
Fig. 3. The pore size is about 10-20 nm and 
relate to mesopores. Thorough investigation 
has shown that at least for the p-type Si a 
microporous structure with scale of 2 - 8 nm 
could be formed. 

 

  
 
Fig. 3. Surface of a single pillar 
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Fig. 2 b. Final etching pattern                                          

As a result of all treatments and subsequent 
etching the evenly distributed hexagonal straight 
aligned porous nanopillar arrays are formed. By 
choosing the etching parameters and conditions a 
set of samples suitable for subsequent deposition 
of titanium dioxide and zinc oxide were obtained, 
and investigation on optical, structural and bio-
sensing properties were performed.

For application of this type of structures in the 
solar energy the nanopillar arrays with bundle 
packed structure were obtained. These structures 
possess a high absorption coefficient due to ad-
ditional absorption of the radiation reflected from 
the surface of the substrate. The advantage of 
such a structure over the conventional vertical ar-
rays described in the literature and is widely stud-
ied at the present time [9].

The morphology of an individual nanopillar 
was investigated in details. For this purpose nano-
pillar arrays was decomposed in ultrasonic bath 
and investigated by SEM. The porous surface of 
a single pillar is shown in Fig. 3. The pore size is 
about 10-20 nm and relate to mesopores. Thor-
ough investigation has shown that at least for the 
p-type Si a microporous structure with scale of 
2 - 8 nm could be formed.

The ability of controlling the comprehensive 
morphology on pillar-structure, such as height, di-
ameter and pore size allows us to consider these pe-
riodic nanopillar arrays as a promising material for 
continuing the research of silicon nanocomposite 
structures application for biosensor devices [10].
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The bulk material of the nanopillars also dem-
onstrates a porous structure as it can be seen from 
“stump” of a single nanopillar (Fig. 4), also the 
same structure pertains to the surrounding region 
(silicon substrate).

 
Fig. 4. Stump of a single nanopillar
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of first precursor, chemical reaction to the surface 
and blowing off the chamber with nitrogen. Then 
second precursor goes through the stages the 
same order.

A complex nanocomposite structure is forming 
after the deposition of titanium dioxide on the po-
rous nanopillar arrays. At a certain pillar’s height 
and thickness of titanium dioxide layer occurs a 
mechanical deformation of the array (Fig. 5). In 
order to investigate this process the TiO2 layer was 
deposited in the range of 150 to 500 ALD cycles, 
the equivalent growth rate for smooth surface is 
about 0.2 Å per cycle. Mechanical changes in the 
pillar arrays structure takes place at sufficiently 
large height and could lead to destruction of the 
too high pillars. As well a crucial destruction influ-
ence on the lengthy pillar arrays occurs during the 
etching process due to hydrodynamic forces. 

Such a complex composite system is very in-
teresting for future research, including features of 
quantum confinement effects and application in 
biosensor devices.

 

Fig. 5. Mechanical deformation of the array

By filling the space between pillars, TiO2 forms 
an amorphous photoactive layer, which provides 
an effective light harvesting on the heterojunction 
interface. During the ALD process, TiO2 quite 
deeply penetrates into the pores and additional 
annealing process induces a complex polycrystal-
line structure in the matrix of porous silicon.

The similar nanocomposite based on ZnO was 
also investigated for biosensor application. The 

principle of operation of the biosensor is based 
on immobilization of the biosensitive layer on the 
surface of zinc oxide [8, 10]. Presence of the de-
tected substance could be estimated through re-
flectivity or luminescence spectra due to surface 
plasmon resonance effect under UV irradiation. 
Probes of ZnO/Si nanolaminates were fabricated 
for investigation of this process. Deposition of 
250 and 500 ZnO ALD cycles were implemented 
onto flat silicon substrate. Obtained probes have 
shown a good stability and high adhesion, there-
fore further investigation of mentioned composite 
structures seems to be prospective.

Results and conclusion

Thus, an important problem was resolved – 
identification and optimization of new and known 
technological mechanisms in nanosilicon form-
ing processes that have influence on the optical, 
structural and surface properties of obtained Si / 
ZnO and Si / TiO2 nanocomposites as a result of 
the influence of components interaction and ex-
ternal factors with the aim of stabilization of the 
properties of materials based on nanocomposite 
materials. 

The technology of porous silicon nanopillars 
and new nanocomposites based on the method of 
using chemical nonelectrolytic etching and atom-
ic layered deposition was developed. Structural 
characteristics of the obtained complex nano-
composite structures were determined by using of 
SEM equipment.

On the base of the described approach of nano-
silicon composites in modern electronic industry 
the properties of existing photosensitive, gas-
sensitive and other media can be improved, and 
also the improvement of operating parameters 
of devices on the base of nanopillar Si with a si-
multaneous reduction in the cost of raw materials 
which may lead to lower the prices of mentioned 
devices. The research results can be used in the 
development of applied sections of surface phys-
ics, semiconductor physics, materials science, 
micro- and nanoelectronics. Technological op-
timization results can be used in developed pro-
cesses to create nanostructures on silicon. Theo-
retical information and new fundamental results 
on optical and electrical properties of nanoscale 
systems, such as studied Si nanopillars, give the 



66

way to perform the basic properties research 
of nano-Si composites, their practical use and 
creation of new devices electronic technology 
on its base.
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Ie. V. Brytavskyi, A. V. Tereshchenko, V. B. Myndrul, M. M. Pavlenko,  V. A. Smyntyna

SILICON NANOPILLARS FORMING AND COVERING BY Zn AND Ti OXIDES FOR 
SOLAR ENERGY APPLICATIONS AND BIOSENSORICS 

Summary
The work is focused on technology and characterization issues of silicon pillar nanostructures in 

combination with metal oxides, such as ZnO and TiO2, for various applications in field of biosensor 
and solar energy. The metal-assisted chemical etching method (MACE) modified with latex nanobeads 
lithography and spin-coating technique, was used to fabricate the uniform silicon nanopillar arrays. 
Atomic layer deposition technique (ALD) which is utilized for formation of oxide layers displays uni-
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form coverage of the arrays and provides thin film formation independently on surface peculiarities. 
Therefore, it can be applied both for planar samples and 3D patterned substrates with porous media.

Key words: nanopillars, atomic layer deposition, nanocomposites 

УДК 73.40.Gk, Lq; 73.61.Ga

Є. В. Бритавський, А. В. Терещенко, В. Б. Миндрул, М. М. Павленко, В. А. Сминтина 

ФОРМУВАННЯ КРЕМНІЄВИХ НАНО-ПІЛЛАРСІВ ТА ПОКРИТТЯ ЇХ ОКСИДАМИ 
ЦИНКУ ТА ТИТАНУ ДЛЯ ВИКОРИСТАННЯ В СОНЯЧНІЙ ЕНЕРГЕТИЦІ ТА 

БІОСЕНСОРИЦІ 

Анотація
Робота присвячена технології і характеризації кремнієвих наноструктур в поєднанні з по-

криттям оксидами металів для різних застосувань в біосенсориці і сонячній енергетиці. У 
статті описується спосіб неелектролітичного травлення, модифікованого використанням шару 
наносфер на підкладці, сформованого методом поверхневого центрифугування. Метод атом-
но-шарового осадження, який використовувався для формування оксидів на наноструктурах, 
демонструє утворення рівномірного шару і не залежить від геометрії підкладки, тому він може 
застосовуватися як для плоских зразків, так і для підкладок з тривимірною структурою і з по-
ристими шарами.

Ключові слова: наностовбчик, атомно-шарове осадження, нанокомпозит

УДК 73.40.Gk, Lq; 73.61.Ga

Е. В. Бритавский, А. В. Терещенко, В. Б. Мындрул, Н. Н. Павленко, В. А. Смынтына 

ФОРМИРОВАНИЕ КРЕМНИЕВЫХ НАНО-ПИЛЛАРСОВ И ПОКРЫТИЯ ИХ 
ОКСИДАМИ ЦИНКА И ТИТАНА ДЛЯ ИСПОЛЬЗОВАНИЯ В СОЛНЕЧНОЙ 

ЭНЕРГЕТИКЕ И БИОСЕНСОРИКЕ 

Аннотация
Работа посвящена технологии и характеризации кремниевых наноструктур в сочетании с 

оксидами металлов для различных применений в биосенсорике и солнечной энергетике. В ста-
тье описывается способ неэлектролитического травления, модифицированного использовани-
ем слоя наносфер на подложке, сформированного методом поверхностного центрифугирова-
ния. Метод атомно-слоевого осаждения, который использовался для формирования оксидов 
на наноструктурах, демонстрирует образование равномерного слоя и не зависит от геометрии 
подложки, поэтому он может применяться как для плоских образцов, так и для подложек с 
трехмерной структурой и с пористыми слоями.

Ключевые слова: наностолбик, атомно-слоевое осаждение, нанокомпозит
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RELATIVISTIC THEORY OF SPECTRA OF PIONIC ATOMIC SYSTEMS
208Pb WITH ACCOUNT OF  STRONG PION-NUCLEAR INTERACTION EFFECTS 

It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis of the Klein-Gordon-Fock with 
a generalized radiation and strong pion-nuclear potentials. It is applied to calculation of the energy and spectral parameters 
for pionic atoms of the 208Pb  with accounting for the radiation (vacuum polarization), nuclear (finite size of a nucleus ) 
and the strong pion-nuclear  interaction corrections. The measured values of the Berkley, CERN and Virginia laboratories 
and alternative data based on other versions of the Klein-Gordon-Fock theories with taking into account for a finite size 
of the nucleus in the model uniformly charged sphere and the standard Uehling-Serber radiation correction and optical 
atomic theory  are listed too. There are listed new data on shift and broadening of the 4f level in  208Pb  due to the strong 
pion-nuclear interaction.

1.  Introduction

In papers [1-3] we have presented a new rela-
tivistic method of the Klein-Gordon-Fock equa-
tion with an generalized pion-nuclear potential 
to determine transition energies in spectroscopy 
of light, middle and heavy pionic atoms with ac-
counting for the strong interaction effects. In this 
paper, which goes on our studying on spectros-
copy of pionic atoms, we firstly applied method 
[1-3] to calculating calculation of the energy and 
spectral parameters for pionic atom of the 208Pb 
with accounting for the radiation (vacuum po-
larization), nuclear (finite size of a nucleus ) and 
the strong pion-nuclear  interaction corrections. 
There are listed new data on shift and broadening 
of the 4f level in  208Pb  due to the strong pion-
nuclear interaction.

Following [1-3], let us remind that  spectros-
copy of hadron atoms has been used as a tool for 
the study of particles and fundamental properties 
for a long time. Exotic atoms are also interesting 
objects as they enable to probe aspects of atomic 
and nuclear structure that are quantitatively dif-
ferent from what can be studied in electronic or 
“normal” atoms. At present time one of the most 

sensitive tests for the chiral symmetry breaking 
scenario in the modern hadron’s physics is pro-
vided by studying the exotic hadron-atomic sys-
tems. Nowadays the transition energies in pionic 
(kaonic, muonic etc.) atoms are measured with an 
unprecedented precision and from studying spec-
tra of the hadronic atoms it is possible to investi-
gate the strong interaction at low energies meas-
uring the energy and natural width of the ground 
level with a precision of few meV [1-20].  The 
strong interaction is the reason for a shift in the 
energies of the low-lying levels from the purely 
electromagnetic values and the finite lifetime of 
the state corresponds to an increase in the ob-
served level width. For a long time the similar 
experimental investigations have been carried out 
in the laboratories of Berkley, Virginia (USA), 
CERN (Switzerland). The most known theoreti-
cal models to treating the hadronic (pionic, ka-
onic, muonic, antiprotonic etc.) atomic systems 
are presented in refs. [21-48]. The most difficult 
aspects of the theoretical modeling are reduced 
to the correct description of pion-nuclear strong 
interaction [1-3] as the electromagnetic part of the 
problem is reasonably accounted for. 
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2.  Relativistic approach to pionic atoms 
spectra 

 
As the basis’s of a new method has been 
published, here we present only the key 
topics of an approach [1-3]. All available 
theoretical models to treating the hadronic 
(kaonic, pionic) atoms are naturally based on 
the using the Klein-Gordon-Fock equation 
[2,5], which can be written as follows :                                         
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where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
                                                        
              xt exp(-iE  (x) ,              (2) 
 
where x is the solution of the stationary 
equation: 
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential. The most 
direct approach to treating the strong  
interaction is provided by the well known 
optical potential model (c.g. [2]). The nuclear 
potential for the spherically symmetric 
density  Rr  is [13-15]: 
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The most popular Fermi-model pproximation 
the charge distribution in the nucleus  r  is:   
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where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  

<r2>1/2=(0.836A1/3+0.5700)fm. 
The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of 
the following system of the differential 
equations with the corresponding boundary 
conditions. Another, probably, more 
consistent approach is in using the relativistic 
mean-field (RMF) model, which been 
designed as a renormalizable meson-field 
theory for nuclear matter and finite nuclei 
[21]. The detailed presentation of our method 
for construction of the many-body relativistic 
perturbation theory with accounting for 
relativistic, exchange-correlation, nuclqar 
and radiative (QED) effects is presented in 
Refs. [41-71]. Here we note that to account 
QED effect, namely, the vacuum polarization 
one we have used the generalized  Ueling-
Serber potential with modification to take 
into account the high-order corrections.  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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true the following condition for average-
squared radius:  

<r2>1/2=(0.836A1/3+0.5700)fm. 
The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of 
the following system of the differential 
equations with the corresponding boundary 
conditions. Another, probably, more 
consistent approach is in using the relativistic 
mean-field (RMF) model, which been 
designed as a renormalizable meson-field 
theory for nuclear matter and finite nuclei 
[21]. The detailed presentation of our method 
for construction of the many-body relativistic 
perturbation theory with accounting for 
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and radiative (QED) effects is presented in 
Refs. [41-71]. Here we note that to account 
QED effect, namely, the vacuum polarization 
one we have used the generalized  Ueling-
Serber potential with modification to take 
into account the high-order corrections.  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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2.  Relativistic approach to pionic atoms 
spectra

As the basis’s of a new method has been pub-
lished, here we present only the key topics of an 
approach [1-3]. All available theoretical models 
to treating the hadronic (kaonic, pionic) atoms are 
naturally based on the using the Klein-Gordon-
Fock equation [2,5], which can be written as fol-
lows :  

(1)

where c is a speed of the light, h is the Planck con-
stant, and Ψ0(x) is the scalar wave function of the 
space-temporal coordinates. Usually one consid-
ers the central potential [V0(r), 0] approximation 
with the stationary solution:
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of the mass energy mc2 and binding energy e0). In 
principle, the central potential V0 naturally in-
cludes the central Coulomb potential, the vacu-
um-polarization potential, the strong interaction 
potential. The most direct approach to treating the 
strong  interaction is provided by the well known 
optical potential model (c.g. [2]). The nuclear po-
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following system of the differential equations 
with the corresponding boundary conditions. An-
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using the relativistic mean-field (RMF) model, 
which been designed as a renormalizable meson-
field theory for nuclear matter and finite nuclei 
[21]. The detailed presentation of our method for 
construction of the many-body relativistic pertur-
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change-correlation, nuclqar and radiative (QED) 
effects is presented in Refs. [41-77]. Here we note 
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where c is a speed of the light, h is the Planck 
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Here E is the total energy of the system (sum 
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where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
                                                        
              xt exp(-iE  (x) ,              (2) 
 
where x is the solution of the stationary 
equation: 
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential. The most 
direct approach to treating the strong  
interaction is provided by the well known 
optical potential model (c.g. [2]). The nuclear 
potential for the spherically symmetric 
density  Rr  is [13-15]: 
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The most popular Fermi-model pproximation 
the charge distribution in the nucleus  r  is:   
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                                                                   (5) 
where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  

 
<r2>1/2=(0.836A1/3+0.5700)fm. 

 
The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of 
the following system of the differential 
equations with the corresponding boundary 
conditions. Another, probably, more 
consistent approach is in using the relativistic 
mean-field (RMF) model, which been 
designed as a renormalizable meson-field 
theory for nuclear matter and finite nuclei 
[21]. The detailed presentation of our method 
for construction of the many-body relativistic 
perturbation theory with accounting for 
relativistic, exchange-correlation, nuclqar 
and radiative (QED) effects is presented in 
Refs. [41-77]. Here we note that to account 
QED effect, namely, the vacuum polarization 
one we have used the generalized  Ueling-
Serber potential with modification to take 
into account the high-order corrections.  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential. The most 
direct approach to treating the strong  
interaction is provided by the well known 
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Here  rnp,  – distribution of a density of the 
protons and neutrons, respectively,  – 
parameter ( 0  corresponds to case of “no 
correlation”, 1 , if anticorrelations 
between nucleons);  respectively isoscalar 
and isovector parameters b0, c0 , B0, b1,c1 , C0  
B1, C1 –are corresponding to the s-wave and 
p-wave (repulsive and attracting potential 
member) scattering length in the combined 
spin-isospin space with taking into account 
the absorption of pions (with different 
channels at p-p pair  ppB0  and  p-n  pair  

 pnB0 ),  and isospin and  spin dependence of 

an amplitude  -N scattering   
(         rrbrbrb np   100 , 

the Lorentz-Lorentz effect in the p-wave 
interaction. For the pionic atom with 
remained  electron shells the total wave-
function is a product of the product Slater 
determinant of the electrons subsystem 
(Dirac equation) and the pionic wave 
function. In whole the energy of the hadronic 
atom is represented as the sum:   

             ;KG FS VP NE E E E E         (12)                                                                                                                       

Here KGE -is the energy of a pion in a 
nucleus  ,Z A  with the point-like charge 

(dominative contribution in (12)), FSE  is the 
contribution due to the nucleus finite size 
effect,  VPE is the radiation correction due to 

the vacuum-polarization effect, NE  is the 

energy shift due to the strong interaction NV . 
The strong pion-nucleus interaction 
contribution can be found from the solution 
of the Klein-Gordon-Fock equation with the 
corresponding pion-nucleon potential. 

3.  Results and conclusions 
 
In table 1 our data on the 4f-3d, 5g-4f 

transition energies for pionic atom of 208Pb 
are presented. The measured values of the  
CERN and alternative data based on other 
versions of the Klein-Gordon-Fock theories 
with taking into account for a finite size of 
the nucleus in the model uniformly charged 
sphere and the standard Uehling-Serber 
radiation correction   and optical atomic 
theory are listed too [2-10]. In table 2 we 
present data on the shift and broadening 
(keV) of the 4f level due to the strong pion-
nuclear interaction [2-8]. 

 
Table 1. Transition energies (keV) in the spectra of heavy pionic atom  208Pb (see text) 

Trans. CERN 
EEXP 

EN 
[14, 18] 

EN, 
Our data 

4f-3d 1282 2.2 1261.23 1281.78 
5g-4f 575.46 0.04 - 575.78 

 
Table 2. Shift and broadening (keV) of the 4f level due to the strong pion-nuclear interaction 

4f ,4f Exp 
H-like 
Func. 

Tau1 
 

Tau2 
 

Bat 
 

Sek 
 

Laat 
 

Our  
 

208Pb:  1.680.04 - 1.76 1.62 1.58 1.39 1.68 1.65 
208Pb: Г 0.980.05 - 1.18 1.04 1.03 0.86 0.98 0.97 

 
Here we use the short designation of the VN: 
potential parameter sets: Tauscher, -Tau1; 
Tauscher, -Tau2; Batty etal-Bat .; Seki etal- 
Sek; Laat-Konijin etal - Laat, Our set – our. 

 
Our parameterization VN upheld options that 
are the most reliably determined 
(B0,с0,с1,С0). The potential parameters whose 
values differ greatly in different sets, in 
particular, b1 (b1= –0.094) plus not included 

absorption of pions (with different channels at p-p 
pair ( )ppB0  and  p-n  pair  ( )pnB0 ),  and isospin and  
spin dependence of an amplitude  p-N scattering  

( ( ) ( ) ( ) ( ){ }rrbrbrb np rrrr −+→ 100 ,

the Lorentz-Lorentz effect in the p-wave interac-
tion. For the pionic atom with remained  electron 
shells the total wave-function is a product of the 
product Slater determinant of the electrons sub-
system (Dirac equation) and the pionic wave 
function. In whole the energy of the hadronic 
atom is represented as the sum:  

             ;KG FS VP NE E E E E≈ + + +               (12)

Here KGE -is the energy of a pion in a nucleus 
( ),Z A  with the point-like charge (dominative 
contribution in (12)), FSE  is the contribution due 
to the nucleus finite size effect,  VPE is the radia-
tion correction due to the vacuum-polarization ef-
fect, NE  is the energy shift due to the strong in-
teraction NV .

The strong pion-nucleus interaction contribu-
tion can be found from the solution of the Klein-
Gordon-Fock equation with the corresponding pi-
on-nucleon potential. The detailed description and 
analysis of different aspects of the computational 
procedure can be found in Refs. [1-4,48-75]. 

3.  Results and conclusions

In table 1 our data on the 4f-3d, 5g-4f transi-
tion energies for pionic atom of 208Pb are presen-
ted. The measured values of the  CERN and alter-
native data based on other versions of the Klein-
Gordon-Fock theories with taking into account for 
a finite size of the nucleus in the model uniformly 
charged sphere and the standard Uehling-Serber 
radiation correction   and optical atomic theory 
are listed too [2-10]. In table 2 we present data on 

Table 2
Shift and broadening (keV) of the 4f level due to the strong pion-nuclear interaction

the shift and broadening (keV) of the 4f level due 
to the strong pion-nuclear interaction [2-8].

Table 1 
Transition energies (keV) in the spectra of 

heavy pionic atom  208Pb (see text)

Trans. CERN
EEXP

EN
[14, 18]

EN,
Our 

data

4f-3d 1282 ± 2.2 1261.23 1281.78

5g-4f 575.46 ± 0.04 - 575.78

Here we use the short designation of the 
VpN: potential parameter sets: Tauscher, -Tau1; 
Tauscher, -Tau2; Batty etal-Bat .; Seki etal- Sek; 
Laat-Konijin etal - Laat, Our set – our.

Our parameterization VpN upheld options that 
are the most reliably determined (B0,с0,с1,С0). The 
potential parameters whose values ​​differ greatly 
in different sets, in particular, b1 (b1=

 –0.094) plus 
not included still to the VpN  parameter  set (ImB1, 
ImC1 ) were optimized by calculating the strong 
dependencies shifts for the pionic p-20Ne,24Mg, 93

Nb,133Cs,175Lu,181Ta,197Au,208Pb atoms upon the 
values ​​of b1, ImB1,ImC1; further the selected these 

values meet the standard deviation of the least re-
liable experimental values. 

The analysis of the presented data indicate on 
the importance of the correct accounting for the 
radiation (vacuum polarization) and the strong pi-
on-nuclear  interaction corrections. Obviously, it 
is clear that that the contributions provided by the 
finite size effect should be accounted in a precise 
theory. Besides, taking into account the increas-
ing accuracy of the X-ray pionic atom spectros-
copy experiments, it can be noted  that knowl-
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edge of the exact electromagnetic theory data will 
make more clear the true values for parameters 
of the pion-nuclear potentials and correct the dis-
advantage of widely used parameterization of the 
potentials (9)-(11). 
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RELATIVISTIC THEORY OF SPECTRA OF PIONIC ATOMIC SYSTEM 208Pb
WITH ACCOUNT OF  STRONG PION-NUCLEAR INTERACTION EFFECTS 

Abstract. It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis 
of the Klein-Gordon-Fock with a generalized radiation and strong pion-nuclear potentials. It is applied 
to calculation of the energy and spectral parameters for pionic atoms of the 208Pb  with accounting 
for the radiation (vacuum polarization), nuclear (finite size of a nucleus ) and the strong pion-nuclear  
interaction corrections. The measured values of the Berkley, CERN and Virginia laboratories and 
alternative data based on other versions of the Klein-Gordon-Fock theories with taking into account 
for a finite size of the nucleus in the model uniformly charged sphere and the standard Uehling-Serber 
radiation correction and optical atomic theory  are listed too. There are listed new data on shift and 
broadening of the 4f level in  208Pb  due to the strong pion-nuclear intetraction.
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РЕЛЯТИВИСТСКАЯ ТЕОРИЯ СПЕКТРОВ ПИОННЫХ АТОМНЫХ СИСТЕМ 208Pb С 
УЧЕТОМ ЭФФЕКТОВ СИЛЬНОГО ПИОН-ЯДЕРНОГО ВЗАИМОДЕЙСТВИЯ

Резюме. Представлена последовательная релятивистская теория спектров пионных атомов 
на основе уравнения Клейна-Гордона-Фока с обобщенными радиационным и сильным  пион-
ядерным потенциалом.  Выполнен расчет энергетических и спектральных параметров для пи-
онного атома 208Pb, с учетом радиационных (поляризация вакуума), ядерных (конечный размер 
ядра) эффектов и поправки на сильное пион-нуклонное взаимодействие.  Также для сравнения 
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представлены данные измерений в лабораториях Berkley, ЦЕРН и Вирджиния и теоретические 
результаты, полученные на основе альтернативных теорий Клейна-Гордона-Фока с учетом ко-
нечного размера ядра в модели равномерно заряженной сферы и стандартной Юлинг-Сербер 
поправки.   Представлены новые данные по сдвигу и уширению 4f уровня в атоме  208Pb  благо-
даря сильному пион-ядерному взаимодействию.
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PЕЛЯТИВІСТСЬКА ТЕОРІЯ СПЕКТРІВ ПІОННИХ АТОМНИХ СИСТЕМ 208Pb  
З УРАХУВАННЯМ ЕФЕКТІВ СИЛЬНОЇ ПІОН-ЯДЕРНОЇ ВЗАЄМОДІЇ

Резюме. Представлена послідовна релятивістська теорія спектрів півоній атомів на основі 
рівняння Клейна-Гордона-Фока з узагальненими радіаційним і сильним півонія-ядерним по-
тенціалом. Виконано розрахунок енергетичних і спектральних параметрів для піоного атома 
208Pb з урахуванням радіаційних (поляризація вакууму), ядерних (кінцевий розмір ядра ) ефек-
тів та поправки на сильну піон-нуклонну взаємодію. Також для порівняння представлені дані 
вимірювань в лабораторіях Berkley, ЦЕРН і Вірджинія і теоретичні результати, отримані на 
основі альтернативних теорій Клейна-Гордона-Фока з урахуванням кінцевого розміру ядра в 
моделі рівномірно зарядженої сфери і стандартної Юлінг-Сербер поправки. Представлені нові 
данні щодо зсуву та уширення 4f рівня в атомі  208Pb  завдяки сильній піон-ядерній взаємодії
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ADVANCED GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO 
VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA OF DIATOMIC 

MOLECULE

The advanced combined theoretical approach to vibrational structure in photoelectron spectra  of diatomic molecules, 
which is based on the density functional theory (DFT) and the Green’s-functions approach, is used for quantitative treating 
the diatomic photoelectron spectra. The density of states, which describe the vibrational structure in photoelectron spectra, 
is defined with the use of combined DFT-Green’s-functions approach and is well approximated by using only the first 
order coupling constants in the one-particle approximation. Using the DFT theory leads to significant simplification of the 
calculation.

1. Introduction

The Green’s method is very well known in 
a quantum theory of field, quantum theory of 
solids. Naturally, an attractive idea was to use 
it in the molecular theory. Regarding a problem 
of description of the vibrational structure in 
photoelectron spectra of molecules, it is easily 
understand that this approach has great perspective 
(c.f.[1-51]).  One could note that the experimental 
photoelectron (PE) spectra usually show a 
pronounced vibrational structure. Usually the 
electronic Green’s function is defined for fixed 
position of the nuclei. As result, only vertical 
ionization potentials (V.I.P.’s) can be calculated 
[11,2,11,12]. The cited method, however, requires 
as input data the geometries, frequencies, and 
potential functions of the initial and final states. 
Since in most cases at least a part of these data are 
unavailable, the calculations have been carried 
out with the objective of determining the missing 
data by comparison with experiment. Naturally, 
the Franck-Condon factors are functions of the 
derivatives of the difference between the potential 
curves of the initial and final states with respect to 
the normal coordinates. To avoid the difficulty and 
to gain additional information about the ionization 
process, the Green’s functions approach has 

been extended to include the vibrational effects 
in the photoelectron spectra. Nevertheless, there 
are well known great difficulties of the correct 
interpretation of the photoelectron spectra for any 
molecules. 

Here we present the advanced combined 
theoretical approach to vibrational structure in 
photoelectron spectra  of diatomic molecules 
and  use it for effective quantitative treating the 
diatomics photoelectron spectra. The advanced 
approach is based on the Green’s function 
method (Cederbaum-Domske version) [11,12], 
Fermi-liquid DFT formalism [1-8] and use of 
the novel effective density functionals  (see also 
[13-16]). As usually  (see Refs. [2,4,11]), the 
density of states, which describe the vibrational 
structure in molecular photoelectron spectra, 
is calculated with the help of combined DFT-
Green’s-functions approach. In addition to 
exact solution of one-bode problem different 
approaches to calculate reorganization and 
many-body effects are presented. The density 
of states is well approximated by using only 
the first order coupling constants in the one-
particle approximation. It is important that the 
calculational procedure is significantly simplified 
with using the quasiparticle DFT formalism.  
Thus quite simple method becomes a powerful 
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tool in interpreting the vibrational structure of 
photoelectron spectra for different molecular 
systems.  

2. Method: Density of states in one-body 
and many-body solution

As usually (see details in refs. [1-12]), the 
quantity which contains the information about 
the ionization potentials (I.P.) and molecular 
vibrational structure due to quick ionization is the 
density of occupied states:
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where 〉Y0  is the exact ground state wave function 

of the reference molecule and  )(tak is an electron 
destruction operator, both in the Heisenberg 
picture. For particle attachment the quantity of 
interest is the density of unoccupied states:
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 Usually in order to calculate the value (1) 
states for photon absorption one should express 
the Hamiltonian of the molecule in the second 
quantization formalism. The Hamiltonian is as 
follows:
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where ΕT  and ΝT  are the kinetic energy operators 
for electrons and nuclei, and U represents the 
interaction; ΕΕU represents  the Coulomb 
interaction between electrons, etc;  x (X) denotes 
electron (nuclear) coordinates. As usually, 
introducing a field operator 
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Hartree-Fock (HF) one–particle functions  

фi  ( )(Ri∈ are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry on 
the HF level) and dimensionless normal 
coordinates Qs one can write the standard 
Hamiltonian as follows [2,11]:
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with ni=1 (0), iϵf  (iϵf), δσf=1 (0) , (ijkl)ϵσf , where 

the index set v1 means that at least  kφ  and lφ or iφ  

and jφ are unoccupied, v2 that at most one of the 

orbitals is unoccupied, and  v3  that  kφ  and jφ or 

lφ and  jφ  are unoccupied.  Here for simplicity all 
terms leading to anharmonicities are neglected. 

The sω are the HF frequencies; sb , t
sb  are 

destruction and creation operators for vibrational 
quanta as 

                     ),)(2/1( t
sss bbQ +=    

                   ))(2/1(/ t
sss bbQ −=∂∂ .               (5)

The interpretation of the above Hamiltonian and 
an exact solution of the one-body HF problem is 
given in refs. [1,2,11,12]. The HF-single-particle 

component 0H  of the Hamiltonian (4) is as 
follows:

formalism.  Thus quite simple method 
becomes a powerful tool in interpreting the 
vibrational structure of photoelectron spectra 
for different molecular systems.

2. Method: Density of states in one-body 
and many-body solution

As usually (see details in refs. [1-12]), the 
quantity which contains the information 
about the ionization potentials (I.P.) and 
molecular vibrational structure due to quick 
ionization is the density of occupied states:
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where 〉Ψ0 is the exact ground state wave 
function of the reference molecule and  

)(tak is an electron destruction operator, both 
in the Heisenberg picture. For particle 
attachment the quantity of interest is the 
density of unoccupied states:
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Usually in order to calculate the value (1) 
states for photon absorption one should 
express the Hamiltonian of the molecule in 
the second quantization formalism. The 
Hamiltonian is as follows:
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where ΕT and ΝT are the kinetic energy 
operators for electrons and nuclei, and U
represents the interaction; ΕΕU represents  the 
Coulomb interaction between electrons, etc;  
x (X) denotes electron (nuclear) coordinates. 
As usually, introducing a field operator 
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∑=Ψ with the 

Hartree-Fock (HF) one–particle functions фi

( )(Ri∈ are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry 
on the HF level) and dimensionless normal 

coordinates Qs one can write the standard 
Hamiltonian as follows [2,11]:
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with ni=1 (0), i∈f  (i∉f), δσf=1 (0) , (ijkl)∈σf
, where the index set v1 means that at least  

kφ and lφ or iφ and jφ are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3 that  kφ and jφ or lφ and  jφ are 
unoccupied.  Here for simplicity all terms 
leading to anharmonicities are neglected. The 

sω are the HF frequencies; sb , t
sb are 

destruction and creation operators for 
vibrational quanta as 
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sss bbQ +=
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The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,2,11,12]. The HF-
single-particle component 0H of the 
Hamiltonian (4) is as follows:

formalism.  Thus quite simple method 
becomes a powerful tool in interpreting the 
vibrational structure of photoelectron spectra 
for different molecular systems.

2. Method: Density of states in one-body 
and many-body solution

As usually (see details in refs. [1-12]), the 
quantity which contains the information 
about the ionization potentials (I.P.) and 
molecular vibrational structure due to quick 
ionization is the density of occupied states:
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where 〉Ψ0 is the exact ground state wave 
function of the reference molecule and  

)(tak is an electron destruction operator, both 
in the Heisenberg picture. For particle 
attachment the quantity of interest is the 
density of unoccupied states:
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Usually in order to calculate the value (1) 
states for photon absorption one should 
express the Hamiltonian of the molecule in 
the second quantization formalism. The 
Hamiltonian is as follows:
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where ΕT and ΝT are the kinetic energy 
operators for electrons and nuclei, and U
represents the interaction; ΕΕU represents  the 
Coulomb interaction between electrons, etc;  
x (X) denotes electron (nuclear) coordinates. 
As usually, introducing a field operator 
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∑=Ψ with the 

Hartree-Fock (HF) one–particle functions фi

( )(Ri∈ are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry 
on the HF level) and dimensionless normal 

coordinates Qs one can write the standard 
Hamiltonian as follows [2,11]:
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with ni=1 (0), i∈f  (i∉f), δσf=1 (0) , (ijkl)∈σf
, where the index set v1 means that at least  

kφ and lφ or iφ and jφ are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3 that  kφ and jφ or lφ and  jφ are 
unoccupied.  Here for simplicity all terms 
leading to anharmonicities are neglected. The 

sω are the HF frequencies; sb , t
sb are 

destruction and creation operators for 
vibrational quanta as 

),)(2/1( t
sss bbQ +=

))(2/1(/ t
sss bbQ −=∂∂ . (5)

The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,2,11,12]. The HF-
single-particle component 0H of the 
Hamiltonian (4) is as follows:

formalism.  Thus quite simple method 
becomes a powerful tool in interpreting the 
vibrational structure of photoelectron spectra 
for different molecular systems.

2. Method: Density of states in one-body 
and many-body solution

As usually (see details in refs. [1-12]), the 
quantity which contains the information 
about the ionization potentials (I.P.) and 
molecular vibrational structure due to quick 
ionization is the density of occupied states:

〉〈∫=
−

00 ψ)()0(aψ)2/1(є)(
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π ,
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where 〉Ψ0 is the exact ground state wave 
function of the reference molecule and  

)(tak is an electron destruction operator, both 
in the Heisenberg picture. For particle 
attachment the quantity of interest is the 
density of unoccupied states:
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0k0 ψ)0((t)aaψ)2/1(є)(
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Usually in order to calculate the value (1) 
states for photon absorption one should 
express the Hamiltonian of the molecule in 
the second quantization formalism. The 
Hamiltonian is as follows:
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)()/()/(

XxUXU
xUXTxTH

ΕΝΝΝ

ΕΕΝΕ

++
++∂∂+∂∂= (3)

where ΕT and ΝT are the kinetic energy 
operators for electrons and nuclei, and U
represents the interaction; ΕΕU represents  the 
Coulomb interaction between electrons, etc;  
x (X) denotes electron (nuclear) coordinates. 
As usually, introducing a field operator 

),(),,(),,( θθφθ RaRxxR ii
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∑=Ψ with the 

Hartree-Fock (HF) one–particle functions фi

( )(Ri∈ are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry 
on the HF level) and dimensionless normal 

coordinates Qs one can write the standard 
Hamiltonian as follows [2,11]:
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with ni=1 (0), i∈f  (i∉f), δσf=1 (0) , (ijkl)∈σf
, where the index set v1 means that at least  

kφ and lφ or iφ and jφ are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3 that  kφ and jφ or lφ and  jφ are 
unoccupied.  Here for simplicity all terms 
leading to anharmonicities are neglected. The 

sω are the HF frequencies; sb , t
sb are 

destruction and creation operators for 
vibrational quanta as 

),)(2/1( t
sss bbQ +=

))(2/1(/ t
sss bbQ −=∂∂ . (5)

The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,2,11,12]. The HF-
single-particle component 0H of the 
Hamiltonian (4) is as follows:

formalism.  Thus quite simple method 
becomes a powerful tool in interpreting the 
vibrational structure of photoelectron spectra 
for different molecular systems.

2. Method: Density of states in one-body 
and many-body solution

As usually (see details in refs. [1-12]), the 
quantity which contains the information 
about the ionization potentials (I.P.) and 
molecular vibrational structure due to quick 
ionization is the density of occupied states:
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where 〉Ψ0 is the exact ground state wave 
function of the reference molecule and  

)(tak is an electron destruction operator, both 
in the Heisenberg picture. For particle 
attachment the quantity of interest is the 
density of unoccupied states:
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Usually in order to calculate the value (1) 
states for photon absorption one should 
express the Hamiltonian of the molecule in 
the second quantization formalism. The 
Hamiltonian is as follows:
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XxUXU
xUXTxTH

ΕΝΝΝ

ΕΕΝΕ

++
++∂∂+∂∂= (3)

where ΕT and ΝT are the kinetic energy 
operators for electrons and nuclei, and U
represents the interaction; ΕΕU represents  the 
Coulomb interaction between electrons, etc;  
x (X) denotes electron (nuclear) coordinates. 
As usually, introducing a field operator 

),(),,(),,( θθφθ RaRxxR ii
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∑=Ψ with the 

Hartree-Fock (HF) one–particle functions фi

( )(Ri∈ are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry 
on the HF level) and dimensionless normal 

coordinates Qs one can write the standard 
Hamiltonian as follows [2,11]:
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with ni=1 (0), i∈f  (i∉f), δσf=1 (0) , (ijkl)∈σf
, where the index set v1 means that at least  

kφ and lφ or iφ and jφ are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3 that  kφ and jφ or lφ and  jφ are 
unoccupied.  Here for simplicity all terms 
leading to anharmonicities are neglected. The 

sω are the HF frequencies; sb , t
sb are 

destruction and creation operators for 
vibrational quanta as 

),)(2/1( t
sss bbQ +=

))(2/1(/ t
sss bbQ −=∂∂ . (5)

The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,2,11,12]. The HF-
single-particle component 0H of the 
Hamiltonian (4) is as follows:

formalism.  Thus quite simple method 
becomes a powerful tool in interpreting the 
vibrational structure of photoelectron spectra 
for different molecular systems.

2. Method: Density of states in one-body 
and many-body solution

As usually (see details in refs. [1-12]), the 
quantity which contains the information 
about the ionization potentials (I.P.) and 
molecular vibrational structure due to quick 
ionization is the density of occupied states:
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where 〉Ψ0 is the exact ground state wave 
function of the reference molecule and  

)(tak is an electron destruction operator, both 
in the Heisenberg picture. For particle 
attachment the quantity of interest is the 
density of unoccupied states:
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Usually in order to calculate the value (1) 
states for photon absorption one should 
express the Hamiltonian of the molecule in 
the second quantization formalism. The 
Hamiltonian is as follows:
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XxUXU
xUXTxTH
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++
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where ΕT and ΝT are the kinetic energy 
operators for electrons and nuclei, and U
represents the interaction; ΕΕU represents  the 
Coulomb interaction between electrons, etc;  
x (X) denotes electron (nuclear) coordinates. 
As usually, introducing a field operator 
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∑=Ψ with the 

Hartree-Fock (HF) one–particle functions фi

( )(Ri∈ are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry 
on the HF level) and dimensionless normal 

coordinates Qs one can write the standard 
Hamiltonian as follows [2,11]:
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with ni=1 (0), i∈f  (i∉f), δσf=1 (0) , (ijkl)∈σf
, where the index set v1 means that at least  

kφ and lφ or iφ and jφ are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3 that  kφ and jφ or lφ and  jφ are 
unoccupied.  Here for simplicity all terms 
leading to anharmonicities are neglected. The 

sω are the HF frequencies; sb , t
sb are 

destruction and creation operators for 
vibrational quanta as 
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sss bbQ −=∂∂ . (5)

The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,2,11,12]. The HF-
single-particle component 0H of the 
Hamiltonian (4) is as follows:
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Correspondingly in the one-particle picture the 
density of occupied states is given by
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Introducing new operators                
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with real coefficients slsl
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eq. (7) is as follows:
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where d  function in (12) naturally  contains the 
information about adiabatic ionization potential 
and the spacing of the vibrational peaks; 

20ˆ 〉〈 Un  is the well-known Franck-Condon 
factor.   In a diagrammatic method to get function 

)(ºNk  one should calculate the GF )(' ºGkk first 
[1,2,11,12]:
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and the function )(ºNk  can be found from the 
relation
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Choosing the unperturbed Hamiltonian 0H  to be 
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known approximation GF is as follows: 
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The direct method for calculation of Nk(∈) as the 
imaginary part of the GF includes a definition of 
the vertical I.P. (V.I.P.s) of the reference molecule 
and then of Nk ( )∈ .  The zeros of the functions
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where ( )k
op S+∈ denotes the k-th eigenvalue of the 

diagonal matrix of the one-particle energies added 
to matrix of the self-energy part, are the negative 
V. I. P. ‘s for a given geometry.  One can write 
[2,11,12]:
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Expanding the ionic energy 1−N
kE about the 

equilibrium geometry of the reference molecule 
in a power series of the normal coordinates of this 
molecule leads to a set of linear equations in the 
unknown normal coordinate shifts δQS, and new 
coupling constants are then:
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The  coupling constants lg  and lly ′  are calculated 
by the well-known perturbation expansion of the 
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self-energy part using the Hamiltonian HEN of Eq. 
(3).   In second order one obtains:
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and the coupling constant gl, are written as
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It is suitable to use further the pole strength of the 
corresponding GF:
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Below we give the DFT definition of the pole 
strength corresponding to V. I. P.’s and confirm 
the earlier data [11-15]: pk≈0,8-0,95. The coupling 
constant is:   
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3. Fermi-liquid quasiparticle density function-
al theory

Further we consider  the quasiparticle Fermi-
liquid version of the DFT, following to refs. [1-
3,8,17]. The  master equations can be obtained 
on the basis of variational principle, if we start 
from a Lagrangian of a molecule  Lq . It should be 

defined as a functional of  quasiparticle densities: 
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The densities ν0 and ν1  are similar to the HF 
electron density and kinetical energy density cor-
respondingly; the density ν2  has no an analog in 
the HF or DFT theory and appears as result of 
account for the energy dependence of the mass 
operator S. A Lagrangian Lq  can be written as a 
sum of a free Lagrangian and Lagrangian of inter-
action: Lq = Lq

0 + Lq
int, where a free Lagrangian Lq

0 
has a standard form: 
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The interaction Lagrangian is defined in the form, 
which is characteristic for a standard  DFT  (as 
a sum of the Coulomb and exchange-correlation 
terms), however, it takes into account for the 
energy dependence of a mass operator S :
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where ikb  are some constants (look below), F is 
an effective potential of the exchange-correlation 

interaction. The Coulomb interaction part KL
looks as follows: 
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where                       In the local density 
approximation the potential F can be expressed 
through the exchange-correlation pseudo-
potential Vxc as follows: 

                                                                      (27)

Further, one can get the following expressions for  

iqi L dnd /int−=S :, in particular: 
     

(25)
where ikβ are some constants (look below), 
F is an effective potential of the exchange-
correlation interaction. The Coulomb 
interaction part KL looks as follows: 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 

F(r1,r2)=δVxc/δν0⋅δ(r1-r2). (27)

Further, one can get the following 
expressions for  iqi L δνδ /int−=Σ :, in 
particular: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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The terms ε∂∂∑ / and ∑ 2
is directly linked 

[2,17]. In the terms of the Green function 
method expression (7) is in fact 
corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach can be connected with using the 
DFT correlation functional of the Lee-Yang-
Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic 
molecule of N2 for application of the 
combined  Green’s function method and 
quasiparticle DFT approach. The nitrogen 
molecule has been naturally discussed in 
many papers. The valence V. I. P. 's of N2
have been calculated [1,13,14,24] by the 
method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
example where the known Koopmans' 
theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT approach
(e), the similar our results (f). 
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where ikβ are some constants (look below), 
F is an effective potential of the exchange-
correlation interaction. The Coulomb 
interaction part KL looks as follows: 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 

F(r1,r2)=δVxc/δν0⋅δ(r1-r2). (27)

Further, one can get the following 
expressions for  iqi L δνδ /int−=Σ :, in 
particular: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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[2,17]. In the terms of the Green function 
method expression (7) is in fact 
corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach can be connected with using the 
DFT correlation functional of the Lee-Yang-
Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic 
molecule of N2 for application of the 
combined  Green’s function method and 
quasiparticle DFT approach. The nitrogen 
molecule has been naturally discussed in 
many papers. The valence V. I. P. 's of N2
have been calculated [1,13,14,24] by the 
method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
example where the known Koopmans' 
theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT approach
(e), the similar our results (f). 
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where ikβ are some constants (look below), 
F is an effective potential of the exchange-
correlation interaction. The Coulomb 
interaction part KL looks as follows: 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 

F(r1,r2)=δVxc/δν0⋅δ(r1-r2). (27)

Further, one can get the following 
expressions for  iqi L δνδ /int−=Σ :, in 
particular: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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[2,17]. In the terms of the Green function 
method expression (7) is in fact 
corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach can be connected with using the 
DFT correlation functional of the Lee-Yang-
Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic 
molecule of N2 for application of the 
combined  Green’s function method and 
quasiparticle DFT approach. The nitrogen 
molecule has been naturally discussed in 
many papers. The valence V. I. P. 's of N2
have been calculated [1,13,14,24] by the 
method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
example where the known Koopmans' 
theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT approach
(e), the similar our results (f). 
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where ikβ are some constants (look below), 
F is an effective potential of the exchange-
correlation interaction. The Coulomb 
interaction part KL looks as follows: 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 

F(r1,r2)=δVxc/δν0⋅δ(r1-r2). (27)

Further, one can get the following 
expressions for  iqi L δνδ /int−=Σ :, in 
particular: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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[2,17]. In the terms of the Green function 
method expression (7) is in fact 
corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach can be connected with using the 
DFT correlation functional of the Lee-Yang-
Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic 
molecule of N2 for application of the 
combined  Green’s function method and 
quasiparticle DFT approach. The nitrogen 
molecule has been naturally discussed in 
many papers. The valence V. I. P. 's of N2
have been calculated [1,13,14,24] by the 
method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
example where the known Koopmans' 
theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT approach
(e), the similar our results (f). 

coordinate shifts δQS, and new coupling 
constants are then:

( ) ( )[ ]01 /2/1 lkk QFg ∂+∈∂±= (18)
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The  coupling constants lg and lly ′ are 
calculated by the well-known perturbation 
expansion of the self-energy part using the 
Hamiltonian HEN of Eq. (3).   In second order 
one obtains:
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and the coupling constant gl, are written as
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It is suitable to use further the pole strength 
of the corresponding GF:
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Below we give the DFT definition of the pole 
strength corresponding to V. I. P.'s and 
confirm the earlier data [11-15]: pk≈0,8-0,95.
The coupling constant is:
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3. Fermi-liquid quasiparticle density 
functional theory

Further we consider  the quasiparticle Fermi-
liquid version of the DFT, following to refs. 
[1-3,8,17]. The  master equations can be 
obtained on the basis of variational principle, 
if we start from a Lagrangian of a molecule 
Lq . It should be defined as a functional of 
quasiparticle densities: 

,|)(|)( 2
0 ∑ Φ=

λ
λλν rnr

,|)(|)( 2
1 ∑ Φ∇=

λ
λλν rnr (23)

∑ ΦΦ−ΦΦ=
λ

λλλλλν ].[)( **
2 nr

The densities ν0 and ν1 are similar to the HF 
electron density and kinetical energy density 
correspondingly; the density ν2 has no an 
analog in the HF or DFT theory and appears 
as result of account for the energy 
dependence of the mass operator Σ. A 
Lagrangian Lq can be written as a sum of a 
free Lagrangian and Lagrangian of 
interaction: Lq = Lq

0 + Lq
int, where a free 

Lagrangian Lq
0 has a standard form: 

λ
λ

λλ ε Φ−∂∂Φ= ∫ ∑ )/(*0
pq tindrL , (24)

The interaction Lagrangian is defined in the 
form, which is characteristic for a standard  
DFT  (as a sum of the Coulomb and 
exchange-correlation terms), however, it 
takes into account for the energy dependence 
of a mass operator Σ :
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Here VK is the Coulomb term, ex
0S  is the ex-

change term. Using the known canonical relation-
ship, one can derive the  quasiparticle Hamiltoni-

an, which is corresponding to qL .Further con-
stants βik should be defined.  In some degree they 
have the same essence as the similar constants in 
the well-known Landau Fermi-liquid theory and  
the Migdal finite Fermi-systems theory. Regard-
ing universality of  βik,, indeed, as we know now, 
the total  universality of the constants in the last 
theories is absent, though a range of its changing 
is quite small [2,17]. The value of  β00  is depen-
dent on definition of Vxc. If as Vxc it is used one of 
the DFT exchange-correlation potentials from, 
then without losing a community of statement, 
β00=1. The constant β02  can be in principle calcu-
lated by analytical way, but it is very useful to 
remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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The terms e∂∂∑ /  and ∑ 2
is directly linked 

[2,17]. In the terms of the Green function method 
expression (7) is in fact corresponding to the pole 
strength of the  Green’s function [2].  The new 
element of an approach can be connected with us-
ing the DFT correlation functional of the Lee-
Yang-Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic mole-
cule of N2 for application of the combined  Green’s 
function method and quasiparticle DFT approach. 
The nitrogen molecule has been naturally dis-
cussed in many papers. The valence V. I. P. ‘s of 
N2 have been calculated [1,13,14,24] by the meth-
od of Green’s functions and therefore the pole 
strengths pk are known and the mean values qk can 
be estimated. It should be reminded that the N2 

molecule is the classical example where the 
known Koopmans’ theorem even fails in reproduc-
ing the sequence of the V. I. P. ‘s in the PE spec-
trum.   From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. I. P. 

‘s assigned by gσ and uσ improve while for π V. I. 
P. the good agreement between the Koopmans 
value and the experimental one is lost, leading to 
the same sequence as given by Koopmans’ theo-
rem.  In Table 1 the experimental V. I. P. ‘s (a), the 
one-particle HF energies (b), the V. I. P. ‘s calcu-
lated by Koopmans’ theorem plus the contribution 
of reorganization (c), the V. I. P. ‘s calculated with 
Green’s functions method (d), the combined Green 
functions and DFT approach (e), the similar our 
results (f).   

Table 1
The experimental and calculated V. I. P.’s 
(in eV) of N2. Rk is the contribution of 

reorganization; pk stands for pole strength.

Orbital Exptla

V.I.P.,s - b
k∈ ( )c

kk R+∈−

3 gσ
15,60 17,36 16,01

1 up
16,98 17,10 15,67

2 uσ
18,78 20,92 19,93

Orbital Calcd

V.I.P.,s
Calce

V.I.P.,s
Calcf

V. I . P. ,

e
kr

3 gσ
15,50 15,52 15,58

1 up
16,83 16,85 16,96

2 uσ
18,59 18,63 18,76

The important point of all consideration is 
connected the principal possibility to reproduce 
diatomic spectra by applying a one-particle theory 
with account of the correlation and reorganization 
effects. The combined theoretical approach, which 
is based on the quasiparticle DFT  with using 

(25)
where ikβ are some constants (look below), 
F is an effective potential of the exchange-
correlation interaction. The Coulomb 
interaction part KL looks as follows: 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 

F(r1,r2)=δVxc/δν0⋅δ(r1-r2). (27)

Further, one can get the following 
expressions for  iqi L δνδ /int−=Σ :, in 
particular: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:

[ ]
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



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 −
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−= ∑ kkksp PIVF .)..(1 (29)

The terms ε∂∂∑ / and ∑ 2
is directly linked 

[2,17]. In the terms of the Green function 
method expression (7) is in fact 
corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach can be connected with using the 
DFT correlation functional of the Lee-Yang-
Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic 
molecule of N2 for application of the 
combined  Green’s function method and 
quasiparticle DFT approach. The nitrogen 
molecule has been naturally discussed in 
many papers. The valence V. I. P. 's of N2
have been calculated [1,13,14,24] by the 
method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
example where the known Koopmans' 
theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT approach
(e), the similar our results (f). 
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correct DF and  the Green’s-functions approach 
can be prospectively used for quantitative treating 
the diatomic photoelectron spectra. It is very 
important that the computational complexity of 
the combined approach is significantly lower in 
comparison with original version of the Green’s-
functions method. 
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ADVANCED GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO 
VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA OF DIATOMIC 

MOLECULE

Summary
The advanced combined theoretical approach to vibrational structure in photoelectron spectra  of 

molecules, which is based on the density functional theory (DFT) and the Green’s-functions (GF) 
approach, is used for quantitative treating the diatomics photoelectron spectra. The density of states, 
which describe the vibrational structure in photoelectron spectra, is defined with the use of combined 
‘density functional-Green’s functions’ approach and is well approximated by using only the first order 
coupling constants in the one-particle approximation. Using the DFT theory leads to significant sim-
plification of the molecular calculations.      

Key words: photoelectron spectra of molecules, Green’s functions, density functional theory
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ОБОБЩЕННЫЙ МЕТОД ФУНКЦИЙ ГРИНА И ФУНКЦИОНАЛА ПЛОТНОСТИ 
В ОПРЕДЕЛЕНИИ КОЛЕБАТЕЛЬНОЙ СТРУКТУРЫ ФОТОЭЛЕКТРОННОГО 

СПЕКТРА ДВУХАТОМНЫХ МОЛЕКУЛ

Резюме
Усовершенствованный комбинированный теоретический метод описания вибрационной 

структуры для фотоэлектронных спектров молекул, основанный на методе функций Грина и те-
ории функционала плотности, применен к количественному описанию фотоэлектронного спек-
тра двухатомных молекул. Плотность состояний, которые описывают колебательную структу-
ру в фотоэлектронных спектрах, определяется с использованием комбинированного  подхода 
(метод функционала плотности и функций Грина) и хорошо аппроксимируется с использова-
нием только первого порядка констант связи в одноквазичастичном приближении. Использо-
вание теории функционала плотности приводит к значительному упрощению молекулярных 
расчетов.

Ключевые слова: фoтoэлектронный спектр молекул, метод функций Грина, теория функци-
онала плотности

УДК 539.186

Г. О. Кузнецова, Ю. В. Дубровська, О. В. Глушков, Я. І. Лепіх

УДОСКОНАЛЕНИЙ МЕТОД ФУНКЦІЙ ГРІНА І ФУНКЦІОНАЛУ ГУСТИНИ У 
ВИЗНАЧЕННІ ВІБРАЦІЙНОЇ СТРУКТУРИ ФОТОЕЛЕКТРОННОГО СПЕКТРУ 

ДВОАТОМНИХ МОЛЕКУЛ

Резюме
Удосконалений комбінований теоретичний метод опису вібраційної  структури для фото-

електронних спектрів молекул, який базується на методі функцій Гріна і теорії функціоналу 
густини , застосовано до кількісного опису фотоелектронного спектру двоатомних молекул. 
Густина  станів, які описують коливальну структуру у фотоелектронних спектрах, визначається 
з використанням комбінованого Гріна підходу (метод функціоналу густини  і функцій Гріна) та 
добре апроксимується  з використанням тільки першого порядку констант зв’язку в одноквазі-
частинковому наближенні. Використання теорії функціоналу густини призводить до значного 
спрощення молекулярних розрахунків.

Ключові слова: фoтoелектронний спектр молекул, метод функцій Гріна, теорія функціонала 
густини
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A METHOD FOR LOWERING THE LEVEL OF THE ELECTROMAGNETIC WAVES 
BACKGROUND RADIATION OF HORN RADIATOR

The problem about decrease in horn radiator electromagnetic waves return radiation level by a method of excitation of 
the slowed down surface waves on an exterior side of its aperture edge, being in an antiphase with return radiation elec-
tromagnetic waves has been solved.

For practical application of this method, a pyramidal H-sector horn radiator with curvilinear walls is taken. In the con-
struction of this method, an impedance metal comb is used, which acts as a delay line for electromagnetic waves reflected 
from the aperture of the radiator.

Introduction

Horn radiators (HR) refer to an aperture class 
of the antenna working in a range of ultrahigh fre-
quencies (UHF). Thanks to simplicity of a design 
and high technical characteristics HR have found 
wide application in modern radio-electronic com-
munication systems, radar-locations, tele-radio 
broadcasting, and also in space flying vehicle.

One of HR advantages is the high radiation ori-
entation which is characterised by the orientation 
diagramme (OD). HR have wide range of work-
ing frequencies, high efficiency and possibility to 
radiate electromagnetic waves of the big capacity 
(up to 100 MW) that make them irreplaceable in a 
radar-location and a space radio communication. 

However, there are the various factors worsen-
ing HR characteristics. In particular:

1) sphericity of the phase front form in a plane 
of HR outlet aperture; 

2) dispersion of the radiation basic harmonic 
field energy inside the HR on the set of mode of 
the higher harmonics;

3) occurrence of the electromagnetic field en-
ergy return reflexion in feeding wave guide;

4) occurrence of return radiation into the re-
gion of space which is behinde the HR.

The last is caused by a line of the phenome-
na in which number the most ponderable is the 
electromagnetic waves reradiation by the currents 

induced in the HR aperture outlet edge contour 
(aperture).

The researches [1-9] directed on improvement 
of HR characteristics have led to occurrence of 
HR new class with curvilinear walls in which in-
fluence of the listed phenomena is considerably 
reduced. However, the problem of the return ra-
diation remains actual.

In our work the new method of the return ra-
diation level arising on an edge of HR aperture 
outlet reduction which is applied to pyramidal 
HR with curvilinear walls is offered.

1.  Problem statement

Let’s consider cross-section of an aperture out-
let of pyramidal HR, representing the electric 

contour of rectangular section 1K  radiating elec-
tromagnetic waves (fig. 1). Sources of an electro-

magnetic field are alternating currents 1 2 3 4i ,i ,i ,i . 
Assume that each site of a contour radiates in 

space cylindrical waves with a length 0l  and 

phase 0j . Let’s by condention, B - the area of 
direct radiation located in front of HR aperture . 
The plane of these areas section coincides with a 

plane of  contour 1K . Let’s place the geometrical 

centre of 1K  contour  at the beginning of the co-
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ordinate system. On an axis z in the region of 

semispace ( )A z, x, y− ± ±  we will place con-

tour 2K  identical to contour 1K  with the geo-

metrical centre with coordinates ( )0 0, , l− . 
Then the electromagnetic waves radiated by 

contour 1K  having passed distance l  during lagt  

will induce alternating currents 1 2 3 4i ,i ,i ,i′ ′ ′ ′  in con-

tour 2K . As the result the system of two radiating 

contours - active 1K  and passive 2K  will turn 

out, and the phase of radiation of a contour 2K  – 

2j  will lag behind phase 0j  for time necessary 
for an electromagnetic wave for overcoming the 
distance l . 

At axes z in a distant zone we will pick up the 

point 
0zM l>> . The distance from zero of coordi-

nate system to point 
0zM l>>  should be 10 times 

more the wave length 0l . 
The electromagnetic waves radiated by con-

tours 1K  and 2K  will reach point 
0zM l>>  not 

simultaneously, and during 1
0

Rt
c

=  on radius-

vector R1 and 2
lag

l Rt
v c

= + , where v and c - 

electromagnetic waves speed of distribution be-

tween contours 1K  and 2K , and in free space 
accordingly. As R1 and R2 is more than distance 
between contours l it is possible to consider, that 

1 2R R R= = .

It is necessary to define such time of delay lagt  

at which in a point of supervision 
0zM l>>   phases 

0j  and 2j  will differ from each other on size p . 

0lagt t p− =                         (1)
or

0

2
l l
v c c

l
− =                         (2)

In this case the electric and magnetic field vec-

tors radiated by contours 1K  and 2K  are in anti-

phase for any x, y,-z 10 times larger than 0l  and 
the resultant capacity stream density in a distant 
zone of semispace A tends to zero. In semispace 

( )B z, x, y± ±  in a distant zone phases 0j  and 

2j  will coincide, as the wave passes between 
contours the distance equal 2l (there and back) for 

corresponding time 2 2lagt p= . 

2. Decision technique

To fulfill conditions (1-2) it is necessary to re-
duce the electromagnetic energy distribution 

speed in the region ( )0z , l− . For this purpose 

we will place between conductors of contours 1K  

and 2K  the slowing down comb type structure 
made in the form of a flat metal comb (fig. 2).

Fig. 2. A fragment of slowing down comb structure 
on the basis of an impedance metal comb. t  - the 
comb period, l – comb length, d – comb thickness, 
h – comb height , v - slowing down wave speed,  

vph -  phase speed

The first comb (a) corresponds to contour К1, 
the last comb (c) corresponds to contour К2. 

At interaction of a flat electromagnetic wave 
with an impedance metal comb over its surface 
the slowed down surface waves appear. Electro-
dynamics of the given process is studied enough 
[10-12]. Having solved the equation (2) concern-
ing speed of the surface slowed down wave v we 
will receive:

0

2

lv c
ll=

+
                           (3)



90

Knowing the v size it is possible to find all 
geometrical parametres of slowing down struc-
ture, namely: t  - the comb period, l – the comb 
length , d –the comb thickness, h – the comb 
height at which the condition of formula (1) will 
be satisfied. Using received in [2, 10, 12] expres-
sions for slowing down inductive type structure 
on the basis of an impedance metal comb we will 
write down the common decision of a problem 
uniting in geometrical and electrodynamic 
parametres.

2 0

0

;
21 2ý

c lc

ld htg
l

t p
t l

=
  +−+  
 

 

                  

0

0

6 8 ;
0 5 ;

;

0
4
max

eff

l
,

d

h .

l
t l

t
l

= ÷
 <
 <<

 < <


                         (4)

where c - speed of electromagnetic waves 
distribution in vacuum;

0l  - length of a wave corresponding to the 
middle of the operating band;

maxl  -  maximum length of a wave of the 
operating band;

minl  -  minimum length of a wave of the 
operating band;
t  -  comb period; 
d -  comb thickness; 
l – comb length; 
heff – combs effective height counted under the 
formula: 

( )0.14effh h d t= − + ,

where h – the constructive (in fact) edge height.

3. Results and discussion

For practical application described above 
method it is taken pyramidal N-sectorial HR with 
curvilinear walls, in which design the impedance 
metal comb is included (fig. 3).

Fig. 3. H-sectorial HR with curvilinear walls of 
combined form with the return radiation lowered 
level. 1-H-sectorial HR with curvilinear walls of 
combined forms, 2- comb type slowing down struc-
ture in the form of a flat metal impedance comb in 
section, 3 - metal comb edge, l - metal comb length, 
τ - the comb-period, d – comb thickness, h – comb 

height

The prototype sample of offered HR with fol-
lowing parametres is made and tested:

- the minimum wavelength of the operating 

band min 24l =  mm;
- the maximum wavelength of operating band 

max 36l =  mm;
- the length of a horizontal rib of HR outlet 

aperture Aр = 100 mm;
- the rib constructive height h=3 mm;
- the edge thickness d = 0,5 mm;
- the comb period t  = 5 mm;
-the comb length l = 210 mm;  
- Metal comb flutes depth changes on expo-

nential law.
In polar system of coordinates are constructed 

normalized directional diagrames (DD) of HR 
prototype sample (solid line) and similar HR, but 
without impedance comb (dotted line) (fig. 4).

4. Conclusions

The analysis of received DD allows to con-
clude. 

1. Level of back lobe DD of HR prototype 
sample with an impedance comb is considerably 
less, than at HR without an impedance comb;
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2. At observation angle of 090θ =  concern-
ing the radiation maximum in developed HR in-
tensity of an electromagnetic field decreases, and 
at HR without an impedance comb, on the con-
trary, in the given point growth of intensity of an 
electromagnetic field is observed. Theoretical cal-
culations and experimental researches of HR 
sample confirm efficiency of the offered decision.

References
1.	 Karpenko A.A. Yssledovanye rupornykh 

yzluchateley po dyapazonnыm 
svoystvam // Odesa: Haykovi pratsi 
UDAZ im. O. S. Popova, 2000., №1., 
S. 76-77. 

2.	 Karpenko A.A., Lepikh Ya.I. 
Kompensatsyya fazovoy oshybky 
v yzluchatelyakh SVCh-voln s 
pomoshch’yu ympedansnoy struktury 
// Tekhnolohyya y konstruyrovanye v 
elektronnoy apparature. 2007., Odesa, 
№2 (68), S. 38-41.

3.	 Karpenko A.A., Lepikh Ya.I. 
Yzluchatel’ elektromahnytnykh 
voln s kombynyrovannoy formoy 
obrazuyushchykh // Radyotekhnyka 
i elektronyka. Tom 53., № 7., 2008., 
Moskva., S. 818-824.

4.	 Karpenko A.A., Lepikh Ya.I. Metod 
rascheta rupornoho pyramydal’noho 
yzluchatelya voln SVCh s 
kryvolyneynoy obrazuyushchey // 
Radyoelektronyka. Yzvestyya visshykh 
uchebnykh zavedenyy KNTU. Tom 51., 
№ 5-6., 2008., Kyev., S. 22-33.

5.	 Karpenko A.O., Lepikh Ya.I. 
Vyprominyuvach elektromahnitnykh 
khvyl’ NVCh diapazonu z kerovanym 

fazovym frontom. Patent na korysnu 
model’ UA № 53694 (51)MPK (2009) 
H01Q 13/00

6.	 Karpenko A.O., Lepikh Ya.I. 
Vyprominyuvach elektromahnitnykh 
khvyl’. Patent UA №97300 (51)MPK 
(2012) H01Q 13/02 (2006.01)

7.	 Karpenko A.O., Lepikh Ya.I. Rupornyy 
piramidal’nyy vyprominyuvach 
elektromahnitnykh khvyl’ NVCh 
diapazonu. Patent UA №75105 (51)
MPK (2012.01) H01Q 13/00

8.	 Shumlyanskyy I.I. // Rupornye 
yzluchately so stupenchatыmy y 
kryvolyneynymy obrazuyushchymy.– 
K.: Vyshcha shk. Holovnoe yzd-vo, 
1986. – 147s.

9.	 I.I. Shumljansky. Horn radiators of 
complex configuration. Copyright 
1993 by World Scientific Publishing 
Singapore, New Jersey, London, Hon 
Kong. Co. Pte. Ltd. 

10.	Benenson L.S., Kyurkchan A.H. 
Metod razvyazky antenn pry 
pomoshchy peryodycheskykh struktur 
// Radyotekhnyka.– 1995.– № 12.– s. 
62–69.

11.	Lobkova L.M. Proektyrovanye antenn y 
ustroystv SVCh: Ucheb. posobye dlya 
vuzov / L.M. Lobkova. – Sevastopol’: 
Yzd-vo SevNTU, 2002. – 178 s.

12.	Habryl’yan D.D., Zvezdyna M.Yu., 
Kostenko P.Y. Umen’shenye bokovoho 
y zadneho yzluchenyya antenny na 
osnove yspol’zovanyya ympedansnykh 
struktur. // Radyoelektronyka.–2003.– 
№ 2.– s.38 - 43.

This article has been   received in April  2017



92

UDC 621.396.67

A. O. Karpenko

A METHOD FOR LOWERING THE LEVEL OF THE ELECTROMAGNETIC WAVES 
BACKGROUND RADIATION OF HORN RADIATOR

Summary 
The problem about decrease in horn radiator electromagnetic waves return radiation level by a 

method of excitation of the slowed down surface waves on an exterior side of its aperture edge, being 
in an antiphase with return radiation electromagnetic waves has been solved.

For practical application of this method, a pyramidal H-sector horn radiator with curvilinear walls 
is taken. In the construction of this method, an impedance metal comb is used, which acts as a delay 
line for electromagnetic waves reflected from the aperture of the radiator.

Key words: Horn radiator, horn antenna, surface electromagnetic waves, impedance retardation 
structure, radiation pattern
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МЕТОД СНИЖЕНИЯ УРОВНЯ ОБРАТНОГО ИЗЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНЫХ 
ВОЛН РУПОРНОГО ИЗЛУЧАТЕЛЯ 

Аннотация
Решена задача о снижении уровня обратного излучения электромагнитных волн рупорно-

го излучателя методом возбуждения замедленных поверхностных волн на внешней стороне 
кромки его раскрыва, находящихся в противофазе с электромагнитными волнами обратного 
излучения.

Для практического применения данного метода взят пирамидальный Н-секториальный ру-
порный излучатель с криволинейными стенками, в конструкцию которого включена импеданс-
ная металлическая гребёнка, выполняющая роль линии задержки для отраженных от апертуры 
излучателя электромагнитных волн.

Ключевые слова: Рупорный излучатель, рупорная антенна, поверхностные электромагнит-
ные волны, импедансная замедляющая структура, диаграмма направленности. 
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МЕТОД ЗНИЖЕННЯ РІВНЯ ЗВОРОТНОГО ВИПРОМІНЮВАННЯ РАДІОХВИЛЬ 
РУПОРНОГО ВИПРОМІНЮВАЧА

Аннотація
Розв’язана задача про зниження рівня зворотного випромінювання електромагнітних хвиль 

рупорного випромінювача шляхом збудження уповільнених поверхневих хвиль на зовнішній 
стороні кромки його розкриву, що знаходяться в протифазі з електромагнітними хвилями зво-
ротного випромінювання.

Для практичного застосування даного методу взято пірамідальний Н-секторіальний ру-
порний випромінювач з криволінійними стінками, в конструкцію якого включена імпедансна 
металева гребінка, що виконує роль лінії затримки для відбитих від апертури випромінювача 
електромагнітних хвиль.

Ключові слова: Рупорний випромінювач, рупорна антена, поверхневі електромагнітні 
хвилі, імпедансна уповільнююча структура, діаграма направленості.
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SPECTROSCOPY OF MULTICHARGED IONS IN PLASMAS:  
OSCILLATOR STRENGTHS OF Be-LIKE ION Fe

The generalized relativistic energy approach with using the Debye shielding model is used for studying spectral pa-
rameters of ions in plasma  and determination of the oscillator strengths  for the Be-like ions. An electronic Hamiltonian 
for N-electron ion in a plasma is added by the Yukawa-type electron-electron and nuclear interaction potential. Oscillator 
strengths gf for 2s2-[2s1/22p3/2]1 transition in Be-like Fe are computed for different values of the electron density and tempera-
ture ( ne=1022-1024cm-3, T=0.5-2 keV) of plasmas are presented and compared with available alternative spectroscopic data.

1.	 Introduction

Spectroscopy of multicharged ions in a 
plasmas is one of the most fast developing 
branches of modern atomic spectroscopy. Let us 
remind that a great interest to studying radiation 
and collision processes parameters in a plasmas 
is connected with importance of these data for 
correct description of parameters characteristics 
for plasma in thermonuclear (tokamak) reactors, 
searching new mediums for X-ray range lasers 
[1-20]. In many papers the calculations of various 
atomic systems embedded in Debye plasmas have 
been performed ([13-16]). Different theoretical 
methods were employed along with the Debye 
screening to study plasma medium. Earlier we 
have developed a new version of a relativistic en-
ergy approach combined with the  many-body per-
turbation theory (RMBPT) for multi-quasiparticle 
(QP) systems for studying spectra of plasma of 
the multicharged ions and electron-ion collisional 
parameters. The method is based on the Debye 
shielding model and energy approach [16-22]. A 
new element of this paper is in using the effective 
optimized Dirac-Kohn-Sham method in general 
relativistic energy approach to collision processes 
in the Debye plasmas. Here Oscillator strengths 
gf for 2s2-[2s1/22p3/2]1 transition in Be-like Fe are 
computed for different values of the electron den-
sity and temperature ( ne=1022-1024cm-3, T=0.5-2 

keV) of plasmas are presented and compared with 
available alternative spectroscopic data.

2. Generalized energy approach in scatter-
ing theory. Debye shielding model

Let us firstly consider the Debye shielding 
model accordinf to Refs. [16,18]. It is known (see 
[10-14,19] and refs. therein) in the classical theo-
ry of plasmas developed by Debye-Hückel, the 
interaction potential between two charged parti-
cles  is modelled by the Yukawa-type potential, 
which contains the shielding parameter m [1]. 
The parameter m is connected with the plasma pa-
rameters such as the temperature T and the charge 

density n  as follows:  Tkne B/~ 2m . Here, as 
usually, е is the electron charge and кБ is the 
Boltzman constant.  The density n is given as a 
sum of the electron density Ne and ion density Nk 
of the k-th ion species having the nuclear charge 
qk : ∑+=

k
kke Nq Nn 2 . Under typical laser plasma 

conditions of T~1keV and n~1022 cm-3 the param-
eter m is of the order of 0.1 in atomic units [13,14]. 
By introducing the Yukawa-type e-N and e-e in-
teraction potentials, an electronic Hamiltonian for 
N-electron ion in a plasma is in atomic units as 
follows [19]:
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The generalized relativistic energy approach 
combined with the RMBPT has been in details 
described in Refs. [19-22]. It generalizes earlier 
developed energy approach [5-8]. The key idea is 
in calculating the energy shifts DE of degenerate 
states that is connected with the secular matrix M 
diagonalization [4-6]. To construct M, one should 
use the Gell-Mann and Low adiabatic formula for 
DE. The secular matrix elements are already com-
plex in the PT second order. The whole calcula-
tion is reduced to calculation and diagonalization 
of the complex matrix M .and definition of matrix 

of the coefficients with eigen state vectors IK
ivieB ,  

[5-8]. To calculate all necessary matrix elements 
one must use the basis’s of the 1QP relativistic 
functions. Within an energy approach the total en-
ergy shift of the state is usually presented as [3-7]:

                                                                  (2)
where G is interpreted as the level width and de-
cay possibility P = G. The imaginary part of elec-
tron energy of the system, which is defined in the 
lowest PT order as [3]: 

              [ ]

∑−=D

≤<
>>

fn
fn

nn
nVeBE

a
a

ω
aa
a

p  

2

4
)(Im

,       (3)                                          

where ∑
>> fna

for electron and ∑
≤< fna

for vacancy. The 

separated terms of the sum in (3) represent the 
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Which is linked with an oscillator strength by 
the standard way. It is known that their adequate 
description requires using the optimized basis’s 
of wave functions. In [6] it has been proposed “ab 
initio” optimization principle for construction of 

cited basis’s. It uses a minimization of the gauge 
dependent multielectron contribution of the low-
est QED PT corrections to the radiation widths of 
atomic levels. This contribution describes collec-
tive effects and it is dependent upon the electro-
magnetic potentials gauge (the gauge non-invari-
ant contribution dEninv). The minimization of Im-
dEninv leads to integral differential equation, that 
is numerically solved. In result one can get the 
optimal one-electron basis of the PT [21-23]. It is 
worth to note that this approach was used under 
solvin of multiple problems of modern atomic , 
nuclear and molecular physics (see [23-67]). To 
generate the wave functions basis we use the op-
timized Dirac-Kohn-Sham potential with one pa-
rameter [8], which calibrated within the special 
ab initio procedure within the relativistic energy 
approach [6]. The modified PC numerical code 
‘Superatom” is used in all calculations. Other de-
tails can be found in Refs. [5-9, 16-22]. 

3. Results and conclusion

Firstly, we present our results on energy 
shifts and oscillator strengths for transitions 2s2-
2s1/22p1/2,3/2 in spectra of the Be-like Fe. The cor-
responding plasma parameters are as follows: 
ne=1022-1024cm-3, T=0.5-2 keV (i.e. m~0.01-0.3). 
We studied a behavior of the  energy shifts DЕ 
(cm-1) for 2s2-[2s1/22p1/2,3/3]1  transitions and oscil-
lator strengths changes for different plasma pa-
rameters (the electron density and temperature). 
In Table 1 there are listed the oscillator strengths 
gf for 2s2-[2s1/22p3/2]1 transition in Be-like Fe for 
different values of the ne (см-3) and T (in eV). 

Table 1 
Oscillator strengths for 2s2-[2s1/2 2p3/2]1 transi-
tion in Be-like Fe for different ne (см-3) and T 

(eV) (gf0 –gf value for free ion)

ne 1022 1023 1024

kT [13] [13] [13] [13]
500 0.1537 0.1537 0.1538 0.1547
1000 0.1537 0.1538 0.1545
2000 0.1537 0.1538 0.1543
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SPECTROSCOPY OF MULTICHARGED IONS IN PLASMAS:
OSCILLATOR STRENGTHS OF Be-LIKE ION Fe

The generalized relativistic energy approach with using the Debye shielding model is used 
for studying spectral parameters of ions in plasma  and determination of the oscillator strengths 
for the Be-like ions. An electronic Hamiltonian for N-electron ion in a plasma is added by the 
Yukawa-type electron-electron and nuclear interaction potential. Oscillator strengths gf for 2s2-
[2s1/22p3/2]1 transition in Be-like Fe are computed for different values of the electron density and 
temperature ( ne=1022-1024cm-3, T=0.5-2 keV) of plasmas are presented and compared with 
available alternative spectroscopic data.

1. Introduction
Spectroscopy of multicharged ions in a 

plasmas is one of the most fast developing 
branches of modern atomic spectroscopy. Let 
us remind that a great interest to studying 
radiation and collision processes parameters 
in a plasmas is connected with importance of 
these data for correct description of 
parameters characteristics for plasma in 
thermonuclear (tokamak) reactors, searching 
new mediums for X-ray range lasers [1-20].
In many papers the calculations of various 
atomic systems embedded in Debye plasmas 
have been performed ([13-16]). Different 
theoretical methods were employed along
with the Debye screening to study plasma 
medium. Earlier we have developed a new 
version of a relativistic energy approach 
combined with the  many-body perturbation 
theory (RMBPT) for multi-quasiparticle (QP) 
systems for studying spectra of plasma of the
multicharged ions and electron-ion 
collisional parameters. The method is based 
on the Debye shielding model and energy 
approach [16-22]. A new element of this 
paper is in using the effective optimized 
Dirac-Kohn-Sham method in general 
relativistic energy approach to collision 
processes in the Debye plasmas. Here 
Oscillator strengths gf for 2s2-[2s1/22p3/2]1
transition in Be-like Fe are computed for 
different values of the electron density and 
temperature ( ne=1022-1024cm-3, T=0.5-2
keV) of plasmas are presented and compared 
with available alternative spectroscopic data.

2. Generalized energy approach in 
scattering theory. Debye shielding model

Let us firstly consider the Debye shielding 
model accordinf to Refs. [16,18]. It is known 
(see [10-14,19] and refs. therein) in the 
classical theory of plasmas developed by 
Debye-Hückel, the interaction potential 
between two charged particles  is modelled 
by the Yukawa-type potential, which 
contains the shielding parameter µ [1]. The 
parameter µ is connected with the plasma 
parameters such as the temperature T and the 
charge density n as follows: Tkne B/~ 2µ .
Here, as usually, е is the electron charge and 
кБ is the Boltzman constant.  The density n is 
given as a sum of the electron density Ne and 
ion density Nk of the k-th ion species having 
the nuclear charge qk : ∑+=

k
kke NqNn 2 .

Under typical laser plasma conditions of
T~1keV and n~1022 cm-3 the parameter µ is 
of the order of 0.1 in atomic units [13,14]. By 
introducing the Yukawa-type e-N and e-e
interaction potentials, an electronic 
Hamiltonian for N-electron ion in a plasma is 
in atomic units as follows [19]:
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The generalized relativistic energy approach 
combined with the RMBPT has been in 
details described in Refs. [19-22]. It 
generalizes earlier developed energy 
approach [5-8]. The key idea is in calculating 
the energy shifts ∆E of degenerate states that 
is connected with the secular matrix M
diagonalization [4-6]. To construct M, one 
should use the Gell-Mann and Low adiabatic 
formula for ∆E. The secular matrix elements 
are already complex in the PT second order.
The whole calculation is reduced to 
calculation and diagonalization of the 
complex matrix M .and definition of matrix 
of the coefficients with eigen state vectors 

IK
ivieB , [5-8]. To calculate all necessary matrix 

elements one must use the basis’s of the 1QP 
relativistic functions. Within an energy 
approach the total energy shift of the state is 
usually presented as [3-7]:

∆E = Re∆E + i Γ/2               (2)                            
where Γ is interpreted as the level width and
decay possibility P = Γ. The imaginary part 
of electron energy of the system, which is 
defined in the lowest PT order as [3]: 
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The separated terms of the sum in (3) 
represent the contributions of different 
channels and a probability is: 
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Which is linked with an oscillator strength by 
the standard way. It is known that their 
adequate description requires using the 
optimized basis’s of wave functions. In [6] it 
has been proposed “ab initio” optimization 
principle for construction of cited basis’s. It 
uses a minimization of the gauge dependent 
multielectron contribution of the lowest QED 
PT corrections to the radiation widths of 
atomic levels. This contribution describes 
collective effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution δEninv). The 

minimization of ImδEninv leads to integral 
differential equation, that is numerically 
solved. In result one can get the optimal one-
electron basis of the PT [21-23]. It is worth 
to note that this approach was used under 
solvin of multiple problems of modern 
atomic , nuclear and molecular physics (see 
[23-67]). To generate the wave functions 
basis we use the optimized Dirac-Kohn-
Sham potential with one parameter [8], 
which calibrated within the special ab initio 
procedure within the relativistic energy 
approach [6]. The modified PC numerical 
code ‘Superatom” is used in all calculations. 
Other details can be found in Refs. [5-9, 16-
22]. 

3. Results and conclusion
Firstly, we present our results on energy 
shifts and oscillator strengths for transitions 
2s2-2s1/22p1/2,3/2 in spectra of the Be-like Fe.
The corresponding plasma parameters are as 
follows: ne=1022-1024cm-3, T=0.5-2 keV (i.e. 
µ~0.01-0.3). We studied a behavior of the 
energy shifts ∆Е (cm-1) for 2s2-[2s1/22p1/2,3/3]1
transitions and oscillator strengths changes 
for different plasma parameters (the electron 
density and temperature). In Table 1 there are 
listed the oscillator strengths gf for 2s2-
[2s1/22p3/2]1 transition in Be-like Fe for 
different values of the ne (см-3) and T (in 
eV).

Table 1. Oscillator strengths for 2s2-[2s1/2
2p3/2]1 transition in Be-like Fe for different ne
(см-3) and T (eV) (gf0 –gf value for free ion)

ne 1022 1023 1024

kT [13] [13] [13] [13]
500 0.1537 0.1537 0.1538 0.1547
1000 0.1537 0.1538 0.1545
2000 0.1537 0.1538 0.1543
2000 0.1555 0.1556 0.1562
I-S 0.1537 0.1537 0.1540

0.1555 0.1555 0.1559
ne 1022 1023 1024

kT Our Our Our Our
500 0.1541 0.1541 0.1543 0.1553
1000 0.1541 0.1543 0.1553
2000 0.1540 0.1542 0.1552
2000 0.1541 0.1542 0.1552

The generalized relativistic energy approach 
combined with the RMBPT has been in 
details described in Refs. [19-22]. It 
generalizes earlier developed energy 
approach [5-8]. The key idea is in calculating 
the energy shifts ∆E of degenerate states that 
is connected with the secular matrix M
diagonalization [4-6]. To construct M, one 
should use the Gell-Mann and Low adiabatic 
formula for ∆E. The secular matrix elements 
are already complex in the PT second order.
The whole calculation is reduced to 
calculation and diagonalization of the 
complex matrix M .and definition of matrix 
of the coefficients with eigen state vectors 
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relativistic functions. Within an energy 
approach the total energy shift of the state is 
usually presented as [3-7]:

∆E = Re∆E + i Γ/2               (2)                            
where Γ is interpreted as the level width and
decay possibility P = Γ. The imaginary part 
of electron energy of the system, which is 
defined in the lowest PT order as [3]: 
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The separated terms of the sum in (3) 
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channels and a probability is: 
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Which is linked with an oscillator strength by 
the standard way. It is known that their 
adequate description requires using the 
optimized basis’s of wave functions. In [6] it 
has been proposed “ab initio” optimization 
principle for construction of cited basis’s. It 
uses a minimization of the gauge dependent 
multielectron contribution of the lowest QED 
PT corrections to the radiation widths of 
atomic levels. This contribution describes 
collective effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution δEninv). The 

minimization of ImδEninv leads to integral 
differential equation, that is numerically 
solved. In result one can get the optimal one-
electron basis of the PT [21-23]. It is worth 
to note that this approach was used under 
solvin of multiple problems of modern 
atomic , nuclear and molecular physics (see 
[23-67]). To generate the wave functions 
basis we use the optimized Dirac-Kohn-
Sham potential with one parameter [8], 
which calibrated within the special ab initio 
procedure within the relativistic energy 
approach [6]. The modified PC numerical 
code ‘Superatom” is used in all calculations. 
Other details can be found in Refs. [5-9, 16-
22]. 

3. Results and conclusion
Firstly, we present our results on energy 
shifts and oscillator strengths for transitions 
2s2-2s1/22p1/2,3/2 in spectra of the Be-like Fe.
The corresponding plasma parameters are as 
follows: ne=1022-1024cm-3, T=0.5-2 keV (i.e. 
µ~0.01-0.3). We studied a behavior of the 
energy shifts ∆Е (cm-1) for 2s2-[2s1/22p1/2,3/3]1
transitions and oscillator strengths changes 
for different plasma parameters (the electron 
density and temperature). In Table 1 there are 
listed the oscillator strengths gf for 2s2-
[2s1/22p3/2]1 transition in Be-like Fe for 
different values of the ne (см-3) and T (in 
eV).

Table 1. Oscillator strengths for 2s2-[2s1/2
2p3/2]1 transition in Be-like Fe for different ne
(см-3) and T (eV) (gf0 –gf value for free ion)
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The generalized relativistic energy approach 
combined with the RMBPT has been in 
details described in Refs. [19-22]. It 
generalizes earlier developed energy 
approach [5-8]. The key idea is in calculating 
the energy shifts ∆E of degenerate states that 
is connected with the secular matrix M
diagonalization [4-6]. To construct M, one 
should use the Gell-Mann and Low adiabatic 
formula for ∆E. The secular matrix elements 
are already complex in the PT second order.
The whole calculation is reduced to 
calculation and diagonalization of the 
complex matrix M .and definition of matrix 
of the coefficients with eigen state vectors 
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elements one must use the basis’s of the 1QP 
relativistic functions. Within an energy 
approach the total energy shift of the state is 
usually presented as [3-7]:

∆E = Re∆E + i Γ/2               (2)                            
where Γ is interpreted as the level width and
decay possibility P = Γ. The imaginary part 
of electron energy of the system, which is 
defined in the lowest PT order as [3]: 

[ ]

∑−=∆

≤<
>>

fn
fn

nn
nVeBE

α
α

ω
αα
α

π

2

4
)(Im

, (3)                                        
where ∑

>> fnα

for electron and ∑
≤< fnα

for vacancy.

The separated terms of the sum in (3) 
represent the contributions of different 
channels and a probability is: 

nα

nnn

ω
αα V

π
Г α⋅=

4
1

(4)                        
Which is linked with an oscillator strength by 
the standard way. It is known that their 
adequate description requires using the 
optimized basis’s of wave functions. In [6] it 
has been proposed “ab initio” optimization 
principle for construction of cited basis’s. It 
uses a minimization of the gauge dependent 
multielectron contribution of the lowest QED 
PT corrections to the radiation widths of 
atomic levels. This contribution describes 
collective effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution δEninv). The 

minimization of ImδEninv leads to integral 
differential equation, that is numerically 
solved. In result one can get the optimal one-
electron basis of the PT [21-23]. It is worth 
to note that this approach was used under 
solvin of multiple problems of modern 
atomic , nuclear and molecular physics (see 
[23-67]). To generate the wave functions 
basis we use the optimized Dirac-Kohn-
Sham potential with one parameter [8], 
which calibrated within the special ab initio 
procedure within the relativistic energy 
approach [6]. The modified PC numerical 
code ‘Superatom” is used in all calculations. 
Other details can be found in Refs. [5-9, 16-
22]. 

3. Results and conclusion
Firstly, we present our results on energy 
shifts and oscillator strengths for transitions 
2s2-2s1/22p1/2,3/2 in spectra of the Be-like Fe.
The corresponding plasma parameters are as 
follows: ne=1022-1024cm-3, T=0.5-2 keV (i.e. 
µ~0.01-0.3). We studied a behavior of the 
energy shifts ∆Е (cm-1) for 2s2-[2s1/22p1/2,3/3]1
transitions and oscillator strengths changes 
for different plasma parameters (the electron 
density and temperature). In Table 1 there are 
listed the oscillator strengths gf for 2s2-
[2s1/22p3/2]1 transition in Be-like Fe for 
different values of the ne (см-3) and T (in 
eV).

Table 1. Oscillator strengths for 2s2-[2s1/2
2p3/2]1 transition in Be-like Fe for different ne
(см-3) and T (eV) (gf0 –gf value for free ion)

ne 1022 1023 1024

kT [13] [13] [13] [13]
500 0.1537 0.1537 0.1538 0.1547
1000 0.1537 0.1538 0.1545
2000 0.1537 0.1538 0.1543
2000 0.1555 0.1556 0.1562
I-S 0.1537 0.1537 0.1540

0.1555 0.1555 0.1559
ne 1022 1023 1024

kT Our Our Our Our
500 0.1541 0.1541 0.1543 0.1553
1000 0.1541 0.1543 0.1553
2000 0.1540 0.1542 0.1552
2000 0.1541 0.1542 0.1552
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2000 0.1555 0.1556 0.1562
I-S 0.1537 0.1537 0.1540

0.1555 0.1555 0.1559
ne 1022 1023 1024

kT Our Our Our Our
500 0.1541 0.1541 0.1543 0.1553
1000 0.1541 0.1543 0.1553
2000 0.1540 0.1542 0.1552
2000 0.1541 0.1542 0.1552

There are also listed the available data by Li 
etal and Saha-Frische: the multiconfiguration 
Dirac-Fock (DF) calculation results, and ionic 
sphere (I-S) model simulation data [13, 16] (see 
refs. therein). The analysis shows that the present-
ed data are in physically reasonable agreement, 
however, some difference can be explained by us-
ing different relativistic orbital basises and differ-
ent models for accounting of the plasma screening 
effect. It is important to note that our computing 
oscillator strengths within  an energy approach 
with different forms of transition operator (this is 
corresponding to using the photon propagators in 
the form of Coulomb, Feynman and Babushkin) 
gives very close results. 

References
1.	 Oks E., Stark Broadening of Hydrogen 

and Hydrogenlike Spectral Lines in 
Plasmas: The Physical Insight (Oxford: 
Alpha Science International).-2006.

2.	 Griem H R , Spectral Line Broad-
ening by Plasmas(N.-Y.: Academic 
Press).-1974. 

3.	 Oks E., Relation between theories, 
experi-ments, and simulations of spec-
tral line shapes //Int.J.Spectr.-2010.-
Vol.10.-P. 852581.

4.	 Ivanova E.P., Grant I., Oscillator 
strength anomalies in Ne isoelectronic 
sequence with applications to X-ray la-
ser modeling// J. Phys. B:At.Mol.Phys.-
1998-Vol.31.-P.2871-2883

5.	 Ivanov L.N., Ivanova E.P., Knight L., 
Energy Approach to consistent QED 
theory for calculation of electron-col-
lision strengths/ //Phys.Rev.A.-1993.-
Vol.48.-P.4365-4374.

6.	 Glushkov A.V.,Ivanov L.N., Radiation 
Decay of Atomic States: atomic residue 
polarization and gauge non-invariant 
contributions//Phys. Lett.A.-1992.-
Vol.170(1).-P.33-36.

7.	 Glushkov A.V.,Ivanov L.N., DC Strong-
Field Stark-Effect: consistent quantum-
mechanical approach//J.Phys.B:At.
Mol.Opt.Phys.-1993.-Vol.26.-P.L379-
386.

8.	 Glushkov A.V., Relativistic Quantum 
Theory. Quantum, mechanics of Atom-
ic Systems.-Odessa: Astroprint, 2008.-
700P.

9.	 Ivanov L.N.,Ivanova E.P., Extrapolation 
of atomic ion energies by model  poten-
tial method: Na-like spectra// Atom.
Data Nucl Data Tab.-1999.-Vol.24.-
P.95-121.

10.	Khakoo M.A., Wrkich J., Larsen M. et 
al, Differential cross-sections and cross-
sections ratios for the electron-impact 
excitation of the neon 2p53s configu-
ration//Phys.Rev.A.-2002.-Vol.65.-
P.062711. 

11.	Khakoo M.A., Vandeventer P., Childers 
J.G. etal, Electron-impact excitation of 
argon 3p54s configuration: Differential 
cross-sections and cross-sections ra-
tios// J. Phys. B: At. Mol. Phys.-2004.-
Vol.37.-P.247-281.

12.	Griffin D., Balance C., Mitnik D., 
Berengut J., Dirac R-matrix calcula-
tions of electron-impact excitation of 
Ne-like Kr//J.Phys.B: At. Mol. Opt. 
Phys.-2008.-Vol.41.-P.215201.

13.	Yongqiang Li, JianhuaWu, Yong Hou, 
Jianmin Yuan, Influence of hot and 
dense plasmas on energy levels& os-
cillator strengths of Be-like ions for 
Z = 26–36// J. Phys. B: At. Mol. Opt. 
Phys.-2008.-Vol.41.-P.145002.

14.	Okutsu H., SakoI., Yamanouchi K., Di-

Продовження таблиці 1



97

ercksen G., Electronic structure of at-
oms in laser plasmas: Debae shielding 
approach// J.Phys. B: At. Mol.Phys.-
2005-Vol.38.-P.917-927.

15.	Smith A., Bannister M., Chung Y., Dju-
ric N., Dunn G., Wallbank B.,  Woitke 
O., Near-threshold electron-impact 
excitation of multiply-charged Be-
like ions//Phys.Scr.-1999.-Vol.T80-
P.283-287.

16.	Buyadzhi V.V.,  Chernyakova Yu.G., 
Smirnov A.V., Tkach T.B., Electron-
collisional spectroscopy of atoms 
and ions in plasma:  Be-like ions// 
Photoelectronics.-2016.-Vol.25.-
P.97-101.

17.	Malinovskaya S.V., Glushkov A.V., 
Khetselius O.Yu.,  Lopatkin Yu., Lobo-
da A.V., Svinarenko A., Nikola L., Pere-
lygina T., Generalized energy approach 
to calculating electron collision cross-
sections for multicharged ions in a plas-
ma: Debye shielding model// Int. Journ. 
Quant. Chem.-2011.-Vol.111,N2.-
P.288-296.

18.	Malinovskaya S.V., Glushkov A.V., 
Khetselius O.Yu., Svinarenko A.A., 
Mischenko E.V., Florko T.A.,   Opti-
mized perturbation theory scheme for 
calculating the interatomic potentials 
and hyperfine lines shift for heavy at-
oms in the buffer inert gas//Int. J. Quant.
Chem.-2009.-Vol.109.-P.3325-3329.

19.	Glushkov A.V., Malinovskaya S.V., Pre-
pelitsa G.P., Ignatenko V.M., Manifes-
tation of the new laser-electron nuclear 
spectral effects in thermalized plasma: 
QED theory of cooperative laser-elec-
tron- nuclear processes//J. Phys.:Conf.
Ser.-2005.-Vol.11.-P.199-206. 

20.	Glushkov A.V., Malinovskaya S.V., 
Ambrosov S., Shpinareva I.M., Troits-
kaya O.V., Resonances in quantum sys-
tems in strong external fields consistent 
quantum approach// J. of Techn.Phys.-
1997.-Vol.38, Iss.2.-P.215-218.

21.	Glushkov A.V., Malinovskaya S.V., Lo-
boda A., Shpinareva I.M.,Gurnitskaya 

E., Korchevsky D., Diagnostics of the 
collisionally pumped plasma and search 
of the optimal plasma parameters of 
x-ray lasing: Calculation of electron-
collision strengths and rate coefficients 
for Ne-like plasma// J. Phys.: Conf.
Ser.-2005.-Vol.11.-P.188-198. 

22.	Glushkov A.V., Khetselius O.Yu., Lo-
boda A.V., Ignatenko A., Svinarenko 
A., Korchevsky D., Lovett L., QED ap-
proach to modeling spectra of the mul-
ticharged ions in a plasma: Oscillator 
and electron‐ion collision strengths//
Spectral Line Shapes. AIP Confer-
ence Proceedings.-2008.-Vol.1058.-
P.175-177 

23.	Glushkov A.V., Svinarenko A.A., 
Nuclear quantum optics: Energy ap-
proach to multi-photon resonances in 
nuclei // Sensor Electr. and Microsyst. 
Techn.-2010.-N2.-P.5-10.

24.	Glushkov A.V., Energy approach to  res-
onance states of compound super-heavy 
nucleus and EPPP in heavy nucleus col-
lisions// Low Energy Antiproton Phys. 
AIP Conference Proceedings.-2005.-
Vol.796.-P.206-210.

25.	Malinovskaya S.V.,  S.V., Dubrovs-
kaya Yu., Vitavetskaya L., Advanced 
quantum mechanical calculation of 
the beta decay probabilities// Low En-
ergy Antiproton Phys. AIP Confer-
ence Proceedings.-2005.-Vol.796.-
P.201-205.

26.	Glushkov A.V., Ambrosov S.V., Lo-
boda A., Gurnitskaya E.P., Prepelitsa 
G.P., Consistent QED approach to cal-
culation of electron-collision excitation 
cross-sections and strengths: Ne-like 
ions//Int. Journ. Quant. Chem.-2005.-
Vol.104, N4 .-P. 562-569.  

27.	Glushkov A.V., Ambrosov S.V., Ig-
natenko A.V., Korchevsky D.A., DC 
Strong Field Stark effect for non-hydro-
genic atoms: Consistent quantum me-
chanical approach// Int.Journ. Quant. 
Chem.-2004.-Vol.99,N6.-P.936-939.

28.	Glushkov A.V, Malinovskaya S.V, 



98

Chernyakova Y.G., Svinarenko A.A., 
Cooperative laser-electron-nuclear pro-
cesses: QED calculation of electron sat-
ellites spectra for multi-charged ion in 
laser field// Int. J. Quant. Chem.-2004.-
Vol.99.-P.889-893.

29.	Glushkov A.V, Khetselius O.Yu, Ma-
linovskaya S.V, Optics and spectros-
copy of cooperative laser-electron 
nuclear processes in atomic and mo-
lecular systems - new trend in quantum 
optics// Europ. Phys. Journ. ST.-2008.-
Vol.160,N1.-P.195-204.

30.	Glushkov A.V., Dan’kov S.V., Pre-
pelitsa G., Polischuk V.N., Efimov A., 
Qed theory of nonlinear interaction of 
the complex atomic systems with laser 
field multi-photon resonances// Journal 
of Tech. Phys.-1997.-Vol.38 (2).-P.219-
222

31.	Glushkov A.V., Ambrosov S.V., Lo-
boda A.V., Gurnitskaya E.P., Khetselius 
O.Yu., QED calculation of heavy mul-
ticharged ions   with account for  the 
correlation, radiative and nuclear ef-
fects// Recent Advances in Theor. Phys. 
and Chem. Systems.-2006.-Vol.15.-
P.285-300.

32.	Glushkov A.V., Calculation of parame-
ters of the interaction potential between 
excited alkali atoms and mercury at-
oms-the Cs-, Fr-Hg interaction// Optika 
i Spektr.-1994.-Vol.77 (1).-P.5-10.

33.	Glushkov A.V.,Khetselius O.Yu., Gur-
nitskaya E.P., Korchevsky D.A., Lo-
boda A.V., Prepelitsa G.P., Sensing 
the electron-collision excitation cross-
sections for Ne-like ions of Fe in a 
plasma in the Debye shileding approxi-
mation// Sensor Electr. and Microsyst. 
Techn.-2007.-N2.-P.9-13

34.	Svinarenko A.A., Ignatenko A.V., Ter-
novsky V.B., Nikola V.V., Seredenko 
S.S., Tkach T.B., Advanced relativistic 
model potential approach to calculation 
of radiation transition parameters in 
spectra of multicharged ions// J. Phys.: 
Conf. Ser. -2014.-Vol.548.-P. 012047.   

35.	Svinarenko A.A., Khetselius O.Yu., 
Buyadzhi V.V., Florko T.A., Zaichko 
P.A., Ponomarenko E.L., Spectroscopy 
of Rydberg atoms in a Black-body ra-
diation field: Relativistic theory of ex-
citation and ionization// J. Phys.: Conf. 
Ser.-2014.-Vol. 548.-P. 012048.  

36.	Glushkov A.V.,  Khetselius O.Yu., 
Bunuakova Yu.Ya., Buyadzhi V.V, 
Brusentseva S.V., Zaichko P.A., Sensing 
interaction dynamics of chaotic systems 
within a chaos theory and microsystem 
technology Geomath with application 
to neurophysiological systems// Sen-
sor Electr. and Microsyst.Techn.-2014.-
Vol. 11,N3.-P.62-69.

37.	Prepelitsa G.P., Glushkov A.V., Lepikh 
Ya.I., Buyadzhi V.V., Ternovsky V.B., 
Zaichko P.A., Chaotic dynamics of non-
linear processes in atomic and molecu-
lar systems in electromagnetic field and 
semiconductor and fiber laser devices: 
new approaches, uniformity and charm 
of chaos// Sensor Electr. and Microsyst.
Techn.-2014.-Vol.11,N4.-P.43-57.

38.	Glushkov A.V., Relativistic and cor-
relation effects in spectra of atomic 
systems.-Odessa: Astroprint.-2006.-
400P.  

39.	Glushkov A.V., Atom in electromagnet-
ic field.-Kiev: KNT, 2005.-450P. 

40.	Khetselius O.Yu., Hyperfine structure 
of atomic spectra.-Odessa: Astroprint, 
2008.-210P.

41.	Khetselius O.Yu., Hyperfine structure 
of radium// Photoelectronics.-2005.-
N14.-P.83-85.

42.	Khetselius O., Spectroscopy of coopera-
tive electron-gamma-nuclear processes  
in heavy atoms: NEET effect// J. Phys.: 
Conf. Ser.-2012.- Vol.397.-P.012012

43.	Khetselius O.Yu., Florko T.A., Svi-
narenko A.A., Tkach T.B., Radiative 
and collisional spectroscopy of hy-
perfine lines of the Li-like heavy ions 
and Tl atom in an atmosphere of inert 
gas//Phys.Scripta.-2013.-Vol.T153-
P.014037.  



99

44.	Khetselius O.Yu., Turin A.V., Sukharev 
D.E., Florko T.A., Estimating of  X-
ray spectra for kaonic atoms as tool for 
sensing the nuclear  structure// Sensor 
Electr. and Microsyst. Techn.-2009.-
N1.-P.30-35. 

45.	Khetselius O.Yu.,  On possibility of 
sensing nuclei of the rare isotopes by 
means of laser spectroscopy of hyper-
fine structure//Sensor Electr. and Mi-
crosyst.Techn.-2008.-Vol.3.-P.28-33. 

46.	Glushkov A., Malinovskaya S., Gurnits-
kaya E., Khetselius O.Yu.,Dubrovskaya 
Yu., Consistent quantum theory of  the 
recoil induced excitation and ionization 
in atoms during capture of neutron// 
Journal of Physics: Conf. Series (IOP).-
2006.- Vol.35.-P.425-430.  

47.	Glushkov A.V., Khetselius O.Y., 
Brusentseva S.V., Zaichko P.A., Ter-
novsky V.B., Studying interaction dy-
namics of chaotic systems within a non-
linear prediction method: application to 
neurophysiology// Advances in Neural 
Networks, Fuzzy Systems and Artificial 
Intelligence, Ser: Recent Adv. in Com-
puter Engineering, Ed. J.Balicki.-2014.-
Vol.21.-P.69-75.  

48.	Khetselius O.Yu., Quantum Geometry: 
New approach to quantization of the 
quasistationary states of Dirac equation 
for super heavy ion and calculating hy-
per fine structure parameters// Proc.  Int.
Geometry Center.-2012.-Vol.5,№ 3-4.-
P.39-45.   

49.	Glushkov A.V., Khetselius O.Yu., Svin-
arenko  A.A., Theoretical spectroscopy 
of autoionization resonances in spectra 
of lanthanide atoms//  Physica Scripta.-
2013.-Vol.T153.-P.014029.

50.	Glushkov A.V., Khetselius O.Yu., Gur-
nitskaya E.P., Loboda A.V., Sukharev 
D.E.,  Relativistic quantum chemistry of 
heavy ions and hadronic atomic systems: 
spectra and energy shifts//Theory and 
Applications of Computational Chemis-
try. AIP Conference Proceedings.-2009.-
Vol.1102.- P. 168-171. 

51.	Khetselius O.Yu.,  Relativistic calculat-
ing the spectral lines hyperfine structure 
parameters for heavy ions//Spectral Line 
Shapes,  AIP Conf. Proceedings.-2008.-
Vol.1058.-P.363-365.   

52.	Khetselius O.Yu., Glushkov A.V., Gur-
nitskaya E.P., Loboda A.V.,  Mischenko 
E.V., Florko T.A., Sukharev D.E., Col-
lisional Shift of the Tl hyperfine lines 
in  atmosphere of inert gases// Spectral 
Line Shapes,  AIP Conf. Proc.-2008.-
Vol.1058.-P.231-233.

53.	Khetselius O.Yu.,  Hyperfine structure 
of energy levels for isotopes 73Ge, 
75As, 201Hg// Photoelectronics.-2007.-
N16.-P.129-132.

54.	Khetselius O.Y., Gurnitskaya E.P., 
Sensing the electric and magnetic mo-
ments of a nucleus in the N-like ion 
of Bi// Sensor Electr. and Microsyst. 
Techn.-2006.-N3.-P.35-39.

55.	Khetselius O.Y., Gurnitskaya E.P., Sens-
ing the hyperfine structure and nuclear 
quadrupole moment for radium// Sensor 
Electr. and Microsyst. Techn.-2006.-
N2.-P.25-29.

56.	Florko T.A., Loboda A.V.,  Svinarenko 
A.A., Sensing forbidden transitions 
in spectra of some heavy atoms and 
multicharged ions: New theoretical 
scheme// Sensor Electr. and Microsyst. 
Techn.-2009.-N3.-P.10-15.

57.	Sukharev D.E., Khetselius O.Yu., Du-
brovskaya Yu.V., Sensing strong inter-
action effects in spectroscopy of ha-
dronic atoms// Sensor Electr. and Mi-
crosyst. Techn.-2009.-N3.-P.16-21. 

58.	Glushkov A.V., Khetselius O.Yu., Ku-
zakon V., Prepelitsa G.P., Solyanikova 
E.P., Svinarenko A., Modeling of in-
teraction of the non-linear vibrational 
systems on the basis of temporal series 
analyses (application to semiconductor 
quantum generators)// Dynamical Sys-
tems-Theory and Applications.-2011.-
BIF110.

59.	 Svinarenko A.A., Nikola L. V.,  Pre-
pelitsa G., Tkach T.B, Mischenko E.V., 



100

Auger (autoionization) decay of excited 
states in spectra of multicharged ions: 
Relativistic theory//AIP Conf. Proc.-
2010.-Vol.1290, N1 P.94-98.

60.	Glushkov A.V., Khetselius O.Y., Ma-
linovskaya  S.V.,  New laser-electron 
nuclear effects in the nuclear γ transi-
tion spectra in atomic and molecular 
systems// Frontiers in Quantum Sys-
tems in Chemistry and Physics. Series: 
Progress in Theoretical Chemistry and 
Physics   Eds. S.Wilson, P.J.Grout,  J. 
Maruani, G. Delgado-Barrio, P. Piecuch 
(Springer).-2008.-Vol.18.-525-541.

61.	Glushkov A.V., Khetselius O.Yu.,  Svi-
narenko A.A., Prepelitsa G.P., Energy 
approach to atoms in a laser field and 
quantum dynamics with laser puls-
es of different shape//In: Coherence 
and Ultrashort Pulse Laser Emission, 
Ed. by Dr. F. Duarte (InTech).-2010.-
P.159-186. 

62.	Glushkov A.V., Khetselius O.,  Svina-
renko A, Relativistic theory of coopera-
tive muon-g gamma-nuclear processes: 
Negative muon capture and metastable 
nucleus discharge// Advances in the 
Theory of Quantum Systems in Chem-
istry and Physics. Ser.: Progress in The-
or. Chem. and Phys., Eds. P.Hoggan, 
E.Brandas, J.Maruani, G. Delgado-
Barrio, P.Piecuch (Springer).-2012.-
Vol.22.-P.51.  

63.	Glushkov A.V., Rusov V.D., Am-
brosov S.V., Loboda A.,Resonance 
states of compound super-heavy nu-
cleus and EPPP in heavy nucleus col-
lisions//New projects and new lines 
of research in nuclear physics. Eds. 

G.Fazio, F.Hanappe, Singapore : World 
Scientific.-2003.-P.126-132.  

64.	Glushkov A.V., Operator Perturbation 
Theory for Atomic Systems in a Strong 
DC Electric Field//Advances in Quantum 
Methods and Applications in Chemistry, 
Physics, and Biology. Series: Frontiers 
in Theoretical Physics and Chemistry, 
Eds. M.Hotokka, J.Maruani, E. Brändas, 
G.Delgado-Barrio (Springer).-2013.-
Vol. 27.-P.161-177.

65.	Glushkov A.V., Khetselius O.Yu., Pre-
pelitsa G., Svinarenko A.A., Geometry 
of Chaos: Theoretical basis’s of a con-
sistent combined approach to treating 
chaotic dynamical systems and their 
parameters determination //Proc. of  In-
ternational Geometry Center».-2013.-
Vol.6, N1.-P.43-48.

66.	Malinovskaya S.V., Glushkov A.V., 
Dubrovskaya Yu.V., Vitavetskaya L.A., 
Quantum calculation of cooperative 
muon-nuclear processes: discharge of 
metastable nuclei during negative muon 
capture// Recent Advances in the The-
ory of Chemical and Physical Systems 
(Springer).-2006.-Vol.15.-P.301-307. 

67.	Glushkov A.V., Khetselius O.Yu., Lo-
boda A.V., Svinarenko  A.A., QED ap-
proach to atoms in a laser field: Multi-
photon resonances and above thresh-
old ionization// Frontiers in Quantum 
Systems in Chemistry and Physics, 
Ser.: Progress in Theoretical Chemistry 
and Physics; Eds. S.Wilson, P.J.Grout,  
J.  Maruani, G. Delgado-Barrio, 
P.  Piecuch (Springer), 2008.-Vol.18.-
P.543-560.

This article has been   received in May  2017



101

UDC 539.187

V. V. Buyadzhi, Yu. G. Chernyakova, O. A. Antoshkina, T. B. Tkach 

SPECTROSCOPY OF MULTICHARGED IONS IN PLASMAS:  
OSCILLATOR STRENGTHS OF Be-LIKE ION Fe

Summary
The generalized relativistic energy approach with using the Debye shielding model is used for 

studying spectral parameters of ions in plasma  and determination of the oscillator strengths  for the 
Be-like ions. An electronic Hamiltonian for N-electron ion in a plasma is added by the Yukawa-type 
electron-electron and nuclear interaction potential. Oscillator strengths gf for 2s2-[2s1/22p3/2]1 transi-
tion in Be-like Fe are computed for different values of the electron density and temperature ( ne=1022-
1024cm-3, T=0.5-2 keV) is presented and compared with available alternative spectroscopic data.

Key words: spectroscopy of ions in plasmas, relativistic energy approach, oscillator strengths
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В. В. Буяджи, Ю. Г. Чернякова, О. А. Антошкина, Т. Б. Ткач

СПЕКТРОСКОПИЯ МНОГОЗАРЯДНЫХ ИОНОВ В ПЛАЗМЕ: СИЛЫ 
ОСЦИЛЛЯТОРОВ ДЛЯ Be-ПОДОБНОГО ИОНА  Fe

Резюме
 На основе обобщенного релятивистского энергетического подхода с использованием модели 

экранирования Дебая выполнено изучение спектра плазмы ионов и определение сил осцилля-
торов для Be-подобных ионов. Электронный гамильтониан для N-электронного иона в плазме 
дополнен потенциалом электрон-электронного и ядерного взаимодействия типа Юкавы. Силы 
осцилляторов 2s2-[2s1/22p3/2]1 перехода  в Be-подобном Fe определены для различных значений 
электронной плотности и температуры  ( ne=1022-1024cm-3, T=0.5-2 keV) плазмы и сравниваются 
с имеющимися альтернативными спектроскопическими данными. .

Ключевые слова: спектроскопия ионов в плазме, энергетический подход, силы осцилляторов  



102

УДК 539.187

В. В. Буяджи, Ю. Г. Чернякова, О. О. Антошкіна, Т. Б. Ткач

СПЕКТРОСКОПІЯ БАГАТОЗАРЯДНИХ ІОНІВ В ПЛАЗМІ: СИЛИ ОСЦИЛЯТОРІВ  
ДЛЯ Be-ПОДІБНОГО ІОНА Fe

Резюме
На основі узагальненого релятивістського енергетичного підходу з використанням моделі 

экранювання Дебая виконано вивчення спектру плазми іонів і визначення сил осциляторів для 
Be-подібних іонів. Електронний гамильтоніан для N-електронного іона в плазмі доповнений 
потенціалом електрон-електронної та ядерної взаємодії типу Юкави. Сили осциляторів 2s2-
[2s1/22p3/2]1 переходу в Be-подібному Fe визначені для різних значень електронної густини і тем-
ператури ( ne=1022-1024cm-3, T=0.5-2 keV) плазми та порівнюються з наявними альтернативними 
спектроскопічними даними.  

Ключові слова: спектроскопія іонів в плазмі, енергетичний підхід, сили осциляторів



103

UDC 539.182

V. B. Ternovsky1, M. Yu. Gurskaya2,  A. A. Svinarenko2 , V. F. Mansarliysky2

1Odessa National Maritime Academy, Didrikhsona str. 4, Odessa, 65001
2Odessa State Environmental University, L’vovskaya str.15, Odessa, 65016

E-mail: ternovskyvb@gmail.com  

THEORETICAL STUDYING SPECTRA OF YTTERBIUM ATOM 
ON THE BASIS OF RELATIVISTIC MANY-BODY PERTURBATION THEORY: 

RYDBERG RESONANCES

Theoretical studying the Rydberg autoionization resonances in spectra of the lanthanides atoms (ytterbium) is carried 
out within the relativistic many-body perturbation theory and  generalized relativistic energy approach (Gell-Mann and Low 
S-matrix formalism). The zeroth approximation of the relativistic perturbation theory is provided by the optimized Dirac-
Fock and Dirac-Kohn-Sham ones. Optimization has been fulfilled by means of introduction of the parameter to the Fock and 
Kohn-Sham exchange potentials and further minimization of the gauge-non-invariant contributions into radiation width of 
atomic levels with using relativistic orbital bases, generated by the corresponding zeroth approximation Hamiltonians. The 
accurate theoretical results on the autoionization 4f13[2F7/2]6s2np[5/2]2, 4f13 [2F7/2] 6s2nf[5/2]2 resonances energies and widths 
are presented and compared with experimental data, obtained on the basis of the laser polarization spectroscopy method.

1.  Introduction

This  paper goes on our work on theoretical 
studying spectra and spectroscopic parameters for 
heavy atoms, namely, lanthanides atoms (see, for 
example [1-56]). Let us remind that an investiga-
tion of spectra, optical and spectral, radiative and 
autoionization characteristics for  heavy elements 
atoms and multicharged ions is traditionally of a 
great interest for further development quantum 
atomic optics and atomic spectroscopy and dif-
ferent applications in plasma chemistry, astro-
physics, laser physics etc. (see Refs. [1-10]). 

Different atomic spectroscopy methods have 
been used in studying radiative and autoioniza-
tion characteristics of atomic systems. The well 
known classical multi-configuration Hartree-Fo-
ck method allowed to get a great number of the 
useful spectral information about light and not 
heavy atomic systems. The multi-configuration 
Dirac-Fock method is the most reliable version 
of calculation for multielectron systems with a 
large nuclear charge. In these calculations the 
one- and two-particle relativistic and important 
exchange-correlation corrections  are taken into 
account (see Refs. [1] and Refs. therein). Howev-
er, one should remember about very complicated 

structure of spectra of the lanthanides atoms and 
necessity of correct accounting the different cor-
relation effects such as polarization interaction of 
the valent quasiparticles and their mutual screen-
ing, iterations of a mass operator etc.).The known 
method of the model relativistic many-body per-
turbation theory has been earlier effectively ap-
plied to computing spectra of low-lying states for 
some lanthanides atoms too [2,3] (see also [2-6]).  
We use an analogous version of the perturbation 
theory (PT) to study the Rydberg states charac-
teristics, however, the zeroth approximation is 
generated by the Dirac-Fock model. In Refs. [7-
10] the similar version of the perturbation theory 
has been used with using the Dirac-Kohn-Sham 
zeroth approximation.  This method is actively 
used in solving many tasks of quantum, atomic 
and nuclear physics [57-87]. Here we present the 
results of computing the Rydberg Yb 4f13 [2F7/2] 
6s2np[5/2]2, 4f13 [2F7/2] 6s2nf[5/2]2 states energies 
and widths within both approaches and compare 
theoretical data  with some experimental laser po-
larization spectroscopy method data [22,23]. All 
calculations are performed with using Superatom 
package  (see for example, 2-24]).
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2.  Advanced relativistic many-body per-
turbation theory and energy approach

As the method of computing is earlier present-
ed in details, here we are limited only by the key 
topics. A model relativistic energy approach in a 
case of the multielectron atom has been proposed 
by Ivanov-Ivanova et al [2-4] and its generalized 
gauge-invariant version is developed in Refs.
[5,6,11,2].  The approach is based on the Gell-
Mann and Low S-matrix formalism and the rela-
tivistic many-body PT with using the optimized 
one-quasiparticle representation and an accurate 
account of the relativistic and exchange-correla-
tion effects. In the relativistic case the Gell-Mann 
and Low formula expressed an energy shift DΕ  
through the QED scattering matrix including the 
interaction with as the photon vacuum field as the 
laser field . The wave function zeroth basis is 
found from the Dirac equation with a potential, 
which includes ab initio optimized model (Iva-
nov-Ivanova type [6]) potential or DF potentials, 
the electric potential of a nucleus (the Gaussian 
form of the charge distribution in a nucleus is usu-
ally used by us) [4]. The correlation corrections of 
the PT second and higher orders are taken into 
account by means of using the polarization and 
screening potentials (from Refs. [10-16]). 

Generally speaking, the majority of complex 
atomic systems possess a dense energy spectrum 
of interacting states with essentially relativistic 
properties. In the theory of the non-relativistic 
atom a convenient field procedure is known for 
calculating the energy shifts DΕ  of degenerate 
states. This procedure is connected with the secu-
lar matrix M diagonalization [2,11,12]. In con-
structing M, the Gell-Mann and Low adiabatic 
formula for DΕ  is used. In contrast to the non-
relativistic case, the secular matrix elements are 
already complex in the second order of the elec-
trodynamical PT (first order of the interelectron  
interaction). Their imaginary part of DΕ  is con-
nected with the radiation decay (radiation) possi-
bility. In this approach, the whole calculation of 
the energies and decay probabilities of a non-de-
generate excited state is reduced to the calculation 
and diagonalization of the complex matrix M. In 
the papers of different authors, the Re ED  calcula-
tion procedure has been generalized for the case 
of nearly degenerate states, whose levels form a 

more or less compact group. One of these variants 
has been previously [7-12] introduced: for a sys-
tem with a dense energy spectrum, a group of near-
ly degenerate states is extracted and their matrix M 
is calculated and diagonalized. If the states are well 
separated in energy, the matrix M reduces to one 
term, equal to ED . The non-relativistic secular 
matrix elements are expanded in a PT series for the 
interelectron interaction. The complex secular ma-
trix M is represented in the form [3,4,11]:                                                          

       
        ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +             (1)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three- quasiparticle 
diagrams respectively. ( )0M  is a real matrix, pro-
portional to the unit matrix. It determines only the 
general level shift. We have assumed ( )0 0.M =  
The diagonal matrix ( )1M  can be presented as a 
sum of the independent one-quasiparticle contri-
butions. For simple systems (such as alkali atoms 
and ions) the one-quasiparticle energies can be 
taken from the experiment. Substituting these 
quantities into (1) one could have summarized all 
the contributions of the one -quasiparticle dia-
grams of all orders of the formally exact QED PT. 
However, the necessary experimental quantities 
are not often available. The first two order correc-
tions to ( )2Re M  have been analyzed previously [4] 
using Feynman diagrams [11]. The contributions 
of the first-order diagrams have been completely 
calculated. In the second order, there are two 
kinds of diagrams: polarization and ladder ones.  
The polarization diagrams take into account the 
quasiparticle interaction through the polarizable 
core, and the ladder diagrams account for the im-
mediate quasiparticle interaction [11-20]. Some 
of the ladder diagram contributions as well as 
some of the three-quasiparticle diagram contribu-
tions in all PT orders have the same angular sym-
metry as the two-quasiparticle diagram contribu-
tions of the first order. These contributions have 
been summarized by a modification of the central 
potential, which must now include the screening 
(anti-screening) of the core potential of each par-
ticle by the two others. The additional potential 
modifies the one-quasiparticle orbitals and ener-
gies. Then the secular matrix is as follows: 

,
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                     )2()1( ~~ MMM +→ ,              (2) 

where ( )1M  is the modified one-quasiparticle ma-
trix ( diagonal), and ( )2M  the modified two-qua-
siparticle one. ( )1M  is calculated by substituting 
the modified one-quasiparticle energies), and 

( )2M  by means of the first PT order formulae for 
( )2M , putting the modified radial functions of the 

one-quasiparticle states in the radial  integrals.. 
Let us remind that in the QED theory, the pho-

ton propagator D(12) plays the role of this inter-
action. Naturally the analytical form of D(12) de-
pends on the gauge, in which the electrodynami-
cal potentials are written. Interelectron interaction 
operator with accounting for the Breit interaction 
has been taken as follows:  

         ( ) ( ) ( )
ij

ji
ijji r

áá1
riexprrV

−
⋅= ω ,            (3)

where, as usually, αi are the Dirac matrices. In 
general, the results of all approximate calcula-
tions depended on the gauge.  Naturally the cor-
rect result must be gauge-invariant. The gauge 
dependence of the amplitudes of the photo pro-
cesses in the approximate calculations is a well 
known fact and is in details investigated by Grant, 
Armstrong, Aymar and Luc-Koenig, Glushkov-
Ivanov et al (see [11] and numerous Refs. there-
in). Grant has investigated the gauge connection 
with the limiting non-relativistic form of the tran-
sition operator and has formulated the conditions 
for approximate functions of the states, in which 
the amplitudes of the photo processes are gauge 
invariant [1]. These results remain true in the en-
ergy approach because the final formulae for the 
probabilities coincide in both approaches. Glush-
kov-Ivanov have developed a new relativistic 
gauge-conserved version of the energy approach 
[6]. Here we applied this approach for generating 
the optimized relativistic orbitals basis in the ze-
roth approximation of the many-body PT [7-10]. 
Optimization has been fulfilled by means of intro-
duction of the parameter to the Fock and Kohn-
Sham exchange potentials and further minimiza-
tion of the gauge-non-invariant contributions into 
radiation width of atomic levels with using rela-
tivistic orbital bases, generated by the correspond-
ing zeroth approximation Hamiltonians. Below 
we will be interested by studying the spectra of 

the autoionization resonances in the ytterbium 
atom and calculating their energies and widths. 
The excited states of the  ytterbium atom can be 
treated as the states with two-quasiparticles above 
the electron core [Xe]4f14.  Within the standard 
energy approach [8-11] the autoionization width 
is determined by the square of an electron interac-
tion (3) matrix element. The real part of the elec-
tron interaction matrix element is determined us-
ing expansion in terms of Bessel functions [17-
19,26]; the Coulomb part Qul

lQ  is expressed in 
terms of the standard radial integrals and angular 
coefficients. The Breit part of Q is defined in the 
similar way as above, but the contribution of our 
interest is a real part.  The Breit interaction is 
known to change considerably the autoionization  
decay dynamics in some cases (see, for example, 
Refs. [3,11]). Determination of the radiation de-
cay probabilities (oscillator strengths) results to 
calculating the imaginary matrix elements of the 
interaction (3). The calculation of radial integrals 
ReRl(1243) is reduced to the solution of a system 
of  differential equations according to the Ivano-
va-Ivanov  method [26].  The system of differen-
tial equations includes also equations for func-
tions f/r|æ|-1, g/r|æ|-1, ( )1

lZ , ( )2
lZ . The formulas for the 

autoionization decay probability include the ra-
dial integrals Ra(akgb), where one of the func-
tions describes electron in the continuum state. 
The correctly normalized function should have 
the following regular asymptotic at  r→0 (look 
details in Refs. [13-19]). Other details can be 
found in Refs. [6-11,13-19].

3. Some illustration results and conclusion

In table 1 we present the experimental data 
(Jong-Hoon et al [87,88]) and theoretical results 
(Th1–PT with the Dirac-Kohn-Sham zeroth ap-
proximation [7,8]; Th2 – this work) for energies 
and widths of the excited (autoionization) states 
of the 4f13 [2F7/2]6s2np[5/2]2 and 4f13 [2F7/2] 6s2 

nf [5/2]2  states  (because of excitation of the 4f 
shell).

In table 2 we present the predictions of this 
work regarding the energies and widths of the ex-
cited (autoionization) states 4f13 [2F7/2] 6s2 nf [5/2]2  
states. As it has been noted in [5], the attention is 
drawn to the smallness of the resonance widths, 
the cause of which in the literature is not clear. In 

interaction [11-20]. Some of the ladder 
diagram contributions as well as some of the 
three-quasiparticle diagram contributions in 
all PT orders have the same angular 
symmetry as the two-quasiparticle diagram 
contributions of the first order. These 
contributions have been summarized by a 
modification of the central potential, which 
must now include the screening (anti-
screening) of the core potential of each 
particle by the two others. The additional 
potential modifies the one-quasiparticle 
orbitals and energies. Then the secular matrix 
is as follows: 

)2()1( ~~ MMM +→ , (2) 

where ( )1M is the modified one-quasiparticle 
matrix ( diagonal), and ( )2M the modified 
two-quasiparticle one. ( )1M is calculated by 
substituting the modified one-quasiparticle 
energies), and ( )2M by means of the first PT 
order formulae for ( )2M , putting the 
modified radial functions of the one-
quasiparticle states in the radial  integrals.. 
Let us remind that in the QED theory, the 
photon propagator D(12) plays the role of 
this interaction. Naturally the analytical form 
of D(12) depends on the gauge, in which the 
electrodynamical potentials are written. 
Interelectron interaction operator with 
accounting for the Breit interaction has been 
taken as follows: 

( ) ( ) ( )
ij

ji
ijji r

αα1
riexprrV

−
⋅= ω , (3)

where, as usually, αi are the Dirac matrices. 
In general, the results of all approximate 
calculations depended on the gauge.  
Naturally the correct result must be gauge-
invariant. The gauge dependence of the 
amplitudes of the photo processes in the 
approximate calculations is a well known 
fact and is in details investigated by Grant, 
Armstrong, Aymar and Luc-Koenig, 
Glushkov-Ivanov et al (see [11] and 
numerous Refs. therein). Grant has 
investigated the gauge connection with the 
limiting non-relativistic form of the transition 

operator and has formulated the conditions 
for approximate functions of the states, in 
which the amplitudes of the photo processes 
are gauge invariant [1]. These results remain 
true in the energy approach because the final 
formulae for the probabilities coincide in 
both approaches. Glushkov-Ivanov have 
developed a new relativistic gauge-conserved 
version of the energy approach [6]. Here we 
applied this approach for generating the 
optimized relativistic orbitals basis in the 
zeroth approximation of the many-body PT
[7-10]. Optimization has been fulfilled by 
means of introduction of the parameter to the 
Fock and Kohn-Sham exchange potentials 
and further minimization of the gauge-non-
invariant contributions into radiation width of
atomic levels with using relativistic orbital 
bases, generated by the corresponding zeroth 
approximation Hamiltonians. Below we will 
be interested by studying the spectra of the 
autoionization resonances in the ytterbium 
atom and calculating their energies and 
widths. The excited states of the  ytterbium 
atom can be treated as the states with two-
quasiparticles above the electron core 
[Xe]4f14. Within the standard energy 
approach [8-11] the autoionization width is 
determined by the square of an electron 
interaction (3) matrix element. The real part 
of the electron interaction matrix element is 
determined using expansion in terms of 
Bessel functions [17-19,26]; the Coulomb 
part Qul

λQ is expressed in terms of the 
standard radial integrals and angular 
coefficients. The Breit part of Q is defined in 
the similar way as above, but the contribution 
of our interest is a real part.  The Breit 
interaction is known to change considerably 
the autoionization decay dynamics in some 
cases (see, for example, Refs. [3,11]). 
Determination of the radiation decay 
probabilities (oscillator strengths) results to 
calculating the imaginary matrix elements of 
the interaction (3). The calculation of radial 
integrals ReRλ(1243) is reduced to the 
solution of a system of  differential equations 
according to the Ivanova-Ivanov  method 
[26].  The system of differential equations 
includes also equations for functions f/r|æ|-1,
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our opinion, it is related to the complex energetic 
structure of the 4f-shell atoms, as a result of caus-
ing several unusual physics of autoionization res-
onances and their decay mechanisms, especially 
in comparison with the conventional standards 
spectroscopy (for He, inert gases, alkali atoms)

Table 1 
Energies E (cm-1), widths Г (cm-1) of the 4f13 
[2F7/2]6s2np[5/2]2 states in YbI: Th1- PT with 
Dirac-Kohn-Sham zeroth approximation; 
Th2- Th1- PT with Dirac-Fock zeroth approxi-

mation (this work)

n Exp.
Eexp

Exp.
Гexp

Th1.
E

Th1.
Г

Th2.
E

Th2.
Г

12 70120.5 1.5 70121 1.7 70123 1.6

15 70914.8 1.2 70916 1.4 70917 1.3

20 71428.1 0.6 71429 0.7 71430 0.6

25 71612.5 1.3 71611 1.5 71612 1.4

26 71633.3 0.6 71631 0.8 71633 0.7

30 71698.8 0.5 71697 0.7 71699 0.6

46 - - - - 71798 0.3

It is important to note that the both perturba-
tion theory versions with the Dirac-Fock and Di-
rac-Kohn-Sham zeroth approximations provide 
a physically reasonable agreement with experi-
ment, however, more exact data are provided by 
the optimized Dirac-Fock-like   theory. 

Table 2 
Energies E (cm-1), widths Г (cm-1) of the 4f13 
[2F7/2] 6s2 nf [5/2]2  states (predictions of this 

work)

n Th.
E

Th.
Г

12 70966 0.6
13 71109 0.4
15 71314 1.5
20 71562 0.8
25 71674 0.7
26 71690 0.6
30 71735 0.4
46 71814 0.2

References
1.	 Grant I.P., Relativistic Quantum The-

ory of Atoms and Molecules.-Oxford, 
2008.-650P.

2.	 Ivanov L.N.,Ivanova E.P., Extrapola-
tion of atomic ion energies by model  
potential method: Na-like spectra/ // 
Atom.Data Nucl .Data Tab.-1979.-
Vol.24.-P.95-121.

3.	 Ivanov L.N., Letokhov V.S., Autoion-
ization states of multielectron atoms//
Com. Of Modern Phys. D. Atom. and 
Mol.Phys.-1985.-Vol.4.-P.169-184.

4.	 Ivanova E.P., Ivanov L.N.,  Glushkov  
A.V.,  Kramida A.E.   High order cor-
rections  in  the relativistic perturbation 
theory with the model  zeroth  approxi-
mation, My-like and Ne-like ions // 
Phys.Scripta –1985.-Vol.32,N4.-P.513.

5.	 Glushkov A.V., Ivanov L.N., Ivanova 
E.P., Radiation decay of atomic states. 
Generalized energy approach// Auto-
ionization Phenomena in Atoms.- M.: 
Moscow  State Univ.-1986. –P.58. 

6.	 Glushkov A.V., Ivanov L.N. Radiation 
decay of atomic states: atomic residue 
polarization and gauge non-invariant 
contributions//Phys.Lett.A.-1992.-Vol. 
170.-P.33-36.

7.	 Svinarenko A.A., Study of spectra 
for lanthanides atoms with relativis-
tic many- body perturbation theory: 
Rydberg resonances// J. Phys.: Conf. 
Ser.-2014.-Vol.548.-P.012039.  

8.	 Svinarenko A.A., Ignatenko A.V., Ter-
novsky V.B., Nikola V.V., Seredenko 
S.S., Tkach T.B., Advanced relativistic 
model potential approach to calculation 
of radiation transition parameters in 
spectra of multicharged ions// J. Phys.: 
Conf. Ser. -2014.-Vol.548.-P. 012047.   

9.	 Svinarenko A.A., Khetselius O.Yu., 
Buyadzhi V.V., Florko T.A., Zaichko 
P.A., Ponomarenko E.L., Spectroscopy 
of Rydberg atoms in a Black-body ra-
diation field: Relativistic theory of ex-
citation and ionization// J. Phys.: Conf. 
Ser.-2014.-Vol.548.-P. 012048.  

10.	 Svinarenko A.A., Nikola L. V.,  Pre-
pelitsa G.P., Tkach T.B, Mischenko 



107

E.V., Auger (autoionization) decay of 
excited states in spectra of multicharged 
ions: Relativistic theory//AIP Conf.
Proceedings.-2010.-Vol.1290, N1 P.94-
98. 

11.	Glushkov A.V., Relativistic and cor-
relation effects in spectra of atomic 
systems.-Odessa: Astroprint.-2006.-
400P.  

12.	Glushkov A.V., Atom in electromagnet-
ic field.-Kiev: KNT, 2005.-450P. 

13.	Glushkov A.V., Khetselius O.Yu., Lo-
boda A.V., Svinarenko  A.A., QED ap-
proach to atoms in a laser field: Multi-
photon resonances and above threshold 
ionization//Frontiers in Quantum Sys-
tems in Chemistry and Physics, Ser.: 
Progress in Theoretical Chemistry and 
Physics; Eds. S.Wilson, P.J.Grout,  J. 
Maruani, G. Delgado-Barrio, P. Piecuch 
(Springer), 2008.-Vol.18.-P.543-560.

14.	Glushkov A.V., Khetselius O.Y., Ma-
linovskaya  S.V.,  New laser-electron 
nuclear effects in the nuclear γ transi-
tion spectra in atomic and molecular 
systems// Frontiers in Quantum Sys-
tems in Chemistry and Physics. Series: 
Progress in Theoretical Chemistry and 
Physics   Eds. S.Wilson, P.J.Grout,  J. 
Maruani, G. Delgado-Barrio, P. Piecuch 
(Springer).-2008.-Vol.18.-525 p.

15.	Glushkov A.V., Khetselius O.Yu.,  
Svinarenko A.A., Prepelitsa G.P., En-
ergy approach to atoms in a laser field 
and quantum dynamics with laser puls-
es of different shape//In: Coherence 
and Ultrashort Pulse Laser Emission, 
Ed. by Dr. F. Duarte (InTech).-2010.-
P.159-186. 

16.	Glushkov A.V., Khetselius O. Yu.,  
Svinarenko A. A., Relativistic theory 
of cooperative muon-g gamma-nuclear 
processes: Negative muon capture and 
metastable nucleus discharge// Advanc-
es in the Theory of Quantum Systems in 
Chemistry and Physics. Ser.: Progress in 
Theor. Chem. and Phys., Eds. P.Hoggan, 
E.Brandas, J.Maruani, G. Delgado-
Barrio, P.Piecuch (Springer).-2012.-
Vol.22.-P.51.  

17.	Khetselius O.Yu., Relativistic calculat-
ing the hyperfine structure parameters 
for heavy-elements and laser detect-
ing the isotopes and nuclear reaction 
products//Phys.Scripta.-2009.-T.135.-
P.014023.

18.	Glushkov A.V., Khetselius O.Yu.,  
Lovett L.,  Electron-b-Nuclear Spec-
troscopy of Atoms and Molecules and  
Chemical Bond Effect on the b-Decay 
parameters// Advances in the Theory of 
Atomic and Molecular Systems Dynam-
ics, Spectroscopy, Clusters, and  Nano-
structures. Series: Progress in Theor. 
Chem. and Phys., Eds. Piecuch P., 
Maruani J., Delgado-Barrio G., Wilson 
S. (Springer).-2009.-Vol.20.-P.125-152.     

19.	Glushkov A.V., Svinarenko A.A., 
Khetselius O.Yu., Buyadzhi V.V., Flo-
rko T.A., Shakhman A.N., Relativistic 
Quantum Chemistry: An Advanced ap-
proach to the construction of the Green 
function of the Dirac equation with 
complex energy and mean-field nu-
clear potential// Frontiers in Quantum 
Methods and Applications in Chem. 
and Physics. Ser.: Progress in Theor. 
Chem. and Phys., Eds. M. Nascimento, 
J.Maruani, E.Brändas, G. Delgado-Bar-
rio (Springer).-2015-Vol.29.-P.197-217.

20.	Malinovskaya S.V., Glushkov A.V., 
Dubrovskaya Yu.V., Vitavetskaya L.A., 
Quantum calculation of cooperative 
muon-nuclear processes: discharge of 
metastable nuclei during negative muon 
capture// Recent Advances in the The-
ory of Chemical and Physical Systems 
(Springer).-2006.-Vol.15.-P.301-307. 

21.	 Malinovskaya S.V., Glushkov A.V., 
Khetselius O.Yu.,  Lopatkin Yu., Lo-
boda A.V., Svinarenko A.A., Nikola L., 
Perelygina T., Generalized energy ap-
proach to calculating electron collision 
cross-sections for multicharged ions in 
a plasma: Debye shielding model// Int. 
Journ. Quant. Chem.-2011.-Vol.111.-
P.288-296.

22.	Malinovskaya S.V., Glushkov A.V., 
Khetselius O.Yu., Svinarenko A.A., 
Mischenko E.V., Florko T.A.,   Opti-



108

mized perturbation theory scheme for 
calculating the interatomic potentials 
and hyperfine lines shift for heavy at-
oms in the buffer inert gas//Int. Journ. 
Quant.Chem.-2009.-Vol.109,N14.-
P.3325-3329.

23.	Khetselius O.Yu., Optimized perturba-
tion theory to calculating the hyperfine 
line shift and broadening for heavy atoms 
in the buffer gas// Frontiers in Quantum 
Methods and Applications in Chemistry 
and Physics. Ser.: Progress in Theor. 
Chem. and Phys., Eds. M.Nascimento, 
J.Maruani, E.Brändas, G.Delgado-Bar-
rio (Springer).-2015-Vol.29.-P.55-76.

24.	Glushkov A.V., Ambrosov S.V., Lo-
boda A.V., Gurnitskaya E.P., Khetselius 
O.Yu., QED calculation of heavy multi-
charged ions   with account for  the cor-
relation, radiative and nuclear effects// 
Recent Advances in Theor. Phys. and 
Chem. Systems.-2006.-Vol.15.-P.285.

25.	Glushkov A.V.,Khetselius O.Yu., Gur-
nitskaya E.P., Korchevsky D.A., Lo-
boda A.V., Prepelitsa G.P., Sensing 
the electron-collision excitation cross-
sections for Ne-like ions of Fe in a 
plasma in the Debye shielding approxi-
mation// Sensor Electr. and Microsyst. 
Techn.-2007.-N2.-P.9-13

26.	Glushkov A.V., Rusov V.D., Ambro-
sov S.V., Loboda A.,Resonance states 
of compound super-heavy nucleus and 
EPPP in heavy nucleus collisions//New 
projects and new lines of research in nu-
clear physics. Eds. G.Fazio, F.Hanappe, 
Singapore : World Scientific.-2003.-
P.126-132.  

27.	Glushkov A.V., Malinovskaya S.V., Lo-
boda A., Shpinareva I.M.,Gurnitskaya 
E., Korchevsky D., Diagnostics of the 
collisionally pumped plasma and search 
of the optimal plasma parameters of 
x-ray lasing: Calculation of electron-
collision strengths and rate coefficients 
for Ne-like plasma// J. Phys.: Conf.
Ser.-2005.-Vol.11.-P.188-198.

28.	Glushkov A.V., Mansarliysky V.F., 
Khetselius O.Yu., Ignatenko A.V., 
Smirnov A., Prepelitsa G.P., Collisional 

shift of hyperfine line for thallium in 
an atmosphere of the buffer inert gas // 
Journal of Physics: C Series (IOP, Lon-
don, UK).-2017.-Vol.810.-P. 012034.  

29.	Glushkov A.V., Malinovskaya S.V., 
Sukharev D.E., Khetselius O.Yu., Lo-
boda A.V., Lovett L., Green’s function 
method in quantum chemistry: New 
numerical algorithm for the Dirac equa-
tion with complex energy and Fermi-
model nuclear potential//Int.Journ. 
Quant.Chem.-2009.-Vol. 109.-N8.-
P.1717-1727.

30.	Glushkov A.V., Khetselius O.Yu., Gur-
nitskaya E.P., Florko T.A., Sensing of 
nuclei available in little quantities by 
means of laser spectroscopy of hyper-
fine structure for isotopes: new theoreti-
cal scheme (U ,Hg) // Sensor Electr. and 
Microsyst. Techn.-2007.-N3.-P.8-12

31.	Glushkov A.V., Kondratenko P.A., 
Lepikh Ya., Fedchuk A.P., Svinaren-
ko A.A., Lovett L., Electrodynamical 
and quantum - chemical approaches 
to modelling the electrochemical and 
catalytic processes on  metals, metal 
alloys and semiconductors//Int. Journ. 
Quantum Chem..-2009.-Vol.109,N14.-
P.3473-3481.

32.	Glushkov A.V., Malinovskaya S.V., 
New approach to the formation of 
model potential for valence-electrons//
Zhurn.Fizich.Khimii.-1988.-Vol.62(1).-
P.100-104.

33.	Ternovsky V.B., Glushkov A.V., Zai-
chko P.A., Khetselius O.Yu., Florko 
T.A., New relativistic model potential 
approach to sensing radiative transi-
tions probabilities in spectra of heavy 
Rydberg atomic systems/ // Sensor 
Electr. and Microsyst. Techn.-2015.-
Vol.12,N4.-P.19-26.

34.	Buyadzhi V.V., Glushkov A.V., Man-
sarliysky V.F., Ignatenko A.V., Svin-
arenko A.A., Spectroscopy of atoms in a 
strong laser field: New method to sens-
ing AC Stark effect, multiphoton reso-
nances parameters and ionization cross-
sections//Sensor Electr. and Microsyst. 
Techn.-2015.-Vol.12,N4.-P.27-36.



109

35.	Glushkov A.V., Effective quasi-particle 
valence hamiltonian of molecules in 
the comprehensive semi-empirical the-
ory// Sov. Journ. Struct. Chem.-1988.-
Vol.29,N4.-P.3-9.

36.	Glushkov A.V., Khetselius O.Yu., 
Lopatkin Y., Florko T.A., Kovalenko 
O., Mansarliysky V.F., Collisional shift 
of hyperfine line for rubidium in an 
atmosphere of the buffer inert gas//J. 
Phys.:Conf.Series.-2014.-Vol.548.-
P.012026

37.	Glushkov A.V.,  Khetselius O.Yu., 
Bunuakova Yu.Ya., Buyadzhi V.V, 
Brusentseva S.V., Zaichko P.A., Sensing 
interaction dynamics of chaotic systems 
within a chaos theory and microsystem 
technology Geomath with application 
to neurophysiological systems// Sen-
sor Electr. and Microsyst.Techn.-2014.-
Vol. 11,N3.-P.62-69.

38.	Prepelitsa G.P., Glushkov A.V., Lepikh 
Ya.I., Buyadzhi V.V., Ternovsky V.B., 
Zaichko P.A., Chaotic dynamics of non-
linear processes in atomic and molecu-
lar systems in electromagnetic field and 
semiconductor and fiber laser devices: 
new approaches, uniformity and charm 
of chaos// Sensor Electr. and Microsyst.
Techn.-2014.-Vol.11,N4.-P.43-57.

39.	Khetselius O.Yu., Hyperfine structure 
of atomic spectra.-Odessa: Astroprint, 
2008.-210P.

40.	Khetselius O.Yu., Hyperfine structure 
of radium// Photoelectronics.-2005.-
N14.-P.83-85.

41.	Khetselius O.Yu., Spectroscopy of co-
operative electron-gamma-nuclear pro-
cesses  in heavy atoms: NEET effect// 
J. Phys.: Conf. Ser.-2012.- Vol.397.-
P.012012

42.	Khetselius O.Yu., Florko T.A., Svin-
arenko A.A., Tkach T.B., Radiative 
and collisional spectroscopy of hy-
perfine lines of the Li-like heavy ions 
and Tl atom in an atmosphere of inert 
gas//Phys.Scripta.-2013.-Vol.T153-
P.014037.  

43.	Khetselius O.Yu., Turin A.V., Sukharev 
D.E., Florko T.A., Estimating of  X-

ray spectra for kaonic atoms as tool for 
sensing the nuclear  structure// Sensor 
Electr. and Microsyst. Techn.-2009.-
N1.-P.30-35. 

44.	Khetselius O.Yu.,  On possibility of 
sensing nuclei of the rare isotopes by 
means of laser spectroscopy of hyper-
fine structure//Sensor Electr. and Mi-
crosyst.Techn.-2008.-Vol.3.-P.28-33. 

45.	Khetselius O.Yu., Quantum Geometry: 
New approach to quantization of the 
quasistationary states of Dirac equation 
for super heavy ion and calculating hy-
per fine structure parameters// Proc.  Int.
Geometry Center.-2012.-Vol.5,№ 3-4.-
P.39-45.   

46.	Glushkov A.V., Khetselius O.Yu., Svin-
arenko  A.A., Theoretical spectroscopy 
of autoionization resonances in spectra 
of lanthanide atoms//  Physica Scripta.-
2013.-Vol.T153.-P.014029.

47.	Glushkov A.V., Khetselius O.Yu., Gur-
nitskaya E.P., Loboda A.V., Sukharev 
D.E.,  Relativistic quantum chemis-
try of heavy ions and hadronic atomic 
systems: spectra and energy shifts//
Theory and Applications of Com-
putational Chemistry. AIP Confer-
ence Proceedings.-2009.-Vol.1102.-
P.168-171. 

48.	Khetselius O.Yu.,  Relativistic calculat-
ing the spectral lines hyperfine structure 
parameters for heavy ions//Spectral Line 
Shapes,  AIP Conf. Proceedings.-2008.-
Vol.1058.-P.363-365.   

49.	Khetselius O.Yu., Glushkov A.V., Gur-
nitskaya E.P., Loboda A.V.,  Mischenko 
E.V., Florko T.A., Sukharev D.E., Col-
lisional Shift of the Tl hyperfine lines in  
atmosphere of inert gases// Spectral Line 
Shapes,  AIP Conf. Proceedings.-2008.-
Vol.1058.-P.231-233.

50.	Khetselius O.Yu.,  Hyperfine structure 
of energy levels for isotopes 73Ge, 
75As, 201Hg// Photoelectronics.-2007.-
N16.-P.129-132.

51.	Khetselius O.Y., Gurnitskaya E.P., 
Sensing the electric and magnetic mo-
ments of a nucleus in the N-like ion 
of Bi// Sensor Electr. and Microsyst. 



110

Techn.-2006.-N3.-P.35-39.
52.	Khetselius O.Y., Gurnitskaya E.P., Sens-

ing the hyperfine structure and nuclear 
quadrupole moment for radium// Sensor 
Electr. and Microsyst. Techn.-2006.-
N2.-P.25-29.

53.	Florko T.A., Loboda A.V.,  Svinarenko 
A.A., Sensing forbidden transitions 
in spectra of some heavy atoms and 
multicharged ions: New theoretical 
scheme// Sensor Electr. and Microsyst. 
Techn.-2009.-N3.-P.10-15.

54.	Sukharev D.E., Khetselius O.Yu., Du-
brovskaya Yu.V., Sensing strong inter-
action effects in spectroscopy of had-
ronic atoms// Sensor Electr. and Mi-
crosyst. Techn.-2009.-N3.-P.16-21. 

55.	Glushkov A.V., Khetselius O.Yu., Lo-
boda A.V., Ignatenko A., Svinarenko 
A., Korchevsky D., Lovett L., QED ap-
proach to modeling spectra of the mul-
ticharged ions in a plasma: Oscillator 
and electron‐ion collision strengths//
Spectral Line Shapes. AIP Confer-
ence Proceedings.-2008.-Vol.1058.-
P.175-177 

56.	Glushkov A.V., Ambrosov S.V., Lo-
boda A., Gurnitskaya E.P., Prepelitsa 
G.P., Consistent QED approach to cal-
culation of electron-collision excitation 
cross-sections and strengths: Ne-like 
ions//Int. Journ.Quant.Chem.-2005.-
Vol.104, N4 .-P. 562-569.  

57.	Glushkov A.V.,Lepikh Ya.I.,Khetselius 
O.Yu., Fedchuk A.P., Ambrosov S.V , 
Ignatenko A.V., Wannier-mott excitons 
and atoms in a DC elecric field: pho-
toionization, Stark effect, resonances 
in the ionization continuum// Sensor 
Electr. and Microsyst. Techn.-2008.-
N4.-P.5-11.

58.	Khetselius O.Yu., Relativistic energy 
approach to cooperative electron-
γ-nuclear processes: NEET Effect// 
Quantum Systems in Chemistry and 
Physics: Progress in Methods and Ap-
plications.  Ser.: Progress in Theor. 
Chem. and Phys., Eds. K.Nishikawa, 
J. Maruani, E.Brandas, G. Delga-
do-Barrio, P.Piecuch (Springer).-

2012-Vol.26.-P. 217. 
59.	Buyadzhi V.V., Glushkov A.V., Lovett 

L., Spectroscopy of atoms and nu-
clei in a strong laser field: AC Stark 
effect and multiphoton resonances//
Photoelectronics.-2014.-Vol.23.- 
P. 38-43. 

60.	Glushkov A.V., Ambrosov S.V., Ig-
natenko A.V., Korchevsky D.A., DC 
Strong Field Stark effect for non-hydro-
genic atoms: Consistent quantum me-
chanical approach// Int.Journ. Quant. 
Chem.-2004.-Vol.99,N6.-P.936-939.

61.	Glushkov A.V, Malinovskaya S.V, 
Chernyakova Y.G., Svinarenko A.A., 
Cooperative laser-electron-nuclear 
processes: QED calculation of elec-
tron satellites spectra for multi-charged 
ion in laser field// Int. Journ. Quant. 
Chem.-2004.-Vol.99,N6.-P.889-893.

62.	Glushkov A.V, Khetselius O.Yu, Ma-
linovskaya S.V, Optics and spectros-
copy of cooperative laser-electron 
nuclear processes in atomic and mo-
lecular systems - new trend in quantum 
optics// Europ. Phys. Journ. ST.-2008.-
Vol.160,N1.-P.195-204.

63.	Glushkov A.V., Malinovskaya 
S.V, Gurnitskaya E.P., Khetselius 
O.Yu.,Dubrovskaya Yu.V., Consistent 
quantum theory of  the recoil induced 
excitation and ionization in atoms dur-
ing capture of neutron// Journal of Phys-
ics: Conf. Series (IOP).-2006.- Vol.35.-
P.425-430.  

64.	Glushkov A.V., Dan’kov S.V., Pre-
pelitsa G., Polischuk V.N., Efimov A., 
Qed theory of nonlinear interaction of 
the complex atomic systems with laser 
field multi-photon resonances// Journal 
of Tech. Phys.-1997.-Vol.38 (2).-P.219-
222

65.	Glushkov A.V., Calculation of parame-
ters of the interaction potential between 
excited alkali atoms and mercury atoms 
- the Cs-, Fr-Hg interaction// Optika i 
Spektr.-1994.-Vol.77 (1).-P.5-10.

66.	Glushkov A.V., Khetselius O.Yu., Pre-
pelitsa G.P., Svinarenko A.A.,  Geom-
etry of Chaos I: Theoretical basis’s of 



111

a consistent combined approach//Proc. 
Int. Geometry Center.-2013.-Vol.6, 
N1.-P.67-79.

67.	Chernyakova Yu.G., Dubrovskaya 
Yu.V., Florko T.A., Romanova A.V., Vi-
tavetskaya L.,  An advanced approach 
to quantization of the quasi stationary 
states of Dirac-Slater equation// Proc. 
Int. Geometry Center.-2013.-Vol.6,N2.-
P.29-34.

68.	Glushkov A.V., Khetselius O., Du-
brovskaya Yu.V., Loboda A.V., Sensing  
the capture of negative muon by atoms: 
Energy approach// Sensor Electr. and 
Microsyst. Techn.-2006.-N4.-P.31-35.

69.	Glushkov A.V., Svinarenko A.A., 
Nuclear quantum optics: Energy ap-
proach to multi-photon resonances in 
nuclei // Sensor Electr. and Microsyst. 
Techn.-2010.-N2.-P.5-10.

70.	Glushkov A.V., Energy approach to  res-
onance states of compound super-heavy 
nucleus and EPPP in heavy nuclei col-
lisions// Low Energy Antiproton Phys. 
AIP Conference Proceedings.-2005.-
Vol.796.-P.206-210.

71.	Malinovskaya S.V.,  S.V., Dubrovs-
kaya Yu., Vitavetskaya L., Advanced 
quantum mechanical calculation of 
the beta decay probabilities// Low En-
ergy Antiproton Phys. AIP Confer-
ence Proceedings.-2005.-Vol.796.-
P.201-205.

72.	Glushkov A.V., Khetselius O.Yu.,  
Svinarenko A.A., Lovett L., Energy ap-
proach to nuclei and atoms in a strong 
laser field: Stark effect and    multi-pho-
ton resonances // Quantum Theory: Re-
consideration of Foundations. AIP Con-
ference Proceedings.-2010.-Vol.1232.-
P.228-234.

73.	Glushkov A.V., Lovett L., Khetselius 
O.Yu., Gurnitskaya E.P., Dubrovskaya 
Yu.V., Loboda A.V., Generalized multi-
configuration model of decay of multi-
pole giant resonances applied to analy-
sis of reaction (m-n) on the nucleus 
40Ca// Internat. Journ. Modern  Physics 
A.-2009.- Vol. 24, N.2-3.-P.611-615.

74.	Svinarenko A.A., Glushkov A.V., Lo-

boda A.V., Sukharev D.E., Dubrovs-
kaya Yu.V., Mudraya N.V., Serga I.N., 
Green’s function of the Dirac equation 
with complex energy and non-singular 
central nuclear potential//Quantum 
Theory: Reconsideration of Founda-
tions. AIP Conf. Proceedings.-2010.-
Vol.1232.-P.259-266.

75.	Glushkov A.V., Loboda A.V., Gurnits-
kaya E., Svinarenko A.A., QED theory 
of radiation emission and absorption 
lines for atoms in a strong laser field//
Phys. Scripta.-2009.-T.135.-P. 014022.   

76.	Glushkov A.V., Malinovskaya S.V., Pre-
pelitsa G.P., Ignatenko V.M., Manifes-
tation of the new laser-electron nuclear 
spectral effects in thermalized plasma: 
QED theory of cooperative laser-elec-
tron- nuclear processes//J. Phys.:Conf.
Ser.-2005.-Vol.11.-P.199-206. 

77.	Glushkov A.V., Malinovskaya S.V., 
Ambrosov S., Shpinareva I.M., Troits-
kaya O.V., Resonances in quantum sys-
tems in strong external fields consistent 
quantum approach// J. of Techn.Phys.-
1997.-Vol.38, Iss.2.-P.215-218.

78.	Buyadzhi V.V., Zaichko P.A., Gurskaya 
M., Kuznetsova A.A., Ponomaren-
ko E.L., Ternovsky V.B., Relativistic 
theory of excitation and ionization of 
Rydberg atoms in a Black-body radia-
tion field//J. Phys.: Conf. Series.-2017.-
Vol.810.-P. 012047.

79.	Glushkov A.V., Spectroscopy of atom 
and nucleus in a strong laser field: Stark 
effect and multiphoton Resonances// 
J.Phys.: Conf. Series (IOP).-2014.-
Vol.548.-P.012020.

80.	Glushkov A.V., Kondratenko P.A., Buy-
adzhi V.V., Kvasikova A.S., Shakhman 
A.S., Sakun T.N., Spectroscopy of coop-
erative laser electron-γ-nuclear process-
es in polyatomic molecules// J. Phys.: 
Conf. Ser.-2014.-Vol.548.-P.012025

81.	Glushkov A.V., Khetselius O.Yu., Pre-
pelitsa G.P., Svinarenko A.A., Geom-
etry of Chaos: Theoretical basis’s of a 
consistent combined approach to treat-
ing chaotic dynamical systems and their 
parameters determination //Proc. of  In-



112

ternational Geometry Center”.-2013.-
Vol.6, N1.-P.43-48.

82.	Glushkov A.V., Khetselius O.Yu., Ma-
linovskaya S.V., Spectroscopy of co-
operative laser-electron nuclear effects 
in multiatomic molecules// Molec. 
Phys. (UK).-2008.-Vol.106.-N9-10.-
P.1257-1260.  

83.	Glushkov A.V., Khetselius O.Yu., 
Svinarenko A.A., Prepelitsa G.P., Mis-
chenko E.V., The Green’s functions 
and density functional approach to vi-
brational structure in the photoelec-
tron spectra for molecules// AIP Conf. 
Proceedings.-2010.-Vol.1290.-P. 263-
268. 

84.	Glushkov A.V, Malinovskaya S.,Co-op-
erative laser nuclear processes: border 
lines effects// In:  New projects and new 
lines of research in nuclear physics. 
Eds. G.Fazio and F.Hanappe, Singapore 
: World Scientific.-2003.-P.242-250. 

85.	Khetselius O. Yu.,  Florko T. A.,  Nikola 
L.,  Svinarenko A., Serga I.,  Tkach T.,  
Mischenko E., Hyperfine structure, sca-
lar-pseudoscalar interaction and parity 

non-conservation effect in some heavy 
atoms and ions// Quantum Theory: Re-
consideration of Foundations. AIP Con-
ference Proceedings.-2010.-Vol.1232.-
P.243-250.  

86.	Glushkov A.V., Operator Perturba-
tion Theory for Atomic Systems in a 
Strong DC Electric Field//Advances 
in Quantum Methods and Applications 
in Chemistry, Physics, and Biology. 
Series: Frontiers in Theoretical Phys-
ics and Chemistry, Eds. M.Hotokka, 
J.Maruani, E. Brändas, G.Delgado-
Barrio (Springer).-2013.-Vol. 27.-
P.161-177.

87.	Jong-hoon Yi, Lee J., Kong H.J., 
Auto-ioni-zing states of the ytterbium 
atom by three-photon polarization 
spectroscopy//Phys. Rev. A.-1995.-
Vol.51.-P.3053–3057. 

88.	Jong-hoon Yi, Park H., Lee J., Investi-
gation of even parity autoionizing states 
of ytterbium atom by two-photon ion-
ization spectroscopy//J. Kor.Phys.Soc.-
2001.-Vol.39.  -P.916-920. 

UDC 539.182
 

V. B. Ternovsky, M. Yu. Gurskaya, A. A. Svinarenko, V. F. Mansarliysky 

THEORETICAL STUDYING SPECTRA OF YTTERBIUM ATOM ON THE BASIS OF 
RELATIVISTIC MANY-BODY PERTURBATION THEORY: RYDBERG RESONANCES

Summary
Theoretical studying the Rydberg autoionization resonances in spectra of the lanthanides atoms 

(ytterbium) is carried out within the relativistic many-body perturbation theory and  generalized rela-
tivistic energy approach (Gell-Mann and Low S-matrix formalism). The zeroth approximation of the 
relativistic perturbation theory is provided by the optimized Dirac-Fock and Dirac-Kohn-Sham ones. 
Optimization has been fulfilled by means of introduction of the parameter to the Fock and Kohn-Sham 
exchange potentials and further minimization of the gauge-non-invariant contributions into radiation 
width of atomic levels with using relativistic orbital bases, generated by the corresponding zeroth ap-
proximation Hamiltonians. The accurate theoretical results on the autoionization 4f13[2F7/2]6s2np[5/2]2, 
4f13 [2F7/2] 6s2nf[5/2]2 resonances energies and widths are presented and compared with experimental 
data, obtained on the basis of the laser polarization spectroscopy method.

Keywords: Relativistic perturbation theory,  resonances energies and widths, optimized zeroth ap-
proximation
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ТЕОРЕТИЧЕСКОЕ ИЗУЧЕНИЕ СПЕКТРА АТОМА ИТЕРБИЯ НА ОСНОВЕ 
РЕЛЯТИВИСТСКОЙ МНОГОЧАСТИЧНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ: 

РИДБЕРГОВЫ РЕЗОНАНСЫ

Резюме
В рамках релятивистской многочастичной теории возмущений и обобщенного релятивист-

ского энергетического подхода проведено теоретическое изучение характеристик ридбергов-
ских автоионизационных резонансов в спектрах атомов лантанидов (иттербия). В качестве ну-
левого приближения релятивистской теории возмущений выбраны оптимизированные прибли-
жения Дирака-Фока и Дирака-Кона-Шэма. Оптимизация выполнена путем введения параметра 
в обменные потенциалы Фока и Кона-Шэма и дальнейшей минимизацией калибровочно-неин-
вариантных вкладов в радиационные ширины атомных уровней с использованием релятивист-
ских орбитальных базисов, сгенерированных соответствующими гамильтонианами нулевого 
приближения. Представлены аккуратные теоретические данные по энергиям и ширинам ав-
тоионизационных 4f13[2F7/2]6s2np[5/2]2, 4f13 [2F7/2] 6s2nf[5/2]2 резонансов и проведено сравнение 
с экспериментальными данными, полученными на основе метода лазерной поляризационной 
спектроскопии.

Ключевые слова: Релятивистская теория возмущений, энергии и ширины резонансов, оп-
тимизированное нулевое приближение

УДК 539.182

В. Б. Терновський,  М. Ю. Гурська, А. А. Свинаренко, В. Ф. Мансарлійський

ТЕОРЕТИЧНЕ ВИВЧЕННЯ СПЕКТРА АТОМА ІТЕРБІЮ НА ОСНОВІ 
РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ ЗБУРЕНЬ: РІДБЕРГОВІ 

РЕЗОНАНСИ

Резюме
В рамках релятивістської багаточастинкової  теорії збурень і узагальненого релятивістського 

енергетичного підходу проведено теоретичне вивчення характеристик рідбергівських автоіо-
нізаційних резонансів в спектрах атомів лантанідів (ітербію). В якості нульового наближення 
релятивістської теорії збурень обрані оптимізовані наближення Дірака-Фока і Дірака-Кона-
Шема. Оптимізація виконана шляхом введення параметра в обмінні потенціали Фока і Кона-
Шема і подальшої мінімізації калібрувально-неінваріантних вкладів в радіаційні ширини атом-
них рівнів з використанням релятивістських орбітальних базисів, згенерованими відповідними 
гамільтоніанами нульового наближення, Представлені акуратні теоретичні дані по енергіях і 
ширинам автоіонізаційних  4f13[2F7/2]6s2np[5/2]2, 4f13 [2F7/2] 6s2nf[5/2] резонансів і проведено по-
рівняння з експериментальними даними, отриманими на основі методу лазерної поляризацій-
ної спектроскопії.

Ключові слова: Релятивістська теорія збурень, енергії і ширини резонансів, оптимізоване 
нульове наближення
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ADVANCED RELATIVISTIC APPROACH IN SPECTROSCOPY OF COMPLEX 
AUTOIONIZATION RESONANCES IN ATOMIC SPECTRA 

We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) combined with the relativistic 
multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-Kohn-Sham zeroth approximation and accounting for the 
exchange-correlation, relativistic corrections to studying  autoionization resonances in the helium spectrum, in particular, we 
predicted the energies and widths of the number of the Rydberg resonances. There are presented the results of comparison 
of our theory data for the autoionization resonance 3s3p 1Р0 with the available experimental data and those results of other 
theories, including, method of complex rotation by Ho, algebraic approach by Wakid-Callaway, diagonalization method 
by Senashenko-Wague etc.

1. Introduction

The knowledge of autoionization states prop-
erties of atomic systems is of a great importance 
note for many applications in atomic and molecu-
lar physics, plasma chemistry and physics, laser 
physics and quantum electronics etc. [1-52].  In 
this paper, which goes on our studying autoion-
ization phenomena in different atomic systems, 
we present an advanced new relativistic approach 
[11-15] to relativistic calculating  autoionization 
resonances (AR) characteristics of the helium  
atom. The new elements of the approach include  
the combined the generalized energy approach 
and the gauge-invariant relativistic  many-body 
perturbation theory (PT) with the Dirac-Kohn-
Sham (DKS) “0” approximation (optimized 1QP  
representation) and an accurate accounting for 
relativistic, correlation and others  effects. The 
generalized gauge-invariant version of the ener-
gy approach has been further developed in Refs. 
[12,13]. 

2. Relativistic perturbation theory approach 
in spectroscopy of autoionization states

In refs. [11-15, 17-20] the fundamentals of the 
relativistic many-body PT formalism  have been 
in details presented, so further  we are limited 

only by the novel elements.   Let us remind that  
the majority of complex atomic systems possess 
a dense energy spectrum of interacting states. In 
refs. [11-15, 17-20] it is realized a field procedure 
for calculating the energy shifts DE of degenerate 
states, which is connected with the secular matrix 
M diagonalization [8-12]. The whole calculation 
of the energies and decay probabilities of a non-
degenerate excited state is reduced to the calcula-
tion and diagonalization of the M. The complex  
secular matrix M is represented in the form [9,10]:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +
                                                                      (1)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams re-
spectively. The diagonal matrix ( )1M  can be pre-
sented as a sum of the independent 1QP contribu-
tions. The optimized 1-QP representation is the 
best one to determine the zeroth approximation. 
In the second order, there is important kind of dia-
grams: the ladder ones. These contributions have 
been summarized by a modification of the central 
potential, which must now include the screening 
(anti-screening) effect  of each particle by two 
others. The additional potential modifies the 1QP 
orbitals and energies. 
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A width of  a state associated with the decay of 
the AR is determined by square of the matrix ele-
ment of the interparticle interaction Г ∞ | V ( b1b2 , 
b3k ) | 2 . The total width is given by the expres-
sion: 
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where the coefficients C are in details described, 
for example, in Refs. [1-5]. The matrix element of 
the relativistic inter-particle interaction 

         
( ) ( ) ijiijijji ráá1riùexprrV /)( −⋅=      (3)

(here αI –the Dirac matrices) in (3) is determined 
as follows: 

                                                                     (4)

                       aQ = Qul
aQ + Br

aQ .                 (5)

Here Qul
aQ and Br

aQ is corresponding to the 
Coulomb and Breit parts of the interparticle inter-
action (5). The calculating of all matrix elements, 
wave functions, Bessel functions etc is reduced to 
solving the system of differential equations. The 
formulas for the autoionization (Auger) decay 
probability include the radial integrals Ra(akgb), 
where one of the functions describes electron in 
the continuum state. When calculating this inte-
gral, the correct normalization of the wave func-
tions is very important, namely, they should have 
the following asymptotic at  r→0:

(6)

The important aspect of the whole procedure is 
an accurate accounting for the exchange-correla-
tion effects. We have used the generalized relativ-
istic Kohn-Sham density functional [33-35] in the 
zeroth approximation of relativistic PT; naturally, 
the perturbation operator contents the operator 
(3) minus the cited Kohn-Sham density func-
tional. Further the wave functions are corrected 
by accounting of the first order PT contribution. 
Besides, we realize the procedure of optimiza-
tion  of relativistic orbitals base. The main idea is 
based on using ab initio optimization procedure, 
which  is reduced to minimization of the gauge 
dependent multielectron contribution ImδEninv of 
the lowest QED PT corrections to the radiation 
widths of atomic levels. According to [35-37], “in 
the fourth order of QED PT (the second order of 
the atomic PT) there appear the diagrams, whose 
contribution to the ImdEninv accounts for correla-
tion effects and this contribution is determined by 
the electromagnetic potential gauge (the gauge 
dependent contribution)”. The accurate  proce-
dure for minimization of the functional ImdEninv 
leads to the Dirac-Kohn-Sham-like equations for 
the electron density that are numerically solved 
by the Runge-Cutta standard method It is very 
important to known that the regular  realization 
of the total scheme allow to get an optimal set 
of the 1QP functions and more correct results in 
comparison with so called simplified one, which 
has been used in Refs. [34-34] and reduced to the 
functional minimization using the variation of the 
correlation potential parameter b. Other details 
can be found in refs.[10-13,16-20,41-74] as well 
as description of the  “Superatom” and Cowan PC 
codes, used in all computing.

3. Results and conclusion
In the Table 1  we present the comparison of 

our advanced data for the AR 3s3p 1Р0 with those 
of other theories, including, method of complex 
rotation by Ho, algebraic approach by Wakid-
Callaway, diagonalization method by Senashen-

energy shift of the state is presented in the 
standard form: 

                                           
Re Im Im 2E i E E      , 

                                                                     (1) 

where  is interpreted as the level width, and 
the decay possibility    . The whole 
calculation of the energies and decay 
probabilities of a non-degenerate excited state is 
reduced to the calculation and diagonalization 
of the M. The complex  secular matrix M is 
represented in the form [9,10]:   
 

       0 1 2 3 .M M M M M     
                                                                      (2) 
where  0M  is the contribution of the vacuum 
diagrams of all order of PT, and  1M , 

 2M ,  3M  those of the one-, two- and three-QP 
diagrams respectively. The diagonal matrix 

 1M  can be presented as a sum of the 
independent 1QP contributions. For simple 
systems (such as alkali atoms and ions) the 1QP 
energies can be taken from the experiment. 
Substituting these quantities into (2) one could 
have summarized  all the contributions of the 
1QP diagrams of all orders of the formally exact 
QED PT. The optimized 1-QP representation is 
the best one to determine the zeroth 
approximation. In the second order, there is 
important kind of diagrams: the ladder ones. 
These contributions have been summarized by a 
modification of the central potential, which 
must now include the screening (anti-screening) 
effect  of each particle by two others. The 
additional potential modifies the 1QP orbitals 
and energies. Let us remind that in the QED 
theory, the photon propagator D(12) plays the 
role of this interaction. Naturally, an analytical 
form of D depends on the gauge, in which the 
electrodynamic potentials are written. In 
general, the results of all approximate 
calculations depended on the gauge. Naturally 
the correct result must be gauge invariant. The 
gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations 
is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar-Luc-
Koenig, Glushkov-Ivanov [1,2,5,9]. Grant has 
studied  the gauge connection with the limiting 
non-relativistic form of the transition operator 
and has formulated the conditions for 
approximate functions of the states, in which the 

amplitudes are gauge invariant (so called 
Grant’s theorem). These results remain true in 
an energy approach as the final formulae for the 
probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure 
for generating the relativistic DKS orbital bases 
(abbreviator of our method: GIRPT). A width of  
a state associated with the decay of the AR is 
determined by square of the matrix element of 
the interparticle interaction Г V (12 ,  
3 k )  2 . The total width is given by the 
expression:  
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where the coefficients C are determined in [4].                      
The matrix element of the relativistic inter-
particle interaction  
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(here I –the Dirac matrices) in (3) is 
determined as follows:  
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              aQ = Qul

aQ + Br
aQ .             (6) 

 
Here Qul

aQ and Br
aQ is corresponding to the 

Coulomb and Breit parts of the interlparticle 
interaction (6). The Coulomb part Qul

Q  is 
expressed in the radial integrals R , angular 
coefficients S  as follows: 
 

    12431243~Qul
 SRQ l  

 
    3~241~3~241~  SR  

 
    34~2~134~2~1  SR  

 
   3~4~2~1~3~4~2~1~  SR  

(7) 
The calculation of radial integrals ReR(1243) is 
reduced to the solution of a system of  
differential equations:   
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(8) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k requires the 
attention. The correctly normalized function 
should have the following asymptotic at  r0: 
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When integrating the master system, the 
function is calculated simultaneously:       
                                             
          2

1
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                                                                    (10) 
Other details can be found in refs.[10-13,16-20] 
as well as description of the  “Superatom” and 
Cowan PC codes, used in all computing. 

 
3. Results and conclusions 

In figure 1 there are presented the  Be+ ion-
yield scan across the 2pns and 2pnd resonances 
(circles connected by a black line) and a least-
squares fit curve of Fano profiles  (gray curve) 
[3]. In Fig.2  there are presented  The Be+ ion-
yield scan across the 2pns and 2pnd resonances 
(solid line) together with calculated cross 
sections by Green (dash-dotted line), by Tully-

Seaton-Berrington (gray solid line), and by Kim-  
Tayal-Zhou-Manson (dotted line). The experimental 
data [3] were scaled to match the theoretical 
cross section (from Ref.[3]).  
 

 
Figure 1.  Be+ ion-yield scan across the 2pns 
and 2pnd resonances (circles connected by a 

black line) and a least-squares fit curve of Fano 
profiles  (gray curve) [3] 

 

 
Figure 2. The Be+ ion-yield scan across the 

2pns and 2pnd resonances (solid line) together 
with calculated cross sections by Green (dash-
dotted line), by Tully-Seaton-Berrington (gray 
solid line), and by Kim-  Tayal-Zhou-Manson (dotted 
line). The experimental data [3] were scaled to 

match the theoretical cross section. 
 
In Tables 1 we present the resonance energies 
and widths for the 2pns resonances in the 
beryllium spectrum. The experimental (by 
Wehlitz-Lukic-Bluett, WLB; by Mehlman-
Balloffet-Esteva, ME; by Esteva-Mehlman-
Balloffet-Romand, EMR) and alternative 
theoretical data by Chi-Huang- Cheng (CHC), 
Tully-Seaton-Berrington (TSB) and by Kim-  
Tayal-Zhou-Manson (KTZM) are taken from 
Ref. [3].  
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ko-Wague, relativistic Hartree-Fock (RHF) meth-
od by Nicolaides-Komninos, R-matrix method 
by Hayes-Scott, method of the adiabatic potential 
curves by Koyoma-Takafuji-Matsuzawa and Sad-
eghpour, L2 technique with the Sturm decompo-
sition by Broad- Gershacher and Moccia-Spizzo, 
the Feshbach method by  Wu-Xi) and data meas-
urements in laboratories: NIST (NBS; 2SO-MeV 
electron synchrotron storage ring (SURF-II )), 
Wisconsin Laboratory (Wisconsin Tantalus stor-
age ring), Stanford Synchrotron Radiation Lab-
oratory (SSRL), Berlin electron storage ring 
(BESSY), Daresbury Synchrotron Radiation 
Source (DSRS) [1,3,5,22-24].  

Table 1a
Theoretical data for energy of the AR 3s3p 1Р0 

(our data with those of other theories)

Method/Data Er (еВ) Г/2 (еВ)
Our
ACC 
Diagon. method
RHF 
APC1 
L2 tech.
Feshbach th. 
K-matrix L2

PT- Svin 
CR method   
MC HF
R-matrix
E:Wisconsin
E: SSRL-1987
E: BESSY 
E: DSRS

69.9113
69.8892
69.9096
69.8703
69.8103
69.8737
69.8991
69.8788
69.9055
69.8722
69.8703
69.8797

69.917±0.012
69.917±0.012
69.914±0.015
69.880±0.022

0.1912
0.1891
0.1491

-
-

0.1915
0.1143
0.1839
0.1854
0.1911

-
0.1796

0.178±0.012
0.178±0.012
0.200±0.020
0.180±0.015

Note: ACC- Algebraic close coupling; APC - Adia-
batic potential curves; CR method-method of complex 
rotation;  DM method – Diagonalization method

On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are devel-
oped specifically for the study helium and can 
not be easily generalized to the case of the heavy 
multi-electron atoms) the definite advantage of 
the presented approach. In Table 2 we present the 
resonance energies and widths for the 2p3s,2p3p 
resonances in the beryllium spectrum. 

Table 2 
The energy position E, width Гof the Be 2p3s, 

2p3p  resonances (see text)

nl Exp,
WLB

Exp,
(EMR)
(ME)

Th,
TSB

Th,
CHC

Th,
KTZM

Our 
data

3s 10.889 10.93
10.71

10.915 10.63 10.910 10.903

3p 531(10) - 606 - 473 478

The experimental (by Wehlitz-Lukic-Bluett, 
WLB; by Mehlman-Balloffet-Esteva, ME; by 
Esteva-Mehlman-Balloffet-Romand, EMR) and 
alternative theoretical data by Chi-Huang- Cheng 
(CHC), Tully-Seaton-Berrington (TSB) and by 
Kim-  Tayal-Zhou-Manson (KTZM) are taken 
from Ref. [4].In whole a detailed analysis shows 
quite physically reasonable agreement between 
the presented theoretical and experimental re-
sults. But some difference, in our opinion, can 
be explained by different accuracy of estimates 
of the radial integrals, using the different type 
basis’s (different degree of the gauge invariance 
performance), degree of accounting for the ex-
change-correlation effects and some other addi-
tional computing approximations.

References
1.	 Smirnov A.V., Buyadzhi V.V.,  Ignaten-

ko A.V., Glushkov A.V., Svinarenko 
A.A.,  Spectroscopy of the complex 
autoionization resonances in spectrum 
of beryllium// Photoelectronics.-2016.-
Vol.25.-P.26-33.

2.	 Glushkov A., Svinarenko A., Ternovsky 
V., Smirnov A.V. , Zaichko P., Spec-
troscopy of the complex autoionization 
resonances in  spectrum of helium: Test 
and new spectral data// Photoelectron-
ics .-2015.-Vol.24.-P.94-102.

3.	 Luc Koenig E., Aymar M., Van Leeuw-
en R., Ubachs W., Hogervorst W.//Phys.
Rev.A.-1995.-Vol.52.-P.208-215.



117

4.	 Wehlitz R., Lukic D., Bluett J.B., Res-
onance parameters of autoionizing 
Be 2pnl states// Phys.Rev.A.-2003.-
Vol.65.-P. 052708.

5.	 SakhoI., Konté K., Ndao A.S., Biaye 
M., Wagué A., Calculations of (nl)2 
and (3lnl’) autoionizing states in two-
electron systems//Phys.Scripta.-2010.-
Vol.82.-P. 035301 (8pp)

6.	 Ho Y.K., Autoionizing 1P0 states of He 
between the N=2,3 threshold He+//Phys.
Rev.A.- 1991.-Vol.44.-P.4154-4161.

7.	 Glushkov A.V., Relativistic Quantum 
Theory. Quantum mechanics of Atomic 
Systems.-Odessa: Astroprint, 2008. - 
700P.

8.	 Ivanova E.P., Ivanov L.N.,  Glushkov  
A.V.,  Kramida A.E., High Order Cor-
rections in the Relativistic Perturba-
tion Theory with the Model Zeroth 
Approximation, Mg-Like and Ne-Like 
Ions//Phys.Scripta.–1985.-Vol.32,N5.-
P.513-522.

9.	 Ivanova E.P., Ivanov L.N., Aglitsky 
E.V., Modern Trends in Spectroscopy of 
multi-charged Ions// Phys.Rep.-1988.-
Vol.166,N6.-P.315-390.  

10.	Glushkov A.V., Ivanov L.N., Ivanova 
E.P., Radiation decay of atomic states. 
Generalized energy approach// Auto-
ionization Phenomena in Atoms.- M.: 
Moscow State University.-1986. –P.58-
160. 

11.	Glushkov A.V., Ivanov L.N., Radiation 
decay of atomic states: atomic residue 
polarization and gauge noninvariant 
contributions//Phys.Lett.A.-1992.-Vol. 
170, N1.-P.33-36.

12.	Ivanov L.N., Ivanova E.P., Knight L., 
Energy approach to consistent QED 
theory for calculation of electron-col-
lision strengths// Phys. Rev.A.-1993.-
Vol. 48.-P.4365-4374.

13.	Glushkov A.V., Khetselius O.Yu.,  Svi-
narenko A.A., Relativistic theory of 
cooperative muon-gamma-nuclear 
processes: Negative muon capture 
and metastable nucleus discharge// 
Advances in the Theory of Quantum 
Systems in Chemistry and Physics 

(Springer).-2012.-Vol.22.-P.51-68.
14.	Glushkov A.V., Khetselius O.Yu., Lo-

boda A.V., Svinarenko  A.A., QED ap-
proach to atoms in a laser field: Multi-
photon resonances and above thresh-
old ionization//Frontiers in Quantum 
Systems in Chemistry and Physics 
(Springer).-2008.-Vol.18.-P.543-560.

15.	Glushkov A.V., Svinarenko A.A., Ig-
natenko A.V., Spectroscopy of autoioni-
zation resonances in spectra of the lantha-
nides atoms// Photoelectronics.-2011.-
Vol.20.-P. 90-94.

16.	Svinarenko A.A., Nikola L.V., Pre-
pelitsa G.P., Tkach T., Mischenko E., 
The Auger (autoionization) decay of ex-
cited  states in spectra of multicharged 
ions: Relativistic theory//Spectral Lines 
Shape.-2010.-Vol.16.-P.94-98

17.	Svinarenko A.A., Spectroscopy of 
autoionization resonances in spec-
tra of barium: New spectral data // 
Phototelectronics.-2014.-Vol.23.-
P.85-90.

18.	Malinovskaya S V, Glushkov A V, Khet-
selius O Yu, Svinarenko A A, Misch-
enko E.V., Florko T.A., Optimized per-
turbation theory scheme for calculating 
the interatomic potentials and hyper-
fine lines shift for heavy atoms in the 
buffer inert gas//Int. Journ.of  Quantum  
Chemistry.-2009.-Vol.109, Issue 14.-
P.3325-3329.

19.	Glushkov A V, Ambrosov S V, Loboda 
A V, Chernyakova Yu, Svinarenko A A 
, Khetselius O Yu, QED calculation of 
the superheavy  elements ions: energy 
levels, radiative corrections, and hfs for 
different nuclear models//Journal Nucl.
Phys. A.: nucl. and hadr. Phys.-2004.-
Vol.734.-P.21

20.	Glushkov A.V., Khetselius O.Y., Ma-
linovskaya  S.V., New laser-electron 
nuclear effects in the nuclear γ transi-
tion spectra in atomic and molecu-
lar systems//Frontiers in Quantum 
Systems in Chemistry and Physics 
(Springer).-2008.-Vol.18.-P.525-541.

21.	Khetselius O.Yu., Relativistic perturba-
tion theory calculation of the hyperfine 



118

structure parameters for some heavy-el-
ement isotopes//Int. Journ. of Quantum 
Chemistry.-2009.-Vol.109, Issue 14.-
P.3330-3335.

22.	Glushkov A V, Ivanov L N, DC Strong 
Field Stark Effect for Non-hydrogen-
ic Atoms: Consistent Quantum Me-
chanical Approach // Journal of Phys-
ics B: Atomic, Molecular and Optical 
Phys.-1993.-Vol.26,N14.-P.L379 –
L386.

23.	Glushkov A.V., Relativistic and cor-
relation effects in spectra of atomic 
systems.-Odessa: Astroprint.-2006.-
400P.  

24.	Glushkov A.V., Atom in electromagnet-
ic field.-Kiev: KNT, 2005. 

25.	Glushkov A.V., Malinovskaya S.V., 
Sukharev D.E., Khetselius O.Yu., Lo-
boda A.V., Lovett L., Green’s function 
method in quantum chemistry: New 
numerical algorithm for the Dirac equa-
tion with complex energy and Fermi-
model nuclear potential//Int. Journ. 
Quant. Chem.-2009.- Vol. 109, N8.-
P.1717-1727.

26.	Glushkov A.V., Kondratenko P.A., 
Lepikh Ya., Fedchuk A.P., Svinaren-
ko A.A., Lovett L., Electrodynamical 
and quantum - chemical approaches 
to modelling the electrochemical and 
catalytic processes on  metals, metal 
alloys and semiconductors//Int. Journ. 
Quantum Chem..-2009.-Vol.109,N14.-
P.3473-3481.

27.	Khetselius O.Yu., Relativistic calculat-
ing the hyperfine structure parameters 
for heavy-elements and laser detect-
ing the isotopes and nuclear reaction 
products//Phys.Scripta.-2009.-T.135.-
P.014023.

28.	Glushkov A.V., Khetselius O.Yu.,  
Lovett L.,  Electron-b-Nuclear Spec-
troscopy of Atoms and Molecules and  
Chemical Bond Effect on the b-Decay 
parameters// Advances in the Theory of 
Atomic and Molecular Systems Dynam-
ics, Spectroscopy, Clusters, and  Nano-
structures. Series: Progress in Theor. 
Chem. and Phys., Eds. Piecuch P., 
Maruani J., Delgado-Barrio G., Wilson 

S. (Springer).-2009.-Vol.20.-P.125-152.     
29.	Glushkov A.V., Svinarenko A.A., 

Khetselius O.Yu., Buyadzhi V.V., Flo-
rko T.A., Shakhman A.N., Relativistic 
Quantum Chemistry: Advanced ap-
proach to construction of the Green's 
function of the Dirac equation with 
complex energy and mean-field nu-
clear potential// Frontiers in Quantum 
Methods and Applications in Chem. 
and Physics. Ser.: Progress in Theor. 
Chem. and Phys., Eds. M. Nascimento, 
J.Maruani, E.Brändas, G. Delgado-Bar-
rio (Springer).-2015-Vol.29.-P.197-217.

30.	Khetselius O.Yu., Optimized perturba-
tion theory to calculating the hyperfine 
line shift and broadening for heavy atoms 
in the buffer gas// Frontiers in Quantum 
Methods and Applications in Chemistry 
and Physics. Ser.: Progress in Theor. 
Chem. and Phys., Eds. M.Nascimento, 
J.Maruani, E.Brändas, G.Delgado-Bar-
rio (Springer).-2015-Vol.29.-P.55-76.

31.	Glushkov A.V., Malinovskaya S.V., 
New approach to the formation of 
model potential for valence-electrons//
Zhurn.Fizich.Khimii.-1988.-Vol.62(1).-
P.100-104.

32.	Glushkov A.V.,Lepikh Ya.I.,Khetselius 
O.Yu., Fedchuk A.P., Ambrosov S.V , 
Ignatenko A.V., Wannier-mott excitons 
and atoms in a DC elecric field: pho-
toionization, Stark effect, resonances 
in the ionization continuum// Sensor 
Electr. and Microsyst. Techn.-2008.-
N4.-P.5-11.

33.	Khetselius O.Yu., Relativistic ener-
gy approach to cooperative electron-
γ-nuclear processes: NEET Effect// 
Quantum Systems in Chemistry and 
Physics: Progress in Methods and Ap-
plications.  Ser.: Progress in Theor. 
Chem. and Phys., Eds. K.Nishikawa, J. 
Maruani, E.Brandas, G. Delgado-Bar-
rio, P.Piecuch (Springer).-2012-Vol.26.-
P.217-229.

34.	Malinovskaya S.V., Glushkov A.V., 
Khetselius O.Yu., Svinarenko A., Ba-
kunina E.V., Florko T.A., The opti-
mized perturbation theory scheme 
for calculating interatomic potentials 



119

investigation of spectra of multicharged 
ions of F-like and Ne-like isoelectronic 
sequences// Journal of Quantitative 
Spectroscopy and Radiative Transfer.-
1986.-Vol.36, Issue 2.-P. 127-145.

42.	 Svinarenko A.A., Study of spectra 
for lanthanides atoms with relativistic 
many- body perturbation theory: Ry-
dberg resonances// J. Phys.: Conf. Ser. 
- 2014.-Vol.548.-P.012039.  

43.	Svinarenko A.A., Ignatenko A.V., Ter-
novsky V.B., Nikola V.V., Seredenko 
S.S., Tkach T.B., Advanced relativistic 
model potential approach to calculation 
of radiation transition parameters in 
spectra of multicharged ions// J. Phys.: 
Conf. Ser. -2014.-Vol.548.-P. 012047.   

44.	Svinarenko A.A., Khetselius O.Yu., 
Buyadzhi V.V., Florko T.A., Zaichko 
P.A., Ponomarenko E.L., Spectroscopy 
of Rydberg atoms in a Black-body ra-
diation field: Relativistic theory of ex-
citation and ionization// J. Phys.: Conf. 
Ser.-2014.-Vol.548.-P. 012048.  

45.	Glushkov A.V.,  Khetselius O.Yu., 
Bunuakova Yu.Ya., Buyadzhi V.V, 
Brusentseva S.V., Zaichko P.A., Sensing 
interaction dynamics of chaotic systems 
within a chaos theory and microsystem 
technology Geomath with application 
to neurophysiological systems// Sen-
sor Electr. and Microsyst.Techn.-2014.-
Vol. 11,N3.-P.62-69.

46.	Prepelitsa G.P., Glushkov A.V., Lepikh 
Ya.I., Buyadzhi V.V., Ternovsky V.B., 
Zaichko P.A., Chaotic dynamics of non-
linear processes in atomic and molecu-
lar systems in electromagnetic field and 
semiconductor and fiber laser devices: 
new approaches, uniformity and charm 
of chaos// Sensor Electr. and Microsyst.
Techn.-2014.-Vol.11,N4.-P.43-57.

47.	Khetselius O.Yu., Hyperfine structure 
of atomic spectra.-Odessa: Astroprint, 
2008.-210P.

48.	Khetselius O.Yu., Hyperfine structure 
of radium// Photoelectronics.-2005.-
N14.-P.83-85.

49.	Khetselius O., Spectroscopy of coopera-
tive electron-gamma-nuclear processes  
in heavy atoms: NEET effect// J. Phys.: 

and hyperfine lines shift for heavy at-
oms in buffer inert gas//Int. Journ.of  
Quantum  Chemistry.-2009.-Vol.109.-
P.3325-3329.

35.	Khetselius O.Yu., Relativistic perturba-
tion theory calculation of the hyperfine 
structure parameters for some heavy-
element isotopes//Int. Journ. of Quan-
tum Chemistry.-2009.-Vol.109,N14.-
P.3330-3335.

36.	Glushkov A.V., Svinarenko A.A., Khet-
selius O.Y., Buyadzhi V.V., Florko T.A., 
Shakhman A., Relativistic quantum 
chemistry: An Advanced approach to 
the construction of the Green function of 
the Dirac equation with complex energy 
and mean-field nuclear potential// Fron-
tiers in Quantum Methods and Applica-
tions in Chemistry and Physics.-2015.-
Vol.29.-P.197-217.  

37.	Ternovsky V.B., Glushkov A.V., Zai-
chko P., Khetselius O.Yu., Florko 
T.A., New relativistic model potential 
approach to sensing radiative transi-
tions probabilities in spectra of heavy 
Rydberg atomic systems/ // Sensor 
Electr. and Microsyst. Techn.-2015.-
Vol.12,N4.-P.19-26.

38.	Buyadzhi V.V., Glushkov A.V., Man-
sarliysky V.F., Ignatenko A.V., Svin-
arenko A.A., Spectroscopy of atoms in a 
strong laser field: New method to sens-
ing AC Stark effect, multiphoton reso-
nances parameters and ionization cross-
sections//Sensor Electr. and Microsyst. 
Techn.-2015.-Vol.12,N4.-P.27-36.

39.	Glushkov A.V., Mansarliysky V.F., 
Khetselius O.Yu., Ignatenko A.V., 
Smirnov A., Prepelitsa G., Collision-
al shift of hyperfine line for thallium 
in an atmosphere of the buffer inert 
gas//J. Phys.: Conf. Ser. (IOP).-2017.-
Vol.810.-P. 012034.  

40.	Buyadzhi V.V., Zaichko P.A., Gurskaya 
M., Kuznetsova A.A., Ponomarenko 
E.L., Ternovsky E.,Relativistic theory 
of excitation and ionization of Rydberg 
atoms in a Black-body radiation field//J. 
Phys.: Conf. Series.-2017.-Vol.810.-P. 
012047.

41.	Ivanova E P,  Glushkov A V, Theoretical 



120

Conf. Ser.-2012.- Vol.397.-P.012012
50.	Khetselius O.Yu., Florko T.A., Svin-

arenko A.A., Tkach T.B., Radiative 
and collisional spectroscopy of hy-
perfine lines of the Li-like heavy ions 
and Tl atom in an atmosphere of inert 
gas//Phys.Scripta.-2013.-Vol.T153-
P.014037.  

51.	Khetselius O.Yu., Turin A.V., Sukharev 
D.E., Florko T.A., Estimating of  X-
ray spectra for kaonic atoms as tool for 
sensing the nuclear  structure// Sensor 
Electr. and Microsyst. Techn.-2009.-
N1.-P.30-35. 

52.	Khetselius O.Yu.,  On possibility of 
sensing nuclei of the rare isotopes by 
means of laser spectroscopy of hyper-
fine structure//Sensor Electr. and Mi-
crosyst.Techn.-2008.-Vol.3.-P.28-33. 

53.	Glushkov A V, Malinovskaya S V, Gur-
nitskaya E P, Khetselius O Yu, Dubrovs-
kaya Yu V, Consistent quantum theory 
of recoil induced excitation and ioni-
zation in atoms during capture of neu-
tron// Journal of Physics: Conf. Series 
(IOP).-2006.-Vol.35.-P.425-430.  

54.	Glushkov A.V., Khetselius O.Y., Bruse-
ntseva S.V., Zaichko P.A., Ternovsky 
V.B., Studying interaction dynamics 
of chaotic systems within a non-linear 
prediction method: application to neu-
rophysiology// Advances in Neural Net-
works, Fuzzy Systems and Artificial 
Intelligence, Ser: Recent Adv. in Com-
puter Engineering, Ed. J.Balicki.-2014.-
Vol.21.-P.69-75.  

55.	Khetselius O.Yu., Quantum Geometry: 
New approach to quantization of the 
quasistationary states of Dirac equation 
for super heavy ion and calculating hy-
perfine structure parameters// Proc. Int. 
Geometry Center.-2012.-Vol.5, № 3-4.-
P.39-45.   

56.	Khetselius O Yu, Relativistic calculation 
of the hyperfine structure parameters 
for heavy elements and laser detection 
of the heavy isotopes// Phys. Scripta.-
2009.-Vol.T135.-P. 014023.

57.	Glushkov A.V., Khetselius O.Yu., Gur-
nitskaya E.P.,   Loboda A.V., Florko 
T.A., Sukharev D.E., Lovett L., Gauge-

Invariant QED Perturbation Theory Ap-
proach to Calculating Nuclear Electric 
Quadrupole Moments, Hyperfine Struc-
ture Constants for Heavy Atoms and 
Ions//Frontiers in Quantum Systems in 
Chemistry and Physics, Series: Progress 
in Theoretical Chemistry and Physics 
(Springer), 2008.-Vol.18.-P.507-524.

58.	Glushkov A.V.,  Ambrosov S.V., Lo-
boda A.V., Gurnitskaya E.P., Prepelitsa 
G.P., Consistent QED approach to cal-
culation of electron-collision excitation 
cross sections and strengths: Ne-like 
ions// Int. Journal Quantum Chem.-
2005.-Vol.104, Issue 4.-P.562–569.

59.	Glushkov A.V., Khetselius O.Yu., Ma-
linovskaya S.V., Optics and spectros-
copy of cooperative laser-electron nu-
clear processes in atomic and molecular 
systems - new trend in quantum optics// 
Europ. Phys. Journ. ST.-2008.-Vol. 160, 
Issue 1.-P.195-204.

60.	Glushkov A.V., Ambrosov S.V., Ig-
natenko A.V., Korchevsky D.A., DC 
Strong Field Stark Effect for nonhydro-
genic Atoms: Consistent Quantum Me-
chanical Approach //  Int. Journ. Quant.
Chem.-2004.-Vol.99,N6.-P.936-939.

61.	Glushkov A.V., Khetselius O.Yu., Svin-
arenko  A.A., Theoretical spectroscopy 
of autoionization resonances in spectra 
of lanthanide atoms//  Physica Scripta.-
2013.-Vol.T153.-P.014029.

62.	Glushkov A.V., Khetselius O.Yu., Gur-
nitskaya E.P., Loboda A.V., Sukharev 
D.E.,  Relativistic quantum chemis-
try of heavy ions and hadronic atomic 
systems: spectra and energy shifts// 
Theory and Applications of Com-
putational Chemistry. AIP Confer-
ence Proceedings.-2009.-Vol.1102.-
P.168-171. 

63.	Khetselius O.Yu.,  Relativistic calculat-
ing the spectral lines hyperfine structure 
parameters for heavy ions//Spectral Line 
Shapes,  AIP Conf. Proceedings.-2008.-
Vol.1058.-P.363-365.   

64.	Khetselius O.Yu., Glushkov A.V., Gur-
nitskaya E.P., Loboda A.V.,  Mischenko 
E.V., Florko T.A., Sukharev D.E., Col-
lisional Shift of the Tl hyperfine lines in  



121

atmosphere of inert gases// Spectral Line 
Shapes,  AIP Conf. Proceedings.-2008.-
Vol.1058.-P.231-233.

65.	Khetselius O.Yu.,  Hyperfine structure 
of energy levels for isotopes 73Ge, 
75As, 201Hg// Photoelectronics.-2007.-
N16.-P.129-132.

66.	Glushkov A.V., Operator Perturba-
tion Theory for Atomic Systems in a 
Strong DC Electric Field // Advances 
in Quantum Methods and Applications 
in Chemistry, Physics, and Biology. 
Series: Frontiers in Theoretical Phys-
ics and Chemistry, Eds. M.Hotokka, 
J.Maruani, E. Brändas, G.Delgado-Bar-
rio (Springer).-2013.-Vol. 27.-P.161-
177.

67.	Glushkov A.V., Svinarenko A.A., Buy-
adzhi V.V., Zaichko P., Ternovsky V., 
Chaos-geometric attractor and quantum 
neural networks approach to simulation 
chaotic evolutionary dynamics during 
perception process// Advances in Neu-
ral Networks, Fuzzy Systems and Ar-
tificial Intelligence, Series: Recent Ad-
vances in Computer Engineering, Ed. 
J.Balicki.-2014.-Vol.21.-P.143-150.

68.	Glushkov A.V.,Malinovskaya S.V., 
Chernyakova Yu.G., Svinarenko A.A. 
Cooperative laser-electron-nuclear pro-
cesses: QED calculation of electron 
satellites spectra for multi-charged ion 

in laser field//Int. Journ. Quant. Chem.- 
2004.-Vol. 99,N6.-P.889-893.

69.	Glushkov A V, Negative ions of inert 
gases// JETP Lett.-1992.-Vol.55, Issue 
2.-P.97-100.

70.	Khetselius O.Y., Gurnitskaya E.P., 
Sensing the electric and magnetic mo-
ments of a nucleus in the N-like ion 
of Bi// Sensor Electr. and Microsyst. 
Techn.-2006.-N3.-P.35-39.

71.	Khetselius O.Y., Gurnitskaya E.P., Sens-
ing the hyperfine structure and nuclear 
quadrupole moment for radium// Sensor 
Electr. and Microsyst. Techn.-2006.-
N2.-P.25-29.

72.	Florko T.A., Loboda A.V.,  Svinarenko 
A.A., Sensing forbidden transitions 
in spectra of some heavy atoms and 
multicharged ions: New theoretical 
scheme// Sensor Electr. and Microsyst. 
Techn.-2009.-N3.-P.10-15.

73.	Glushkov A.V., Energy Approach to  
Resonance states of compound super-
heavy nucleus and EPPP in heavy nu-
clei collisions// Low Energy Antiproton 
Phys. AIP Conference Proceedings.-
2005.-Vol.796 (1).-P.206-210.

74.	Sukharev D.E., Khetselius O.Yu., Du-
brovskaya Yu.V., Sensing strong inter-
action effects in spectroscopy of had-
ronic atoms// Sensor Electr. and Mi-
crosyst. Techn.-2009.-N3.-P.16-21. 

UDC 539.183

A. V. Smirnov, O. Yu. Khetselius, V. V. Buyadzhi, A. S. Belodonov

ADVANCED RELATIVISTIC APPROACH IN SPECTROSCOPY OF COMPLEX 
AUTOIONIZATION RESONANCES IN ATOMIC SPECTRA 

Abstract
We present an advanced relativistic approach to to studying  autoionization resonances param-

eters in the atomic systems, which is based on an generalized energy approach (Gell-Mann and Low 
S-matrix formalism) combined with the relativistic multi-quasiparticle perturbation theory with the 
Dirac-Kohn-Sham zeroth approximation and accurate accounting for the exchange-correlation, rela-
tivistic corrections. The optimization of relativistic orbitals base is reduced to minimization of the 
gauge dependent multielectron contribution of the lowest QED PT corrections to the radiation widths 
of atomic levels, which in their turn leads to the Dirac-Kohn-Sham-like equations for the electron 
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density.  As illustration of an advanced approach application there are presented the results on energy 
and width for the autoionization resonance 3s3p 1Р0 in helium He atom spectrum, namely, the available 
experimental data and those results of other theories, including, method of complex rotation by Ho, 
algebraic approach by Wakid-Callaway, diagonalization method by Senashenko-Wague etc.

Key words: spectroscopy of autoionization resonances, advanced relativistic approach, helium

УДК 539.183

А. В. Смирнов, О. Ю. Хецелиус, В. В. Буяджи, А. С. Белодонов 

УСОВЕРШЕНСТВОВАННЫЙ РЕЛЯТИВИСТСКИЙ ПОДХОД В СПЕКТРОСКОПИИ 
СЛОЖНЫХ АВТОИОНИЗАЦИОННЫХ РЕЗОНАНСОВ В АТОМНЫХ СПЕКТРАХ

Резюме
В работе развивается усовершенствованный релятивистский подход к изучению параметров 

автоионизационных резонансов в атомных системах, который основывается на обобщенном 
энергетическом подходе (S-матричный формализм Гелл-Манна и Лоу) и релятивистской много-
частичной теорией возмущений с нулевым приближением Дирака-Кона-Шэма и аккуратным 
учетом обменно-корреляционных, релятивистских эффектов. Оптимизация базиса релятивист-
ских орбиталей сводится к минимизации калибровочно-зависимого многоэлектронного вкла-
да от обменно-корреляционных поправок КЭД теории возмущений в радиационные ширины 
атомных уровней, что в свою очередь, сводится к решению  системы уравнений типа  Дирака-
Кона-Шэма для электронной плотности. В качестве иллюстрации возможностей предлагаемого 
подхода приведены данные по энергии и ширине  автоионизационного резонанса 3s3p 1Р0 в 
спектре атома гелия и проведено сравнение с имеющимися экспериментальными данными и 
результатами других теорий, в том числе, методом комплексного вращения Хо алгебраического 
подхода Wakid-Callaway, метода диагонализации Senashenko-Wague и т.д. 

Ключевые слова: спектроскопия автоионизационных резонансов, усовершенствованный 
релятивистский подход, гелий
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А. В. Смірнов О. Ю. Хецеліус, В. В. Буяджи, О. С. Белодонов

УДОСКОНАЛЕНИЙ РЕЛЯТИВІСТСЬКИЙ ПІДХІД В СПЕКТРОСКОПІЇ СКЛАДНИХ 
АВТОІОНІЗАЦІЙНИХ РЕЗОНАНСІВ В АТОМНИХ СПЕКТРАХ 

Резюме
В роботі розвивається вдосконалений релятивістський підхід до вивчення параметрів автоіо-

нізаціонних резонансів в атомних системах, який ґрунтується на узагальненому енергетичному 
підході (S-матричний формалізм Гелл-Манна і Лоу) і релятивістської багаточастинковій теорії 
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збурень з нульовим наближенням Дірака-Кона-Шема і акуратним урахуванням обмінно- коре-
ляційних, релятивістських ефектів. Оптимізація базису релятивістських орбіталей зводиться 
до мінімізації калібрувально-залежного багатоелектронного вкладу від обмінно-кореляційних 
поправок КЕД теорії збурень в радіаційні ширини атомних рівнів, що в свою чергу, зводиться 
до вирішення системи рівнянь типу Дірака-Кона-Шема для електронної густини. В якості ілю-
страції можливостей запропонованого підходу наведені дані по енергії і ширині автоіонізацій-
ного  резонансу 3s3p 1Р0 в спектрі атома гелію і проведено порівняння з наявними експеримен-
тальними даними і результатами інших теорій, в тому числі, методом комплексного обертання 
Хо, алгебраїчного підходу Wakid-Callaway, методу діагоналізації Senashenko-Wague  і т.і. 

Ключові слова: спектроскопія автоіонізаційних резонансів, удосконалений релятивістський 
підхід, гелій
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THE STUDY OF  HETEROGENEOUS SENSITIZED 
CRYSTALS OF CADMIUM SULFIDE. PART I ABOUT CHARGE OF THE CENTERS 

RECOMBINATION

The photovoltaic properties of CdS crystals with combined alloying have been investigated. An analytical expression 
for the dependence of the coefficient of damping of the intensities of exciting and quenching light has been received. For 
the first time the concentration of fast recombination centers has been estimated. 

Charge status of S- and R-centers has been 
calculated. At the same time an exclusive method 
of solving the system of equations was created. 
Modulation of illumination-current characteris-
tics with infrared light has been demonstrated.

Sensitization of semiconductors can be ob-
served in that case if in the crystal, which already 
has effective centers of recombination, enter the 
same effective traps for carriers of one of the char-
acters, preferably minor. Then, upon photoexcita-
tion, due to the shortage of appropriate media, the 
rate of recombination is significantly reduced and 
the photocurrent is increasing.

This effect was first theoretically developed in 
the monograph A. Rose, by example, of cadmium 
sulfide. With well-chosen parameters, accord-
ing to calculations of the author, the lifetime of 
the main carriers could grow up to five orders of 
magnitude. The concentration of recombination 
and sensitized centers ~ 1015 cm-3 was used. They 
are named respectively the 1st and 2nd classes. 
The magnitude of the capture cross section for 
electrons and holes was taken to be equal

             S1n = S1p = S2p = 10-16 sm2 ;
                    S2n = 10-21sm2                         (1.1)
The centers of the first class R. Bube called 

fast or S-centers (“Speed”), and the centers of the 
second class, respectively slow, due to the strong-
ly different capture cross section, or R-centers 
(“Recombination”). In the present work, all three 
designations (class 1, fast, S-centers) will be used 
as synonyms.

The simultaneous existence in the sample of 
the fast and slow centers in detectable concentra-
tions creates the conditions for effect, reversed to 
sensitizing, named infrared (IR) – absorption pho-
tocurrent. Upon excitation of such a crystal with 
its own light, and then with the IR illumination, 
the photocurrent may be reduced. This is due to 
the release of IR photons captured at the centers 
of the 2nd class cavities with the corresponding 
enhancement of the recombination of majority 
carriers. To estimate the damping was introduced 
the ratio Q which is equal to the change of the 
photocurrent relatively to the original values.

It should be noted that because it is determined 
not the current, and its relative (including little) 
change, significantly increases the sensitivity of 
the method to external influences (light, tempera-
ture, voltage). At the same time decreases the in-
fluence of unavoidable noise. Secondly, due to 
the peculiarities of alloying it is possible to cre-
ate a single-chip sensors of different wavelengths, 
whereas for the own conductivity of the semicon-
ductor it is not possible. Finally, while it is eas-
ily possible to create a spatially inhomogeneous 
sensitive system, it is not feasible on the basis of 
isotropic crystals.

Therefore, we chose the effect of infrared 
quenching of photocurrent as a research tool. In 
our opinion, this approach has several advantages.

First of all, if the investigated crystals suffi-
ciently saturated with S - and R - centers, the dis-
tance between them is small. In this case, holes, 
embossed by IR light from the centers of slow 
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recombination, after only a few broadcasts of the 
crystal lattice passed, will be taken to S-centers 
and immediately affect on the value of the flow-
ing current. Moreover, if the S - and R-centers 
are distributed uniformly, the path length will be 
more or less standardized. In a typical situation, 
these processes are disguised with a scattering, 
accidental captures in traps, unauthorized chan-
nels of recombination, etc.

In addition, the specificity of IR-quenching 
allows to independently manipulate both param-
eters current forming their own light, and the in-
tensity and spectral distribution of infrared light, 
solely responsible for the release of holes. The 
possibilities of infrared quenching allows to se-
lectively use the light in certain wavelengths in-
stead of the whole spectrum.

Finally, the effect of IR-quenching allows to 
highlight and to explore the mechanism of emis-
sion of carriers from one particular class of cen-
ters, whereas in the usual case we have to deal 
with a whole range of traps, the process of devas-
tation which camouflage each other.

These features of the infrared blanking make it 
a sensitive and flexible method of studying the in-
tricacies of the photoexcitation of the non-native 
speakers. In addition, the combined effects of the 
crystals allowsthe parametric control of the pro-
cesses.

As a support of the semiconductor research 
was selected semiconductor single crystal cadmi-
um sulfide. Its advantages are: firstly, high pho-
tosensitivity (fotoresponseis up to seven orders 
of magnitude) and comparative ease of applica-
tion of electrical contacts and a significant coef-
ficient of solubility for most legants. Secondly, 
the presence of sensitivized R-centers, which is 
typical for a relatively narrow class of substances. 
Finally, thirdly, it is a wide bandgap semiconduc-
tor (Eg~2,42 eV), that allowed to carry out re-
search in a wide range of wavelengths from 400 
to 1600 nm with well-separated four sections – 
surface, own, trapping of absorption and IR spec-
tra. In some cases, such crystals are convenient to 
use as a model material.

The high sensitivity of cadmium sulfide ac-
counts for 520 nm and corresponds well to the 
solar spectrum. This allows to use it not only in 

the laboratory but also under natural light to cre-
ate sensors for various purposes.

The aim of this work is the study based on the 
effect of IR-quenching of photocurrent of the nu-
ances of the processes occurring upon excitation 
of charge carriers from the bound in the conduc-
tive state in the crystals of cadmium sulfide with 
an unevenly distributed impurities.

1.1. The dependence of the infrared 
quenching from intensities of exciting and 
quenching light

The concentration of free carriers normally is 
expressed in the population of recombination cen-
ters of 1st and 2nd classes, which themselves vary 
at different levels of the exciting and quenching 
light. This considerably complicates the calcula-
tions, making them less accurate and, in fact, not 
acceptable in practice. The expression for the ex-
plicit form of Q(Le;Lq) in the literature we could 
not find.

While illuminating the crystals only with its 
own light with intensity Le the concentration of 
free electrons n (e) (when the absorption coeffi-
cient α and light of its own quantum output β) is 
given by

                            n(в) = α β Leτn1.                   (1.2)

In (1.2) taken into account that the recombina-
tion is carried out mainly through the S-centers 
and, consequently, the life-time τn1 is determined 
by this channel.

At sufficiently high intensities of the exciting 
light value τn1 does not depend on its intensity, 
since the difference between the concentrations 
of free carriers (n–p), is equal to the change in the 
filling of recombination centers, is much less than 
the concentration of these centers. So on the chart 
of lux-ampere characteristics (LAC)is observed 
two sections with different slopes at high and low 
intensities of exciting light (tab at Fig. 1.1).

The change of formation mechanism of the 
photocurrent and, accordingly, the slope of a plot 
of LAC occurs when the number of incident pho-
tons becomes comparable with the concentration 
of recombination centers. This is due to the ratio 
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of the concentration of incident photons and fast 
recombination centers. When the light intensity 
is small, the number of absorbed photons, and 
hence the number of exempt carriers is less than 
the concentration of fast recombination centers. In 
this situation they can effectively contribute to the 
recombination of electrons and holes. For a large 
light fluxes, the number of photoexcited carriers 
is larger than the number of centers where they 
could recombine. S-centers can not cope with in-
creasing concentration of free electrons and holes 
and the recombination rate is limited only by the 
throughput capacity of the centers, regardless of 
the total number of carriers. The situation is stabi-
lizing. If so, then the inflection point on the LAC 
(in our case L0e = 3,2 lx) can be estimated by order 
of magnitude the concentration of S-centers.

The mechanical equivalent of light A = 0.0016  
and a photon energy equal to the width of forbid-
den zone of CdS Eg = 2,42 eV, we obtain the num-
ber of photons Nf= L0e /Eg = of 2.88·1017 s-1 m-2 in 
the used light flux. In a typical specimen dimen-
sions 1х1х1,2 mm from this thread on its front 
surface we have Nf= 3,46·1011 s-1 of photons. They 
are all absorbed in the crystal volume of 1.2·10-3 
sm3. Therefore, the volume concentration of the 
recombination centers Nris equal to the number of 
photons evenly distributed in this volume, will be 
Nr = 2,88·1014 sm-3. The obtained value of 3·1014 
sm-3 [1,2,3], we consider as the lower limit of the 
doping impurity recombination. Because of the 
capture cross section for holes at the centers of 
the 1st and 2nd classes differs by five orders of 
magnitude, then about as many different of rates 
of recombination on them. Therefore, it can be ar-
gued that the value almost entirely refers to the 
concentration of fast recombination centers. Note 
that this value Rose A. operates without any jus-
tification.

The proposed method is innovative. Up to the 
present time for S-centers was determined with 
cross-section grips and, with certain reservations, 
the energy of activation. In any case, the zone 
charts show these levels closer to the conduction 
band. The question of their concentrations re-
mained open.

When you turn on infrared light with corre-
sponding energy redistribution of the holes oc-

curs, and hence the rate of recombination through 
the centers of I-st and II-d class changes. 
Recombination throw the R - centers is getting 
even less, and throw the S - centers increases. 

Therefore, the formula 1nf q′= remains valid.
In each act of recombination interacts with one 

carrier of both signs, so the rate of recombination 
of electrons and holes to the same level are equal 

11 pn qq ′=′ . Then you can write

                            1pqf ′=  ,                       (1.3)

where                      1
1

p
n

p pq
t
+ ∂′ =                   (1.4)

It is considered that under the action of infra-
red light, the concentration of holes at the centers 
of the second class decreased with P∂  and in-
creased respectively at the same concentration of 
holes in the valence band.

If in the unit of time the quantum of quenching 
light Lq drops on the crystal, then in unit of vol-
ume will be absorbed  α’ · Lq quantums, where α’ 
- is the fraction of the slow recombination centers 
which was interected with light. Hence the addi-
tive in the concentration of free holes

                 0ã Pp La t′∂ = ⋅ ⋅  ,                       (1.5)

where τp0- is the lifetime of free carriers. Since the 
recombination of the holes also is mainly carried 
out through the S - centers, use

                            1ã Pp La t′∂ = ⋅                             (1.6)

For large excitation level with its own light 
p=n and the expression (1.3) with (1.4) and (1.5) 
takes the form
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Formula (1.8) describes the dependence of the 
concentration of free electrons from the concur-
rent intensities of exciting and quenching light.

If the intensity of infrared light is not very big, 
then Ð∂ < 2rÐ . Population density in the holes of 
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the R-centers does not change very much, and the 
value τр1 does not depend from the infrared light.

Expressions (1.2) and (1.8) allow to obtain the 
dependence of IR-quenching from intensities of 
used light fluxes [4]:
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Formula (1.9) shows the dependence of the 
optical quenching from the intensities of exciting 
and quenching light. It should be noted that this 
relation is valid for small intensities of quenching 
light and for high levels of photoexcitation, when 
you can not take into account the change of popu-
lations of recombination centers.

The total experimental results of the behavior 
of the coefficient of quenchingQwith the change of 
quantities of the light fluxes are shown at Fig. 1.1.

As a reference for them to take the curve 2, 
measured at the same intensities of its own and 
quenching lights, as in the case 1.1a and case 
1.1b. On the left part of figure 1.1a, is shown how 
the value changes upon variation of the excitation 
light at a constant quenching. At Fig.1.1b, on the 
contrary, a reference curve was fixed the inten-
sity of the excitation light and was changing of 
quenching light.

All graphs on Fig.1.1 received in steady-state 
conditions. In each point was kept sufficiently 
long relaxation (up to 20 minutes) to avoid the 
processes described in [5,6,7]. Relaxation char-
acteristics of crystals will be discussed in part II.

First of all, note that any combinations of the 
intensities of short-wave maximum (Fig.1.1) was 
far below than long-wave [3,8]. This is due to 
thermal swap for the captured carriers. Due to the 
absorption of the phonon, one part of the holes 
from basic R-level moves to an excited R’. And 
the population of these levels with holes identi-
fies relevant peaks. For this reason, as can be seen 
from figures (1.1a, b), to changes in the intensities 
of each light, the more sensitive is the first maxi-
mum (short-wave).

As can be seen from Fig. 1.1b, the smaller the 
intensity of the quenching light, Le = const the 
smaller is the value Q . Moreover, for smaller in-
tensities of the self-excitation it was manifested 
brighter. Experimentally was managed to create a 
situation when shortwave maximum disappeared 
completely [9,10].

Fig. 1.1. The dependence of the value of quench-
ing from the intensities of used light. a) Lq = const, 
Le1>Le2>Le3 ; b)Le = const , Lq1>Lq2>Lq3 .The experi-
mental points are not plotted in order not to clutter 

the drawing.

At the same time, with the same intensity of 
quenching light (see Fig.1.1 a), with decreasing 
excitation Le, the value of the coefficient of 
quenching increases. Moreover, this increase we 
saw more if used intensities Lq were negligible.

These experimental behaviors Q (Le; Lq)
confirm the validity of formula (1.9).

1.2. Critical modes of lighting crystals with 
infrared quenching of photocurrent

Formula (1.9) shows the dependence of the 
optical quenching from the intensities of exciting 
Le and quenching light Lq. It should be noted that 
this relation is valid for relatively low intensities of 
quenching light and high levels of photoexcitation, 
when you can not take into account the change of 
populations of recombination centers.

As a rule, if the effect of the quenching of 
the photocurrent is clearly distinguishable, in all 
combinations of the intensities the short-wave 
maximum quenching (1080-1100 nm) was far 
below that long-wave (1380-1400 nm). This is 
due to thermal swap for the captured carriers. 
Due to the absorption of phonons, the part of 

(1.9)
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much, and the value τр1 does not depend from the 
infrared light.

Expressions (1.2) and (1.8) allow to obtain 
the dependence of IR-quenching from intensities 
of used light fluxes [4]:
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Formula (1.9) shows the dependence of the 
optical quenching from the intensities of exciting 
and quenching light. It should be noted that this 
relation is valid for small intensities of quenching 
light and for high levels of photoexcitation, when 
you can not take into account the change of 
populations of recombination centers.

The total experimental results of the 
behavior of the coefficient of quenchingQwith the 
change of quantities of the light fluxes are shown 
at Fig. 1.1.

As a reference for them to take the curve 2, 
measured at the same intensities of its own and 
quenching lights, as in the case 1.1a and case 
1.1b. On the left part of figure 1.1a, is shown how 

the value changes upon variation of the 
excitation light at a constant quenching. At 
Fig.1.1b, on the contrary, a reference curve 
was fixed the intensity of the excitation light 
and was changing of quenching light.

All graphs on Fig.1.1 received in steady-
state conditions. In each point was kept 
sufficiently long relaxation (up to 20 minutes) 
to avoid the processes described in [5,6,7]. 
Relaxation characteristics of crystals will be 
discussed in part II.

First of all, note that any combinations 
of the intensities of short-wave maximum 
(Fig.1.1) was far below than long-wave [3,8]. 
This is due to thermal swap for the captured 
carriers. Due to the absorption of the phonon, 
one part of the holes from basic R-level moves 
to an excited R’. And the population of these 
levels with holes identifies relevant peaks. For 
this reason, as can be seen from figures (1.1a, 
b), to changes in the intensities of each light, 
the more sensitive is the first maximum (short-
wave).

As can be seen from Fig. 1.1b, the 
smaller the intensity of the quenching light, Le

= const the smaller is the value Q . Moreover, 
for smaller intensities of the self-excitation it 
was manifested brighter. Experimentally was 
managed to create a situation when shortwave 
maximum disappeared completely [9,10].
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holes from the basic R-level, moves to an excited R’ 
(discussed in part III). And the population of these 
levels with holes identifies the relevant peaks. For 
this reason, for the changes of the intensities of each 
light the more sensitive is the first maximum (high).

Among the restrictions imposed in the 
derivation of formula (1.9), was that all holes, 
embossed by light levels R – R’ remain in the 
valence band and enhance the capture on S-centers. 
Generally speaking, this is incorrect. The capture 
of cross section of holes S - and R-centers are 
equal. However, just photoexited hole spatially is 
near R-centre and probably will be again captured 
[8]. Similar, probably multiple, oscillations did 
not occur at fixed external parameters and lead 
to useless absorption of photons of infrared light. 
It is obvious that this process can camouflage the 
dependence of the intensity of the infrared light. 
More this effect will be discussed in part II.

Under the critical light levels, as exciting 
and quenching light, we will understand these 
light beams, when on the spectral distribution of 
coefficient of quenching are not only mentioned 
in section 1.1 quantitative change, but there is a 
quality changes[10].

As was noted above that because of the growth 
of intensity of self-excitation and reducing of the 
flow of infrared radiation the value of quenching 
in accordance with the formula (1.9) decreases. 
When a critical ratio of these intensities, it is 
possible when on the curve of spectral distribution 
Q(λ) completely disappears shortwave maximum, 
then the long-wave still is present. Formula (1.9) 
for this case is not applicable because violation of 
tolerance limits aremade at its conclusion.

The processes in this case can be explained 
as follows. The smaller the value Lq, the less 
infrared photons knock out holes from R-centers. 
Accordingly, fewer of them come to the fast 
recombination centers and the decline of majority 
carriers – electrons becomes less. It is this relative 
reduction estimates (using current) the value of the 
coefficient Q. The greater the intensity of its own 
light and, accordingly, the initial concentration of 
free electrons, the less is noticeable their decrease 
in recombination. First and foremost, from graphic 
is disappearing shortwave maximum Q(λ), as it 
relates to the liberation of holes from the basic state 

of R-centers, where the concentration of charge is 
less because of thermal pumping to R’- states.

The reverse situation (see Fig. 1.2) – maximum 
flow of infrared light and extremely high levels 
of self-photoexcitation – we observed not previ-
ously described in the literature, the phenomenon 
of the disappearance of the long-wave maximum 
quenching of the photocurrent (1380 – 1400 nm), 
whereas shortwave maximum Q(λ) in the region 
of 1080 – 1100 nm was still remained.

The limit levels of exposure were determined 
by the capabilities of the experimental unit. In the 
area of maximum photosensitivity of the sample 
(520 – 530 nm) intensity of monochromatic light 
provided the illumination of order 5 – 6 lx. 

In our case, the determining impact provide the 
mechanisms of formation of maximums  Q(λ) by 
themselves. For the reasons that were described 
above, due to the redistribution of the concentra-
tion of trapped holes, the shortwave maximum 
of quenching (~ 1100 nm) lower than the wave-
length must to disappear first in suboptimal ratio 
of the intensities of clipping.

Abnormal view of curve Q(λ) with a miss-
ing long-wavelength maximum (~ 1380 nm), 
we explain in the following way. In accordance 
with the formula (1.9) the value of coefficient Q 
does not depend on the intensity Lq and on result 
Lqβ’, including the value of the quantum yield. 
The authors [3] have noted that for some ratios 
of intensities of light fluxes, the magnitude of 
the quantum yield for infrared radiation in the 
samples with R-centers can quickly decrease. Ex-
perimentally were recorded the values of the or-
der β’=0,026÷0,072 [8]. At such small values the 
decrease of β’ can be decisive even at relatively 
high values of Lq in the numerator of (1.9).

To explain the dependence of Q(λ) for this case 
we propose the following mechanism. When we 
are illuminating by light with a wavelength corre-
sponding to the activation energy of R’ - centers, 
the number of seats available to them increases. 
In this case the outflow of thermally excited holes 
from R-levels should increase. In turn, this leads 
to an increasing of seats available at those levels. 
As a result, the repeated captures of holes to R’ 
centers are increasing, and the quantum yield for 
infrared radiation is even lower.
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Note that the described effect, obviously, can 
be carried out for each set temperature only in a 
narrow range of ratios between the existing con-
centration of R-centers and used its own intensity 
of light and infrared radiation. Analysis is easier 
to carry out under the condition when only the 
intensity of light of its own relatively changes ac-
cording to the other three fixed parameters.

If your exiting is too great, in the V-zone is 
a large number of free holes. Additional charge, 
embossed by IR-radiation from R-centers, can not 
significantly change their concentration, and thus 
the flowing current.

Besides, R-centers are heavily populated by 
holes (probably, even pr ≈ Nr; pr’ ≈ Nr’). Relatively 
small changes caused by IR photons are not able 
to affect the existing ratio of concentration of the 
charges on the centers. Moreover, the resulting 
empty spaces will be filled with holes from the 
valence band.

On the contrary, if the intensity of its own light 
is not large enough concentration of localized 
holes at the centers of class II will be lowal. In 
this case, before the activation of the IR light on 
the R-centers are a significant number of places 
with blank holes. The appearance of IR excita-
tion can not make any noticeable changes in their 
number, and hence the balance of processes of 
capture-emptying.

Held arguments correspond to movement along 
the line AB schematic figure 2. Area 1 at Fig. 1.2 
is the magnitude of the intensities when the stan-
dard mechanism of A.Roseis. In such conditions 
were starred family of graphs Q(λ) Fig.1.1, and 
such light fluxes obtained formula (1.9).

Its output was simplify by demanding condi-
tions Lq↑>Le↑[4], i.e. when a significant number 
of photons as their own get on the sample, and 
infrared light, and quenching - more. For this rea-
son, in region 2 Fig.1.2 the formula (1.9) are not 
applicable.

The effect of quenching may not be imple-
mented here immediately for three reasons:

I. First, when there is  small own excitation 
(Le→0) the number of pairs of free nonequilib-
rium carriers is less than can recombine via S-
centers;

II. Second, minor activation of holes from R-
centers (Lq→0) is almost completely masked by 

the processes of dissipation, captures in traps, etc. 
These holes practically do not reach S centers;

III. Finally, the small number of extra holes 
that reach the centers of quick recombination, 
causing a slight decline of majority carriers – 
electrons – and, therefore, virtually do not impact 
on the change of the photocurrent.

Fig. 1.2.Field of possible ratio of the intensities of 
exciting and quenching light; 1 – region of existence 
of the effect of IR-quenching of photocurrent; 2 – 
the area of intensity when extinction does not occur; 
3 – area where you may watch the abnormal effect 
of quenching. Unpainted areas are transitional 

between these regions.

For completeness, we will hold the consideration 
in which area 3 Fig. 1.2 can be accessed along 
the line CB. That is, when extremely high level of 
self-excitation is recorded and the infrared flow 
gradually increases.

For small values of Lq quenching does not 
occur in virtue of the third condition for region 
2. When averages Lqquenching although appears, 
but slightly. This corresponds to the limit 
situation of the region 1 Fig 1.2. Finally, for large 
intensities, comes into force the mechanism of the 
anomalous absorption, described above.

The maximums of quenching dependence 
Q(λ) behave differently. The short wavelength 
peak in the 1100 nm may increase at the expense 
of complete emptying of the ground state of 
R-centers. Long-waved infrared (1400 nm region) 
can not appear even under these conditions because 
of the low value of quantum yield. Photoexited 
ones from R’-states of the hole remain in the area 
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of R-centers at the expense of repeated seizures 
and does not contribute to recombination at the 
S-centers.

Thus, the peculiarities of interaction of 
infrared radiation with the centers of class II 
impose limitations on the applicability of the 
expression Q(Le , Lq), and the relative magnitude 
of the maxima of the extinction.

2.1. About charge state of the centers of slow 
and fast recombination

Model of infrared quenching of photocurrent 
Bube-Rose based on the existence in the crystal 
the recombination centers of the two classes. 

R-centers are external impurity in the sample, 
most likely copper in the cadmium sublattice. To 
get to the crystal this impurity can only in the neu-
tral charge state. If this is a trap for holes, then 
it has two states: neutral and positively charged 
after the capture of holes. It also points to the cap-
ture cross section for holes 10-16 sm2. Such values 
of cross sections are typical up for grabs in a neu-
tral trap.

However, the capture cross section for elec-
tron – 10-21 sm2 is the usual for grabs in a repul-
sive center. At the moment of electron capture, 
the center is already charged negatively. In this 
case, it is the acceptor. He gave the hole and is 
charged negatively. For holes it is the attractive 
center now and should have a corresponding cap-
ture cross section  ̴ 10-12 sm2, what is not observed 
experimentally. On the contrary, it is established 
that R-centers after the capture of an electron does 
not possess a repulsive Coulomb barrier. These 
are singly charged acceptors and the electron cap-
ture occurs with a neutral center.

For holes found that with decreasing temper-
ature the possibility of internal transfer of these 
carriersdecreasesin the R-centers, what is very 
unusual to capture at the charged centre, besides 
having a system of intermediate states.

Thus, there is a contradiction – there are argu-
ments that the R-centers are either in the neutral 
and positively charged or neutral and negatively 
charged, both could not be madeat the same time. 
We have to assume that these states alternate, with 
the presence of at least one intermediate stage. A 

simple scheme, when a neutral acceptor would 
give a hole, and then captured electron with the 
subsequent recombination of it with the new spare 
hole, would require that at the final stage the hole 
was captured on a doubly negatively charged cen-
ter, what is also not observedin the experiment.

Note that it is possible that the ensemble of R-
centers consists of several groups: it may be cop-
per in the cadmium sublattice of CuCd or nega-
tively charged center of the silver in the cadmium 

sublattice CdAg − , or even a complex neutral con-

glomerate of charged sulfur vacancies of sulfur 
and cadmium 2 2( )S CdV V+ −+ .

As for the S-centers, data on their charge state 
do not exist to the present time. Make any reason-
able assumptions based on a simple analysis of 
the capture cross section for electrons and holes 
is impossible. It is the equality of these cross sec-
tions in a model A. Rose is doing these centers 
an effective channel of recombination. But in this 
case, if in initial state, these centers were neutral, 
then after the hole capture, they become positively 
charged. With equal probability, after the capture 
of an electron, they acquire a negative charge.

A. Rose model does not consider the order of 
the carrier capture on S-centers. In literature data 
about the scenario of these processes is not af-
fected. Of the characteristics of the field drift of 
the centers of quick recombination at a known 
applied voltage polarity concluded that they are 
positively charged. For a long time the samples 
were kept under conditions of the applied field. 
Then were measured local probe characteristics 
of tactile sensing. It was discovered, the enhance-
ment of IR-quenching of photocurrent in the near-
cathode region.

At the same time centers of quick recombina-
tion are attributed to the properties of electronic 
traps. In this case, they can be either neutral or 
carry a negative charge. The question remains 
open and requires further study.

We attempt to resolve some of these incorrect-
ness [11].

The interaction of charge carriers with local 
centers in a two-level model of recombination 
Bube-Rose is described by the equations:
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                  1 1 1 1n pS vp n S vn p=
                 (2.1)

                2 2 2 2n pS vp n S vn p=
                  (2.2)

              1 1 2 2
n

n n

fn f
S vp S vp

t= =
+     (2.3)

Here Sij - are the corresponding capture    cross-
sections of electrons and holes at the centers of 
the first and second classes; p, n – concentrations 
of free charge;    ν – speed of thermal motion; p1, 
p2, n1, n2 – concentrations of electrons and holes 
captured in the centers of fast and slow recom-
bination, f – the intensity of the photoexcitation; 
τn- is the lifetime of the main carriers.

The first two of these equations represent the 
equality of the rate of capture of holes and elec-
trons respectively in S - and R-levels, the third 
is the condition of non-accumulation of charge. 
This assumes that the sample is sufficiently high 
resistance, and the intensity of the light, and with 
it the intensity of the photoexcitation is sufficient-
ly large. Under these conditions, concentrations, 
which are included in the equations (2.1)-(2.3) 
are non-equilibrium carriers, and the lifetime of 
the main carriers obeys the expression (2.3).

The number of variables in the formulas (2.1) 
– (2.3) can be reduced given the fact that for large 
photoexcitation intensities, the number of free 
charge carriers is comparable or higher than the 
concentration of recombination centers. An idle 
trapsare not left. Since the recombination center, 
by its nature, may be occupied either by an elec-
tron or a hole, then is true

                    n1 = N1 – p1                             (2.4)
                    n2 = N2 – p2                             (2.5)

where N1 and N2 – total concentration of S - and 
R-centers, respectively.

To solve the system of equations (2.1) – (2.5) 
should be closed by the condition of electroneu-
trality. It’s kind depends on the allowed charge 
states of the centers of the I-st and II-d classes. 
There are four possible options:

If R-centers are charged positively, the equa-
tion of electroneutrality is representable for posi-

tively charged S-centers

                 n = p + p1 + p2 ,                     (2.6а)
or for negative S-centers

                   n  + n1 = p  + p2                       (2.7)

Taking into account (2.4) the expression (2.7) 
can be rewritten as

                n = p + p1 + p2 - N1                   (2.6b)

If R-centers are charged negatively, the cor-
responding electroneutrality conditions will have 
the form for positively charged S-centers

                n  + n2 = p  + p1,                        (2.8)

for negatively charged S-centers

                     n  + n2 + n1 = p.                        (2.9)

Taking into account (2.4) the expression (2.8) 
becomes

                 n = p + p1 + p2 - N2.                (2.6c)

And taking into account (2.5) and (2.6) the ex-
pression (2.9) takes the form

                   n = p + p1 + p2 - N1  -N2          (2.6d)

For convenience, the condition of electroneu-
trality for all possible cases collected in table 2.1.

Without going into details of the processes, 
we have carried out calculations for all four sys-
tems of equations (2.6a,b,c,d) so (2.1) – (2.3) with 
(2.4), (2.5).

Unknown are n, p, p1 and p2. Since the system 
of four linear equations are  with four unknowns, 
all of them have solutions, and these solutions are 
single-valued and unique.

The case of negatively charged R-centers

It was found that for negatively charged R-
centers the studied system of equations has no 
positive solutions when you use the equation of 
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electroneutrality in the form of (2.6b) and (2.6d). 
For example, when negatively charged levels 

of the second class and the positively charged 
centers of the first class, in terms of

   f = 1015 sm-3s-1 ;N1
+ = N2

-= 1015 sm-3,
the system of equations (2.1)-(2.3),(12.6d) has 
the solution [12]:

n= – 1,005 ×1015 sm-3; p=4,988 ×107 sm-3;  
p1= – 4,963 ×107 sm-3; p2= – 4,987×1012 sm-3.The 
error function (see below) in this case was F = 
0,0000077.

I.e. negative concentrations appear. This 
means that under the current model, the centers 
of slow recombination of negative charge can not 
bear. This conclusion is in good agreement with 
the value of the capture cross section for holes on 
these centers. The question of how the value of 
capture cross sections for electrons form for them 
remains open.

Table 2.1 

Four variations of the charge States of R - and 
S-centers

Case of positively charged R-centers

For positively charged R-centers and positive-
ly charged S-centers, the working system of equa-
tions after transformation has the form:   

                 np1 = p (N1 – p1)                     (2.10)
                 np2 = Ap (N2 – p2)                   (2.11)
                    B = Anp1 +np2                                     (2.12)
                   n = p + p1 + p2    ,                 (2.13)

where А= 2

1

p

n

S
S

= 105;  B=
2n

f
vS

.In all cases the 

value v was equal 107sm/s.
Parameters in the system of equations (2.10) – 

(2.13) are N1, N2 and f. Each of these variables can 
take values from a wide range of numbers from 

1012 to 1018. Therefore, we used the following 
tactics: concentration of S-centers fixed at the 
level of 1015sm-3, regarding it as the argument 
value N2has changed from 1014 to 1016 sm-3. The 
system of equations was solved several times for 
different levels of photoexcitation f=1014; 1015; 
1018 sm-3s-1 (i.e. less, equal to, and a lot more 
than fixed concentration of fast recombination 
centers). The asymmetry of the spread of selected 
values of f with respect to N1 is due to the fact 
that the original system of equations (2.1)–(2.3) is 
written for large levels of photoexcitation.

From equation (2.12)

                       p2 = B
n

  – Ap1   .                    (2.14)

From equation (2.10)

                     p = 1

1 1–
np

N p .                        (2.15)

Dividing (2.10) by (2.11) we get
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Joint solution of (2.8) and (2.5) gives

p1
2A(A-1) + p1[A(N2 +N1) - 

B
n

 (A -1)]- 1BN
n

=0.

The solution of this quadratic equation has the 
form

1
2 2

1

1

[ 4 ( 1)( ) ]

2 ( 1)

BD D A A N
np

A A

− + + −
=

−   
 (2.18)

in which

             D = [A(N2 +N1) -
B
n

 (A-1)].

The “–“ sign before the root in (2.18) is 
discarded because it leads to p1<0.
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will have the form for positively charged S-
centers

n  + n2 = p  + p1, (2.8)

for negatively charged S-centers

n  + n2 + n1 = p. (2.9)

Taking into account (2.4) the expression 
(2.8) becomes

n = p + p1 + p2 - N2. (2.6c)

And taking into account (2.5) and (2.6)
the expression (2.9) takes the form

n = p + p1 + p2 - N1 -N2 (2.6d)

For convenience, the condition of 
electroneutrality for all possible cases 
collected in table 2.1.

Without going into details of the 
processes, we have carried out calculations 
for all four systems of equations (2.6a,b,c,d) 
so (2.1) – (2.3) with (2.4), (2.5).

Unknown are n, p, p1 and p2. Since the 
system of four linear equations are  with four 
unknowns, all of them have solutions, and 
these solutions are single-valued and unique.

The case of negatively charged R-
centers

It was found that for negatively charged 
R-centers the studied system of equations has 
no positive solutions when you use the 
equation of electroneutrality in the form of 
(2.6b) and (2.6d). 

For example, when negatively charged 
levels of the second class and the positively 
charged centers of the first class, in terms of

f = 1015 sm-3s-1 ;N1
+ = N2

−= 1015 sm-3,
the system of equations (2.1)-(2.3),(12.6d) 
has the solution [12]:
n= – 1,005 ⋅1015 sm-3; p=4,988 ⋅107 sm-3; p1=
– 4,963 ⋅107 sm-3; p2= – 4,987⋅1012 sm-3.The 
error function (see below) in this case was F
= 0,0000077.

I.e. negative concentrations appear. This 
means that under the current model, the 
centers of slow recombination of negative 
charge can not bear. This conclusion is in 
good agreement with the value of the capture 
cross section for holes on these centers. The 
question of how the value of capture cross 
sections for electrons form for them remains 
open.

Table 2.1. Four variations of the charge States of R - and S-centers

Local levels R-centers

S-centers

charge + ─

+

n = p + p1 + p2

(2.6а)                                                   

n = p + p1 + p2 - N2

(2.8) → (2.6c)                                                

─

n = p + p1 + p2
- N1

(2.7) → (2.6b)

n = p + p1 + p2 - N1 -
N2

(2.9) → (2.6d)

Case of positively charged R-centers
For positively charged R-centers and 

positively charged S-centers, the working 
system of equations after transformation has 
the form:

np1 = p (N1 – p1) (2.10)

np2 = Ap (N2 – p2)            (2.11)

B = Anp1 +np2                                   (2.12)
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Equation (2.14),(2.15),(2.18) after substitution 
in (2.13) provide an equation with one unknown 
variable - n(N2):

           n = 1

1 1–
n p

N p
- p1(A-1) + 

B
n

,         (2.19)

in which, for the sake of saving accounts the 
value of p1 have not been painted, in accordance 
with the formula (2.18).

It is obvious that the resulting expressions are 
too cumbersome for analysis. Since after substi-
tuting for p1(n) structure of the expression (2.19) 

has the form f1(n+ 1
n

) = f2(n + 1
n

 )½, finally, one 
should expect the equations of at least fourth de-
gree relative to n. Moreover, the coefficients in 
this equation may vary up to 15 orders of magni-
tude. That is the complexity of solving the given 
system of equations is probably the reason why 
such analysis was not previously done. 

Us an algebraic way to solve the system of 
equations (2.10) – (2.13) were discarded, and in-
stead applied such an artificial technique.

The value of n is set arbitrarily. In accordance 
with the equation (2.18) is determined by the val-
ue p1. Knowing it and n, the formulas (2.14) and 
(2.15) are determined by the numerical value of 
p2 and p. Then all four numbers are substituted in 
the original system of equations, and determines 
the error function [see (2.10) - (2.13)]

1 1 2 2 1 2 1 2

1 2

( ) ( ) 4p N p Ap N p Anp np p p pF
np np B n

− − + + +
= + + + −   

(2.20)
Remains, fingering n, to minimize the error 

function. Four introduced into the formula (2.20) 
to the exact solution correspond to a value of F 
which is equal to zero.

The peculiarity of function (2.20) is that it uses 
not the traditional difference of the left and right 
parts of the corresponding equations, and the 
quotient of their division. This is due to the fact 
that in the first three equations of system (2.10) 
– (2.13) are the products of the concentrations. 
In this case, the difference of the left and right 
side of equation (2.13) will be much smaller (up 
to 15 orders of magnitude)than the remaining 

contributions to the error function, being at the 
level of machine zero. Namely, in this equation 
the characteristics of the charge state of the local 
centers are inherent. In addition, this approach 
eliminates the need to do the sign of the error 
in each of the equations. The advantage of the 
proposed method is in the simultaneous receipt of 
all the unknown quantities.

Fig. 2.1. The change of the lifetime of electrons when 
the concentration of R-centers for levels of photoex-
citation: 1 – 1014 , 2 – 1015 and 3– 1017 sm-3s-1. A – the 
calculation was performed for positive, B - for nega-

tively charged centers of first grade.

The value of tactile sensing, we evaluated ac-
cording to the change of the lifetime of the main 
carriers, the value of which had counted the fill 
level hole centers of the I-st and II-d classes:

a

b

1715

15 17
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      1 1 2 2

1
n

n nS p v S p v
t =

+                 (2.21)

The results of the calculations [12,13] are 
shown in Fig.2.1A. It is seen that if the centers 
of both classes are positively charged, respon-
sivity starts at the concentration of R-centers by 
about two orders of magnitude below than the 
concentration of S-centers. Regardless of the 
level of photoexcitation the value of the lifetime 
increases by about two orders of magnitude in the 
case when the concentration of R-centers also in-
creases by two orders of magnitude higher than 
the concentration of S-centers.

The dotted line in Fig. 2.1 shows the concen-
tration of S-centers. As a result of the problem 
solution at our disposal is just as the concentra-
tion -N1, and the concentration of holes in centers 
of quick recombination – p1, it is possible to de-
termine directly the proportion of centers that 
captured positive charge. Depending on the light-
ing conditions f and the concentration of centers 

N2, value 1

1

p
N  

is amounted to 1-3 % . And even 

such S-centers in accordance with Fig. 1.1 can 
provide an increase in τn only several orders of 
magnitude. This is a weak and ineffective channel 
of tactile sensing. Nevertheless, it exists and is 
able to make some adjustments to the painting 
processes. Especially on the lower border of the 
governing parameters – at low levels of photo-
excitation and low concentrations of the centers 
of the II-d-class – when the mechanism of tactile 
sensitizing of A. Rose (see Fig.2.1) are not yet 
included.

For the case of “positively charged R-centers 
– negatively charged S-centers” the defining 
system of equations in accordance with (2.10) – 
(2.12), (2.6d) has the form

          np1 = p (N1 – p1)                       (2.22)

          np2 = Ap (N2 – p2)                     (2.23)

             B = Anp1 +np2                                         (2.24)

         n = p + p1 + p2 –N1                   (2.25)

From equations (2.10) – (2.13) they formally 
differ only in the last term in the fourth equation. 
However, the result is thus radically different.

Note the additional difficulty posed by the fact 
that the area N2 ≈ N1 the decision was stochas-
tic - by changing the concentration in the second 
decimal place the value of lifetime was changed 
to five orders of magnitude (see Fig.2.1b). It had 
to take into account when choosing the step with 
which the calculations were increased and the 
concentration of centers of the second class.

The method of calculation was used the same 
as that which is described above. The results are 
shown at Fig. 2.1b. As experimentally quite well 
established, that in the sensitized cadmium sul-
fide lifetime of majority carriers changes by 4 – 5 
orders of magnitude, from the comparison of fig-
ures 2.1a and 2.1b it follows that such a change 
can only be the case if the levels of the 1st class 
are negatively charged – are nonequilibrium elec-
trons which are captured by neutral centers. The 
equation of electroneutrality is given by (2.6b).

Note that a significant sensitizing should be 
expected only for relatively small levels of ex-
posure. With the increasing intensity of the pho-
toexcitation of the upper part of the graph when 
N2 » N1 is downward sloping, whereas the lower 
part under the N2 « N1, moves towards it. As a 
result, the jump in the value of the lifetime after 
tactile sensitizing is a lot less. The effect of tactile 
sensitizing is concealed. This receives a natural 
explanation if we consider that at high rates of 
photoexcitation the carrier concentration is high. 
Introduction of the sensitized impurities of the 
same concentration is not able to increase it sig-
nificantly.

In addition, it was found that the system of 
equations (2.1) – (2.3) – plus one of the conditions 
of electroneutrality (see table 2.1) are very sensi-
tive to the last term in (2.6a) – (2.6d). Value when 
the system has physically meaningful solutions, 
i.e. when the principal features of the quenching 
appear, is about the order of 1015 sm-3. This can be 
a value of concentration N1 in the formula (2.6b) 
or N2 in the formula (2.6b), or their sum N1 + N2 
in the formula (2.6d) (see table 2.1). Note that the 
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order of magnitude was applied by A. Rose with-
out comment. Because the description of tactile 
sensitizing was performed polyfermenticus and 
the condition of electroneutrality does not apply, 
there is a problem with the fetishization of that 
number. As a result of our consideration, was re-
vealed the special properties of concentrations of 
centers of fast and slow recombination.

In the field of used values of the intensities of 
photoexcitation at a concentration of recombina-
tion centers is less than 1015 sm-3 tactile sensitizing 
does not occur at all. When this limit is reached 
(first column, first row of the table 2.1) sensitizing 
is possible, but happens only slightly (Fig.2.1a), 
and the number of centers which are able to par-
ticipate in this process plays the decisive role. At 
concentrations that significantly exceed the limit 
of 1015 sm-3 for negative R-centers, the solution of 
the system of equations is formally generally falls 
into negative area, which has no physical mean-
ing (second column of the table 2.1). In a nar-
row region on the border of these concentrations 
probably an avalanche-like increase of the life-
time (Fig.2.1b). But only for positively charged 
R-centers and negatively charged S-centers (sec-
ond line, first column of the table 2.1).

The obtained results remove the existing con-
tradictions. Properties of the S-centers are such 
that, while they are in the neutral state, they are 
able to capture an electron and a hole with the 
same capture cross section of 10-15 sm2. As a result, 
the crystal are negatively and positively charged 
centers of the first class. However, since the ma-
terial used is n-type, the mere predominance of 
electrons provides a more frequent seizures, and 
sensitizing occurs mainly according to the sce-
nario in Fig.2.1b. The percentage ratio between 
the positively and negatively charged S-centers 
obtained for the first time. Perhaps this indicates 
that, analogous to a second class, the fast recom-
bination centers also consist of several types.

2.2.  Modulation of LAC type with infrared light

View of figures 2.1a and 2.1b allows to predict 
lux-ampere dependence for both channels, tactile 
sensitizing. For fixed values of concentrations of 
centers of N1 and N2 in the case when the process 

involves positively charged S – centers (Fig.2.1a), 
the increase of intensity of photoexcitation causes 
approximately the same decrease in the lifetime. 
This should facilitate the formation of a more or 
less linear LAC. 

Similarly, for negatively charged S – centers 
(Fig.2.1b), after tactile sensitizing (right of dotted 
line), with increasing levels of photoexcitation, 
the lifetime was decreased. The product of these 
quantities n = f·τn remains approximately the 
same order of magnitude. In these circumstances 
we should expect lux-ampere dependence is close 
to linear, we indeed found experimentally [4].

In the bottom of the graph Fig.2.1b, in region 
N2 « N1 when sensitizing has not yet occurred, the 
lifetime increases with the intensity of photoexci-
tation. This should result converges lux-ampere 
characteristic. Change the formation mechanism 
of the LAC is further evidence of the prevalence 
in the crystal’s centers, which have captured neg-
ative charge in compare with positively charged.

Such change of LAC is difficult to observe in 
dependence on the concentration of R-centers ex-
perimentally, because you will need very similar 
samples with different levels of doping or single 
crystal with sequentially adding in an admixture. 
Both ways are difficult to implement. In the first 
case, prevents the natural spread of parameters of 
crystals even grown in the same batch. And the 
second additive doping inevitably changes the 
previous distribution, we introduce impurities 
and properties are already made by other impuri-
ties (in our case at least, the S-centers). Crystal 
becomes inadequate.

However, it is possible to do otherwise [12,13]. 
If the intensity of infrared light is such that the 
number of incident photons is comparable and 
slightly lower concentration of R-centers, the 
light becomes modulating. The quantum of infra-
red radiation, absorbed on the centers of slow re-
combination, is inhibit for the population of their 
holes. As a result of effective concentration of 
R-centers, which are really involved in the pro-
cess of tactile sensitizing becomes less. The share 
of such centers for the same crystal is the smaller, 
the greater the intensity of IR light, which impact-
ed the crystal.
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Figure 2.2 shows a family of lux-ampere char-
acteristics when excited by their own light (λ=520 
nm) of the crystal CdS with obviously present the 
effect of IR-quenching of photocurrent. As the 
parameter, was changed the intensity of the infra-
red light. Since the processes of tactile sensitizing 
can be superimposed on the influence of excited 
states of R-centers, applied a multiplier range of 
wavelengths from 900 to 1400 nm. High light was 
monochromatic.

As can be seen from the figure 2.2, the effect 
of infrared light reduces the absolute value of the 
photocurrent (infrared quenching), but increases 
the degree of nonlinearity of the graph. For ease 
of comparison, the inset presents the dependence 
of the following values for the two extreme cases 
-off IR illumination (curve “a” corresponds to the 
curve 1 Fig.2.2) and the largest intensity of the 
additional infrared light (curve b corresponds to 
curve 3 in Fig.2.2).

Fig. 2.2. The change of the photocurrent in the 
combined excitation with IR light:

1 - 0 ; 2 - 3,0·10-3 ; 3 - 1,4·10-2 lx.

As originally effect of modulation of type LAC 
with infrared light requires the condition N2»N1, it 
can not be carried out for all crystals. However, if 
the phenomenon of the change of the lux-ampere 
characteristics from linear to converges which is 
not marked by A. Rose, after all is observed, it can 
serve as a good criterion of held tactile sensitiz-
ing of the sample, bypassing the estimation of the 
lifetime of carriers.

References
1.	 Новикова М.А. Особливості інфра-

червоного гасіння фотоструму у на-
півпровідниках CdS.//Работа – лау-
реат Областного конкурса (1 место) 
Малой академии наук, Областное 
территориальное отделение,  Секция 
“Физика”. Одесса, 2005 г., с. 1 – 37.

2.	 M.A.Novikova Change of Photoelectric 
Properties of Semiconductors as a 
Tool for the  Controlof  Environmental 
Pollution by  Extraneous Admixtures 
and IR-illumination.//Section of 
Environmental Science. Finalist of Intel 
International Science and Engineering 
Fair. USA,  AZ,  Phoenix,  May 8 – 18. 
2005.

3.	 Драгоев А.А., Затовская Н.П., Каракис 
Ю.Н., Куталова М.И. Управляемые 
электрическим полем датчики инфра-
красного излучения.//Материалы 2 nd 
International Scientific and Technical 
Conference “Sensors Electronicsand 
Microsystems Technology” Book of 
abstracts. 115. Секция IV “Радіаційні, 
оптичні, та оптоелектричні сенсори”. 
Україна, Одеса, 26–30 червня 2006 р. 
“Астропринт”. 2006.

4.	 M.A.Novikova, Yu.N.Karakis, M.I. 
Kutalova Particularities of cur-
rent transfer in the crystals with 
two  types of  Recombination cen-
ters. //Photoelectronics – 2005.n.14. 
–P.  58-61.

5.	 Каракис К.Ю. Релаксационные харак-
теристики полупроводниковых кри-
сталлов  с ИК-гашением фототока.//
Одесса, Работа – лауреат Областного 
конкурса (Ш место) Малой академии 
наук, Областное территориальное от-
деление,  Секция “Физика”. Одесса – 
2001. с. 1–37.

6.	 Ю.Н. Каракис, Н.П. Затовская, 
В.В.  Зотов, М.И., Куталова 
Особенности релаксации фототока в 
кристаллах сульфида кадмия с запор-
ными контактами//1-а Українська на-
укова конференція з фізики напівпро-



137

відників.– Одеса, 10-14 вересня 2002. 
Тези доповідей. Т.2. – с.138

7.	 К.Ю. Каракис, В.А. Борщак, 
В.В. Зотов, М.М. Куталова 
Релаксационные характеристики 
кристаллов сульфида кадмия с ИК- 
гашением.//Фотоэлектроника 2002.– 
вып.11. – с.51–55.

8.	 A.A.Dragoev, Yu.N.Karakis, M.I. 
Kutalova Peculiarities in photoexci-
tation of carriers from deep traps.//
Photoelectronics– 2006 – n. 15.–P. 54–
56

9.	 А.А.Драгоев Визначення  квантового 
виходу інфрачервоного гасіння фо-
тотоку.//Робота – лауреат Областної 
сесії Малої Академії наук України. 
Одеське територіальне відділення. 
Секція  “Фізика”. –Одеса  2006. – 
c.32 .

10.	Ye.V. Brytavskyi, Yu. N. Karakis, M. 
I. Kutalova, G.G.Chemeresyuk Effects 
connected with interaction of charge 
carriers and R-centers basic and exited 
states.//Photoelectronics. –2009. –n. 
18.–P. 84 – 87.

11.	E.V.Britavsky, Y.N.Karakis, 
M.I.Kutalova, G.G.Chemeresyuk On 
the charge state of rapid and slow re-
combination centers in semiconduc-
tors//Photoelectronics.–2008. – n.17.–
2009. – n. 18–P. 65 – 69.

12.	Бритавский Е.В. Эффект модулиро-
вания вида люксамперной характе-
ристики инфракрасным светом //63-я 
отчётная студенческая научная кон-
ференция, посвящённая 143-й годов-
щине Одесского национального уни-
верситета имени И.И. Мечникова. 
Физический факультет. Секция физи-
ки полупроводников и диэлектриков. 
23 - 24 апреля – 2008. Тезисы докла-
дов – C. 52 – 53.

13.	G.G.Chemeresyuk, Ie. V. Brytavskyi, 
Yu. N. Karakis (Ukraine) Infrared 
radiation sensor with selective 
controlled sensitiviti// The Ninth 
International Conference “Correlation 
Optics 2009” – Chernivtsi National 
UniversityChernivtsi, Ukraine. 
September 20 – 24. – 2009. Poster 
Session. Session 2 –  D-2.

This article has been   received within April  2017. 

UDC 621.315.592

N. S. Simanovych, Ye. V. Brytavskyi, M. I. Kutalova, V. A. Borshchak, Y. N. Karakis

THE STUDY OF  HETEROGENEOUS SENSITIZED 
CRYSTALS OF CADMIUM SULFIDE. PART I. ABOUT CHARGE OF THE 

CENTERS RECOMBINATION

Summary
The photovoltaic properties of CdS crystals with combined alloying have been investigated. An 

analytical expression for the dependence of the coefficient of damping of the intensities of exciting 
and quenching light has been received. For the first time the concentration of fast recombination cen-
ters has been estimated.

The charge state of S - and R- centersis expected. The exclusive method of decision of the system 
of equalizations is thus created. Modulation of LAC is shown by IR light.
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РЕКОМБІНАЦІЇ

Резюме
Досліджені фотоелектричні властивості кристалів CdS з комбінованим легуванням. 

Отримано аналітичний вираз для залежності коєфіціента гасіння от інтенсивностей збуджую-
щего і гасящего світла. Вперше оцінена концентрація центрів швидкої рекомбінації.

Розрахован зарядовий стан S- і R-центрів. При цьому створено ексклюзивний метод вирі-
шення системи рівнянь. Продемонстрована модуляція ЛАХ інфрачервоним світлом. 
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ИССЛЕДОВАНИЕ  НЕОДНОРОДНО ОЧУВСТВЛЁННЫХ
КРИСТАЛЛОВ СУЛЬФИДА КАДМИЯ. ЧАСТЬ I. О ЗАРЯДОВОМ СОСТОЯНИИ 

ЦЕНТРОВ РЕКОМБИНАЦИИ

Резюме
Исследованы фотоэлектрические свойства кристаллов CdS с комбинированным легирова-

нием. Получено аналитическое выражение для зависимости коэффициента гашения от интен-
сивностей возбуждающего и гасящего света. Впервые оценена концентрация центров быстрой 
рекомбинации.

Рассчитано зарядовое состояние S- и R-центров. При этом создан эксклюзивный метод ре-
шения системы уравнений. Продемонстрирована модуляция ЛАХ инфракрасным светом.
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RELATIVISTIC CALCULATION OF OSCILLATOR STRENGTHS OF THE  RADIATION 
TRANSITIONS BETWEEN BARIUM RYDBERG STATES

The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth order Dirac-
Kohn-Sham one-particle approximation are used for preliminary estimating the energies and oscillator strengths of radiative 
transitions from the ground state to the low-excited and Rydberg states, in particular, 6s2 -6snp (n =7-30) transitions, 
of the barium atom. The comparison of the calculated oscillator strengths with available theoretical and experimental 
(compillated) data is performed. The important point is linked with non-accounting for the polarization effect contribution 
into the oscillator strength value that has led to ~40% difference between the empirical (compillated) and theoretical data.

1.  Introduction

The research in many fields of modern atom-
ic physics (spectroscopy, spectral lines theory, 
theory of atomic collisions etc), astrophysics, 
plasma physics, laser physics and quantum and 
photo-electronics requires an availability of sets 
of correct data on the energetic, spectroscopic 
and structural properties of atoms, especially in 
the high excited, Rydberg states. Naturally, the 
correct corresponding data about radiative de-
cay widths, probabilities and oscillator strengths 
of atomic transitions are needed in building ad-
equate astrophysical models, realizing regular 
astrophysical, laboratory, thermonuclear plasma 
diagnostics and in fusion research. Besides, a 
great interest to studying Rydberg atomic states 
parameters  can be easily explained by a power-
ful development of such new fields as quantum 
computing, and quantum cryptography, construc-
tion of new type Rydberg atomic lasers etc. Tra-
ditionally, considerable attention is devoted to 
studying the energetic and spectral characteristics 
of the light atoms  (H, He, Li etc) and correspond-
ing multicharged ions. However, studying spec-
tral characteristics of heavy atoms and ions in the 
Rydberg states has to be more complicated as it 
requires a necessary accounting the relativistic , 
exchange-correlations effects and possibly the 
QED corrections for superheavy atomic systems. 
There have been sufficiently many reports of cal-

culations and compilation of energies and oscil-
lator strengths for the barium and even Ba-like 
ions (see, for example, [1–3] and refs. therein), 
however, an accuracy of theses data call for fur-
ther serious analysis and calculation.  In many pa-
pers the Dirac-Fock method, model potential ap-
proach, quantum defect approximation in the dif-
ferent realizations have been used for calculating  
the energy and spectral properties of barium and 
it has been shown that an account of the polariza-
tion interelectron corrections is of a great quan-
titative importance. The consistent relativistic 
perturbation theory calculations  of the transitions 
energies and oscillator strengths for some chosen 
transitions between the Rydberg states are per-
formed in Refs. [4].  However, it should be stated 
that for majority of the barium Rydberg states and 
Ba-like ions with high values of a nuclear charge 
Z, there is not enough precise information avail-
able in literatures [1-3]. In our paper the com-
bined relativistic energy approach and relativistic 
many-body perturbation theory with the zeroth 
order Dirac-Kohn-Sham 1-particle approxima-
tion are used for preliminary estimating the en-
ergies and oscillator strengths of radiative transi-
tions from the ground state to the low-excited and 
Rydberg states, in particular, 6s2 -6snp (n =7-50) 
transitions, of the barium atom. The comparison 
of the calculated oscillator strengths with avail-
able theoretical and experimental (compillated) 
data is performed. The important point is linked 
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with non-accounting for the polarization effect 
contribution into the oscillator strength value that 
has led to ~30% difference between the empirical 
(compillated) and theoretical data

2.  The theoretical method

In the relativistic energy approach [4-9], which 
has received a great applications during solving 
numerous problems of atomic, molecular and nu-
clear physics (e.g. , see Refs. [10-59]), the imagi-
nary part of electron energy shift of an atom is  
directly connected with the radiation decay possi-
bility (transition  probability). An approach, using 
the Gell-Mann and Low formula with the QED 
scattering matrix, is used in treating the relativ-
istic atom. The total energy shift of the state is 
usually presented in the form:

                                 (1)

where G is interpreted as the level width, and the 
decay possibility P = G. The imaginary part of 
electron energy of the system, which is defined 
in the lowest order of perturbation theory as [4]: 

         (2)

where (a>n>f)  for electron and (a<n<f)  for va-
cancy. The matrix element is determined as fol-
lows:

                   (3)

The separated terms of the sum in (3) represent 
the contributions of different channels and a prob-
ability of the dipole transition is: 

                                      (4)

The corresponding oscillator strength: 

             
where g is the degeneracy degree,  l is a wave-
length in angstrems (Ǻ). Under calculating the 
matrix elements (3) one should use the angle 

symmetry of the task and write the expansion for 
potential sin|w|r12/r12  on spherical functions as 
follows [4]: 

     (5)
·

where J  is the Bessel function of first kind and 
(l)= 2l + 1. This expansion is corresponding to 
usual multipole one for probability of radiative 
decay. Substitution of the expansion (5) to matrix 
element of interaction gives as follows [5-8]: 

      

                         
BrCul
lll QQQ += ,                   (6)

where ji is the total single electron momentums, 
mi – the projections; QCul is the Coulomb part of 
interaction, QBr - the Breit part. Their detailed 
definitions are presented in Refs. [4,20]. The de-
tailed expressions for the Coulomb and Breit parts 
and the corresponding radial Rl and angular  Sl  in-
tegrals can be found in Refs. [22-32].The total 
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
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value that has led to ~30% difference 
between the empirical (compillated) and 
theoretical data 

 
2.  The theoretical method 

In the relativistic energy approach [4-9], 
which has received a great applications 
during solving numerous problems of atomic, 
molecular and nuclear physics (e.g. , see 
Refs. [10-59]), the imaginary part of electron 
energy shift of an atom is  directly connected 
with the radiation decay possibility 
(transition  probability). An approach, using 
the Gell-Mann and Low formula with the 
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where (>n>f)  for electron and (<n<f)  for 
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as follows: 
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channels and a probability of the dipole 
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where g is the degeneracy degree,   is a 
wavelength in angstrems (Ǻ). Under 
calculating the matrix elements (3) one 
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
the expansion (5) to matrix element of 
interaction gives as follows [5-8]:  
 

         


















1234Im1][
31

312
1

43211234 Q
mm

jj
jjjjV

      
         



















1234Im1][
31

312
1

43211234 Q
mm

jj
jjjjV

 
          BrCul

 QQQ  ,                (6) 
 
where ji is the total single electron 
momentums, mi – the projections; QCul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The detailed expressions for 
the Coulomb and Breit parts and the 
corresponding radial R and angular  S  
integrals can be found in Refs. [22-32].The 
total probability of a  - pole transition is 
usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations  

and experimental (compillated) data is 
performed. The important point is linked 
with non-accounting for the polarization 
effect contribution into the oscillator strength 
value that has led to ~30% difference 
between the empirical (compillated) and 
theoretical data 

 
2.  The theoretical method 

In the relativistic energy approach [4-9], 
which has received a great applications 
during solving numerous problems of atomic, 
molecular and nuclear physics (e.g. , see 
Refs. [10-59]), the imaginary part of electron 
energy shift of an atom is  directly connected 
with the radiation decay possibility 
(transition  probability). An approach, using 
the Gell-Mann and Low formula with the 
QED scattering matrix, is used in treating the 
relativistic atom. The total energy shift of the 
state is usually presented in the form: 

 
                E = ReE + i /2                   (1) 

 
where  is interpreted as the level width, and 
the decay possibility P = . The imaginary 
part of electron energy of the system, which 
is defined in the lowest order of perturbation 
theory as [4]:  
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where (>n>f)  for electron and (<n<f)  for 
vacancy. The matrix element is determined 
as follows: 
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The separated terms of the sum in (3) 
represent the contributions of different 
channels and a probability of the dipole 
transition is:  
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where g is the degeneracy degree,   is a 
wavelength in angstrems (Ǻ). Under 
calculating the matrix elements (3) one 
should use the angle symmetry of the task 
and write the expansion for potential 
sinr12/r12  on spherical functions as 
follows [4]:  
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
the expansion (5) to matrix element of 
interaction gives as follows [5-8]:  
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The detailed expressions for 
the Coulomb and Breit parts and the 
corresponding radial R and angular  S  
integrals can be found in Refs. [22-32].The 
total probability of a  - pole transition is 
usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations  

and experimental (compillated) data is 
performed. The important point is linked 
with non-accounting for the polarization 
effect contribution into the oscillator strength 
value that has led to ~30% difference 
between the empirical (compillated) and 
theoretical data 

 
2.  The theoretical method 

In the relativistic energy approach [4-9], 
which has received a great applications 
during solving numerous problems of atomic, 
molecular and nuclear physics (e.g. , see 
Refs. [10-59]), the imaginary part of electron 
energy shift of an atom is  directly connected 
with the radiation decay possibility 
(transition  probability). An approach, using 
the Gell-Mann and Low formula with the 
QED scattering matrix, is used in treating the 
relativistic atom. The total energy shift of the 
state is usually presented in the form: 

 
                E = ReE + i /2                   (1) 

 
where  is interpreted as the level width, and 
the decay possibility P = . The imaginary 
part of electron energy of the system, which 
is defined in the lowest order of perturbation 
theory as [4]:  
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where (>n>f)  for electron and (<n<f)  for 
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as follows: 
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The separated terms of the sum in (3) 
represent the contributions of different 
channels and a probability of the dipole 
transition is:  
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where g is the degeneracy degree,   is a 
wavelength in angstrems (Ǻ). Under 
calculating the matrix elements (3) one 
should use the angle symmetry of the task 
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
the expansion (5) to matrix element of 
interaction gives as follows [5-8]:  
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The detailed expressions for 
the Coulomb and Breit parts and the 
corresponding radial R and angular  S  
integrals can be found in Refs. [22-32].The 
total probability of a  - pole transition is 
usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations  

and experimental (compillated) data is 
performed. The important point is linked 
with non-accounting for the polarization 
effect contribution into the oscillator strength 
value that has led to ~30% difference 
between the empirical (compillated) and 
theoretical data 
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In the relativistic energy approach [4-9], 
which has received a great applications 
during solving numerous problems of atomic, 
molecular and nuclear physics (e.g. , see 
Refs. [10-59]), the imaginary part of electron 
energy shift of an atom is  directly connected 
with the radiation decay possibility 
(transition  probability). An approach, using 
the Gell-Mann and Low formula with the 
QED scattering matrix, is used in treating the 
relativistic atom. The total energy shift of the 
state is usually presented in the form: 
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where  is interpreted as the level width, and 
the decay possibility P = . The imaginary 
part of electron energy of the system, which 
is defined in the lowest order of perturbation 
theory as [4]:  
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where (>n>f)  for electron and (<n<f)  for 
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as follows: 
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represent the contributions of different 
channels and a probability of the dipole 
transition is:  

 

                    
nα

nnn

ω
αα V

π
Г 

4
1

                  (4) 
 
The corresponding oscillator strength:  

 

            
152 1067.6/ 

n
Гgf g    

where g is the degeneracy degree,   is a 
wavelength in angstrems (Ǻ). Under 
calculating the matrix elements (3) one 
should use the angle symmetry of the task 
and write the expansion for potential 
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follows [4]:  
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
the expansion (5) to matrix element of 
interaction gives as follows [5-8]:  
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The detailed expressions for 
the Coulomb and Breit parts and the 
corresponding radial R and angular  S  
integrals can be found in Refs. [22-32].The 
total probability of a  - pole transition is 
usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations  

and experimental (compillated) data is 
performed. The important point is linked 
with non-accounting for the polarization 
effect contribution into the oscillator strength 
value that has led to ~30% difference 
between the empirical (compillated) and 
theoretical data 

 
2.  The theoretical method 

In the relativistic energy approach [4-9], 
which has received a great applications 
during solving numerous problems of atomic, 
molecular and nuclear physics (e.g. , see 
Refs. [10-59]), the imaginary part of electron 
energy shift of an atom is  directly connected 
with the radiation decay possibility 
(transition  probability). An approach, using 
the Gell-Mann and Low formula with the 
QED scattering matrix, is used in treating the 
relativistic atom. The total energy shift of the 
state is usually presented in the form: 
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where  is interpreted as the level width, and 
the decay possibility P = . The imaginary 
part of electron energy of the system, which 
is defined in the lowest order of perturbation 
theory as [4]:  
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as follows: 
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The separated terms of the sum in (3) 
represent the contributions of different 
channels and a probability of the dipole 
transition is:  
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where g is the degeneracy degree,   is a 
wavelength in angstrems (Ǻ). Under 
calculating the matrix elements (3) one 
should use the angle symmetry of the task 
and write the expansion for potential 
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
the expansion (5) to matrix element of 
interaction gives as follows [5-8]:  
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
the expansion (5) to matrix element of 
interaction gives as follows [5-8]:  
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where ji is the total single electron 
momentums, mi – the projections; QCul is the 
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part. Their detailed definitions are presented 
in Refs. [4,20]. The detailed expressions for 
the Coulomb and Breit parts and the 
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In our work the relativistic wave functions 
are determined  by solution of the Dirac 
equation with the potential, which includes 
the modified Kohn-Sham exchange potential  
[17] insist of the standard Fock one. The 
important point of the many-body 
calculations is in accurate account of the 
exchange–correlation effects [5-15]. 
However, in this preliminary studying the 
energy and spectroscopic parameters of the 
barium spectra we are limited by non-
accounting for the polarization effect 
contribution and other correlation 
corrections. Its consistent and accurate 
accounting will be considered in the next 
paper. All calculations are performed on the 
basis of the modified numeral code 
Superatom (version 93). 

 
3.  Results and conclusion 

Table 1.2 shows the energies and oscillators 
strengths of the transitions between the terms 
of the configurations 6s2 -6snp (n~50). 
Taking into account a great size of the 
obtained data we are limited below only by 
some data. As it has been underlined above, 
here during this preliminary studying the 
energy and spectroscopic parameters of the 
barium spectra we were  limited by non-
accounting for the polarization effect 
contribution and other correlation 
corrections. By the way, it is well-known that 
the similar complicated atomic systems, 
spectra and corresponding computing the 
radiative parameters require very accurate 
accounting for the different groups of the 
many-body exchange-correlation effects (see, 
for example, refs. [5-25]). Moreover, only 
such a way is able to provide spectral data 
with sufficient accuracy for modern 
spectroscopic applications. Such calculations 
are now in progress and more full 
information will be presented in the next 
papers special Preprint.  

Table 1. The energy (cm-1) and the oscillators 
strengths of 6s2 -6snp transitions (see text) 

Transition Terms E (cm-1) 
[2] 

gf  
[2] 

gf (our) 

6s2 -6s13p 1S-1Po 40763 2.1-4 1.3-4 
6s2 -6s15p 1S-1Po 41183 1.4-3 0.8-3 
6s2 -6s16p 1S-1Po 41306 6.0-4 3.8-4 

 
Table 2. The energy (cm-1) and the 
oscillators strengths of the 6s2 -6snp 

transitions (n = 16-30; our data) 
Transition Terms E (cm-1) gf 
6s2 -6s16p 1S-1Po 41306 3.7-4 
6s2 -6s20p 1S-1Po 41615 0.6-4 
6s2 -6s21p 1S-1Po 41662 1.8-5 
6s2 -6s30p 1S-1Po 41871 2.2-5 

 
We are planning to pay especial attention on 
the accurate accounting for the different 
groups of the many-body exchange-
correlation effects  and consider a problem of 
using the optimized one-particle 
representation and account for the 
polarization effect. It is obvious that a 
possible estimate of the gauge-non-invariant 
contributions (the difference between the 
oscillator strengths values calculated with 
using the transition operator in the form of 
length and velocity) will be of order  40%, 
i.e. results, obtained with using  different 
photon propagator gauges (Coulomb, Landau 
etc) differ  significantly (see [6, 60-62]).   
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the many-body calculations is in accurate account 
of the exchange–correlation effects [5-15]. How-
ever, in this preliminary studying the energy and 
spectroscopic parameters of the barium spectra 
we are limited by non-accounting for the polar-
ization effect contribution and other correlation 
corrections. Its consistent and accurate account-
ing will be considered in the next paper. All calcu-
lations are performed on the basis of the modified 
numeral code Superatom (version 93).

3.  Results and conclusion

Table 1, 2 shows the energies and oscillators 
strengths of the transitions between the terms of 
the configurations 6s2 -6snp (n~50). Taking into 
account a great size of the obtained data we are 
limited below only by some data. As it has been 
underlined above, here during this preliminary 
studying the energy and spectroscopic parameters 
of the barium spectra we were  limited by non-
accounting for the polarization effect contribution 
and other correlation corrections. By the way, it is 
well-known that the similar complicated atomic 
systems, spectra and corresponding computing 
the radiative parameters require very accurate 
accounting for the different groups of the many-
body exchange-correlation effects (see, for exam-
ple, refs. [5-25]). Moreover, only such a way is 
able to provide spectral data with sufficient accu-
racy for modern spectroscopic applications. Such 
calculations are now in progress and more full 
information will be presented in the next papers 
special Preprint. 

Table 1

The energy (cm-1) and the oscillators strengths 
of 6s2 -6snp transitions (see text)

Transition Terms E (cm-1)
[2]

gf 
[2]

gf (our)

6s2 -6s13p 1S-1Po 40763 2.1-4 1.3-4

6s2 -6s15p 1S-1Po 41183 1.4-3 0.8-3

6s2 -6s16p 1S-1Po 41306 6.0-4 3.8-4

Table 2 

The energy (cm-1) and the oscillators strengths 
of the 6s2 -6snp transitions (n = 16-30; our data)

Transition Terms E (cm-1) gf
6s2 -6s16p 1S-1Po 41306 3.7-4
6s2 -6s20p 1S-1Po 41615 0.6-4
6s2 -6s21p 1S-1Po 41662 1.8-5
6s2 -6s30p 1S-1Po 41871 2.2-5

We are planning to pay especial attention on 
the accurate accounting for the different groups 
of the many-body exchange-correlation effects  
and consider a problem of using the optimized 
one-particle representation and account for the 
polarization effect. It is obvious that a possible 
estimate of the gauge-non-invariant contributions 
(the difference between the oscillator strengths 
values calculated with using the transition opera-
tor in the form of length and velocity) will be of 
order  40%, i.e. results, obtained with using  dif-
ferent photon propagator gauges (Coulomb, Lan-
dau etc) differ  significantly (see [6, 60-62]).  
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RELATIVISTIC CALCULATION OF OSCILLATOR STRENGTHS OF THE   
RADIATION TRANSITIONS BETWEEN BARIUM RYDBERG STATES

Summary
The combined relativistic energy approach and relativistic many-body perturbation theory with the 

zeroth order Dirac-Kohn-Sham one-particle approximation are used for preliminary estimating the 
energies and oscillator strengths of radiative transitions from the ground state to the low-excited and 
Rydberg states, in particular, 6s2 -6snp (n =7-50) transitions, of the barium atom. The comparison of 
the calculated oscillator strengths with available theoretical and experimental (compillated) data is 
performed. The important point is linked with non-accounting for the polarization effect contribution 
into the oscillator strength value that has led to ~40% difference between the empirical (compillated) 
and theoretical data.
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РЕЛЯТИВИСТСКИЙ РАСЧЕТ СИЛ ОСЦИЛЛЯТОРОВ РАДИАЦИОННЫХ 
ПЕРЕХОДОВ МЕЖДУ РИДБЕРГОВСКИМИ СОСТОЯНИЯМИ БАРИЯ

Резюме
Комбинированный релятивистский энергитический подход и релятивистская теория 

возмущений многих тел с дирак-кон-шэмовским одночастичным приближением нулевого 
порядка используются для предварительной оценки энергий и сил осцилляторов радиационных 
переходов из основного состояния в низкие возбужденные и ридберговские состояния, в 
частности, 6s2 -6snp (n =7-50) переходоваирма бария. Выполнено cравнение расчетных сил 
осцилляторов с имеющимися теоретическими и экспериментальными данными. Важнейшая 
особенность связана с неучетом вклада в величину силы осцилятора, обусловленного эффектом 
поляризации остова и некоторіми другими  корреляционными поправками, что приводит к ~40% 
отличию между экспериментальными (компиллированными) и теоретическими данными. 

Ключевые слова: релятивистская теория, силы осцилляторов, радиационные переходы.
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РЕЛЯТИВІСТСЬКИЙ РОЗРАХУНОК СИЛ ОСЦИЛЯТОРІВ РАДІАЦІЙНИХ 
ПЕРЕХОДІВ МІЖ РІДБЕРГІВСЬКИМИ СТАНАМИ БАРІЯ 

Резюме
Комбінований релятивістський енергетичний підхід і релятивістська багаточастинкова 

теорія збурень з дірак-кон-шемівським одночастинковим наближенням нульового порядку 
використовуються для попередньої оцінки енергій і сил осциляторів радіаційних переходів 
з основного стану в низько збуджені і рідбергівські стани, зокрема, 6s2 -6snp (n = 7 -50) 
переходів атома барія. Виконано порівняння розрахункових сил осциляторів з наявними 
теоретичними і експериментальними даними. Найважливіша особливість даного розрахунку 
пов’язана з неврахуванням вкладу в величину сили осцилятора, обумовленого ефектом 
поляризації остова та  декотрими іншими кореляційними поправками, що призводить до  
~ 40% відмінності між експериментальними (компіллірованними) і теоретичними даними. 

Ключові слова: релятивістська теорія, сили осцилляторів, радіаційнні переходи, 
рідбергівські стани.
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ADVANCED DATA FOR HYDROGEN ATOM  
IN CROSSED ELECTRIC AND MAGNETIC FIELDS

Spectroscopy of atoms in the crossed external electric and magnetic fields is investigated on the basis of the operator 
perturbation theory. As a novel element within the operator perturbation theory, we use more flexible functions for model 
function, which imitates an electric field. In a case of the crossed electric and magnetic fields we develop more effective 
finite differences numerical scheme. As illustration, some advanced data for the hydrogen atom in the electric and crossed 
external electric and magnetic fields are listed.  Advanced data for hydrogen atom are listed.   

1. Introduction

From the standard quantum mechanics it is well 
known that the external electric field shifts and 
broadens the bound state atomic levels. One 
should note that the usual quantum-mechanical 
approach relates complex eigen-energies (EE) 
E=Er+0,5iG and complex eigen-functions (EF) 
to the shape resonances [1-6]. The calculation 
difficulties in the standard quantum mechanical 
approach are well known and described in many 
Refs. Let us remind that the usual quasiclassical 
WKB approximation overcomes these difficulties 
for the states, lying far from “new continuum 
“ boundary and, as rule, is applied in the case 
of a relatively weak electric field. The same 
is regarding the widespread asymptotic phase 
method (c.f.[2]). Quite another calculation 
procedures are used in the Borel summation of the 
divergent perturbation theory (PT) series and in 
the numerical solution of the difference equations 
following from expansion of the wave function 
over finite basis [2,3,9,10]. 
Experimental observation of the Stark effect in 
a constant (DC) electric field near threshold in 
hydrogen and alkali atoms led to the discovery 
of resonances extending into the ionization 
continuum (c.f.[1]). Calculation of the 
characteristics of these resonances as well as the 
Stark resonances in the strong electric field and 
crossed electric and magnetic fields  remains very 

important problem of as modern atomic physics 
[1-20]. 
In this paper we go on our studying of 
sspectroscopy of atoms in the crossed external 
electric and magnetic fields. Our method of 
studying is based on the known formalism of 
the operator perturbation theory (OPT) [1-3]. 
According to [1-5], the essence of operator 
perturbation theory approach is the inclusion 
of the well known method of “distorted waves 
approximation” in the frame of the formally exact 
perturbation theory.  As a novel element within 
the operator perturbation theory, we use more 
flexible functions for model function, which 
imitates an electric field. In a case of the crossed 
electric and magnetic fields we develop more 
effective finite differences numerical scheme. As 
illustration, some advanced data for the hydrogen 
atom in the electric and crossed external electric 
and magnetic fields are listed.     

2. Method of operator perturbation theory

As our approach to strong field DC Stark effect 
was presented in a series of papers (see, for 
example, [1-6]), here we are limited only by the 
key aspects. According to [2,3], the Schrödinger 
equation for the electronic eigen-function taking 
into account the uniform DC electric field (the 
field strength is F)and the field of the nucleus 
(Coulomb units are used: a unit is h2 /Ze2 m and a 
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unit of  mZ2 e4 /h2 for energy) looks like:

    (1)

where  E is the electronic energy, Z — charge 
of nucleus, N —  the number of electrons in 
atomic core. Our approach allow to use more 
adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum defect 
value μl, electron energy E and principal quantum 
number n is: μl=n-z*(-2E)-1/2. As it is known, in an 
electric field all the electron states can be classified 
due to quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then the 
quantum defect in the parabolic co-ordinates 
δ(n1n2m) is connected with the quantum defect 
value of the free (F=0) atom by the following 
relation [3]: 

After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g: 

(2)

                                                                           (3)

coupled through the constraint on the separation 
constants: β1+β2=1.

For the uniform electric field  F(t) =F. In ref. 
[11], the uniform electric field  ε  in  (3) and (4)  
was  substituted  by  model function  F(t) with 
parameter t ( t = 1.5 t2) . To simplify the calculation 
procedure, the uniform electric field e  in (3) and 
(4)  should be substituted by the function [57,58]:

(4)
                         

th sufficiently large τ (τ=1.5t2). The function ( )te  

practically coincides with the constant e  in the 
inner barrier motion region (t<t2) and disappears 
at t>>t2.  Potential energy in equation (4) has the 
barrier. Two turning points for the classical motion 
along the η axis, t1 and t2 , at a given energy E  are 
the  solutions  of  the   quadratic equation  (β = β1, 
E = E0 ). According to [1-3], one should know two 
zeroth order EF of the H0: bound state function 
YEb (e, n, j) and scattering state function YEs (e, 
h, j) with the same EE in order to calculate the 
width G  of  the concrete quasi-stationary state in 
the lowest PT order. Firstly, one would have to 
define the EE of the expected bound state. It is the 
well known problem of states quantification in 
the case of the penetrable barrier.  Further one 
should solve the system (2, 3) system with the 
total Hamiltonian H  using the conditions [11]: 

with

These two conditions quantify the bounding  
energy E, with separation constant b1 . The further 
procedure for this two-dimensional eigenvalue 
problem results in solving of the system of the 
ordinary  differential equations(2, 3) with probe 
pairs of E, b1. The bound state EE, eigenvalue 
b1 and EF for the zero order Hamiltonian H0 
coincide with those for the total Hamiltonian H 
at e ⇒ 0, where all the states can be classified 
due to quantum numbers: n, n1, l , m  (principal, 
parabolic, azimuthal) that are connected with 
E, b1, m by the well known expressions.. The 
scattering states’ functions must be orthogonal 
to the above defined bound state functions and 
to each other. According to the OPT ideology 
[11,12], the following form of gE′s  :is possible:

                                (6)  

with fE′s , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) satisfies 
the non-homogeneous differential equation, 
which differs from (3) only by the right hand 
term, disappearing at t ⇒ ∞. 
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ADVANCED DATA FOR HYDROGEN ATOM   

IN CROSSED ELECTRIC AND MAGNETIC FIELDS 
 

Spectroscopy of atoms in the crossed external electric and magnetic fields is investigated on 
the basis of the operator perturbation theory. As a novel element within the operator perturbation 
theory, we use more flexible functions for model function, which imitates an electric field. In a case 
of the crossed electric and magnetic fields we develop more effective finite differences numerical 
scheme. As illustration, some advanced data for the hydrogen atom in the electric and crossed 
external electric and magnetic fields are listed.  Advanced data for hydrogen atom are listed.      

 
1. Introduction 

 
From the standard quantum mechanics it is 
well known that the external electric field 
shifts and broadens the bound state atomic 
levels. One should note that the usual 
quantum-mechanical approach relates complex 
eigen-energies (EE) E=Er+0,5iG and complex 
eigen-functions (EF) to the shape resonances 
[1-6]. The calculation difficulties in the 
standard quantum mechanical approach are 
well known and described in many Refs. Let 
us remind that the usual quasiclassical WKB 
approximation overcomes these difficulties for 
the states, lying far from "new continuum " 
boundary and, as rule, is applied in the case of 
a relatively weak electric field. The same is 
regarding the widespread asymptotic phase 
method (c.f.[2]). Quite another calculation 
procedures are used in the Borel summation of 
the divergent perturbation theory (PT) series 
and in the numerical solution of the difference 
equations following from expansion of the 
wave function over finite basis [2,3,9,10].  
Experimental observation of the Stark effect in 
a constant (DC) electric field near threshold in 
hydrogen and alkali atoms led to the discovery 
of resonances extending into the ionization 
continuum (c.f.[1]). Calculation of the 
characteristics of these resonances as well as 
the Stark resonances in the strong electric field 
and crossed electric and magnetic fields  
remains very important problem of as modern 
atomic physics [1-20].  
In this paper we go on our studying of 
sspectroscopy of atoms in the crossed external 

electric and magnetic fields. Our method of 
studying is based on the known formalism of 
the operator perturbation theory (OPT) [1-3]. 
According to [1-5], the essence of operator 
perturbation theory approach is the inclusion 
of the well known method of "distorted waves 
approximation" in the frame of the formally 
exact perturbation theory.  As a novel element 
within the operator perturbation theory, we use 
more flexible functions for model function, 
which imitates an electric field. In a case of the 
crossed electric and magnetic fields we 
develop more effective finite differences 
numerical scheme. As illustration, some 
advanced data for the hydrogen atom in the 
electric and crossed external electric and 
magnetic fields are listed.      
 
2. Method of operator perturbation theory 

 
As our approach to strong field DC Stark 
effect was presented in a series of papers (see, 
for example, [1-6]), here we are limited only 
by the key aspects. According to [2,3], the 
Schrödinger equation for the electronic eigen-
function taking into account the uniform DC 
electric field (the field strength is F)and the 
field of the nucleus (Coulomb units are used: a 
unit is h2 /Ze2 m and a unit of  mZ2 e4 /h2 for 
energy) looks like: 
 
    [-(1 - N/Z) / r + F z - 0,5 - E ]  = 0    (1) 
 
where  E is the electronic energy, Z — charge 
of nucleus, N —  the number of electrons in 
atomic core. Our approach allow to use more 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  

(n1n2m)=(1/n) l
n
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
 

f + 
| |m

t
1

 f +[0,5E + (1 - N/Z) / t-  

                          -0,25 F(t)  t ] f = 0            (2) 

                 g + 
| |m

t
1

 g + [0,5E+2  / t +   

                       +0,25 F(t)  t ] g = 0              (3) 
 
coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . To simplify 
the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
      
    

 (t)  = 1
t

  ( )t
t
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










 
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       (4)                          

th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  

(n1n2m)=(1/n) l
n
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
 

f + 
| |m

t
1

 f +[0,5E + (1 - N/Z) / t-  

                          -0,25 F(t)  t ] f = 0            (2) 

                 g + 
| |m

t
1

 g + [0,5E+2  / t +   

                       +0,25 F(t)  t ] g = 0              (3) 
 
coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . To simplify 
the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
      
    

 (t)  = 1
t
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th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  

(n1n2m)=(1/n) l
n
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
 

f + 
| |m

t
1

 f +[0,5E + (1 - N/Z) / t-  

                          -0,25 F(t)  t ] f = 0            (2) 

                 g + 
| |m

t
1

 g + [0,5E+2  / t +   

                       +0,25 F(t)  t ] g = 0              (3) 
 
coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . To simplify 
the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
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th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  

(n1n2m)=(1/n) l
n
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
 

f + 
| |m

t
1

 f +[0,5E + (1 - N/Z) / t-  

                          -0,25 F(t)  t ] f = 0            (2) 

                 g + 
| |m

t
1

 g + [0,5E+2  / t +   

                       +0,25 F(t)  t ] g = 0              (3) 
 
coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . To simplify 
the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
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th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  

(n1n2m)=(1/n) l
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
 

f + 
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 f +[0,5E + (1 - N/Z) / t-  

                          -0,25 F(t)  t ] f = 0            (2) 

                 g + 
| |m
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1

 g + [0,5E+2  / t +   

                       +0,25 F(t)  t ] g = 0              (3) 
 
coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . To simplify 
the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
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th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
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coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . To simplify 
the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
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th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 
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 In Ref, [7] it has been presented  approach, based 
on solution of the 2-dimensional Schrödinger 
equation for an atomic system in crossed fields and 
operator perturbation theory. For definiteness, we 
consider a dynamics of the complex non-coulomb 
atomic systems in a static magnetic and electric 
fields. The hamiltonian of the multi-electron atom 
in a static magnetic and electric fields is (in atomic 
units) as follows: 
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where the electric field F and magnetic field B are 
taken along the z-axis in a cylindrical system; In 
atomic units: 1 a.u.B=2.35×105T, 
1a.u.F=5,144×106 kV/cm. For solution of the 
Schrödinger equation with hamiltonian equations 
(7) we constructed the finite differences scheme 
which is in some aspects similar to method [7]. 
An infinite region is exchanged by a rectangular  

region: 0<ρ< rL , 0<z< zL . It has sufficiently 
large size; inside it a rectangular uniform grid 

with steps rh , zh was constructed. The external 
boundary condition, as usually, is: .0)( =/∂Y∂ rn  

The knowledge of the asymptotic behaviour of 
wave function in the infinity allows to get numer-
al estimates for rL , zL . A wave function has an 
asymptotic of the kind as: exp[-(-2E)1/2r], where 
(-E) is the ionization energy from stationary state 
to lowest Landau level. Then L can be estimated 
as L~9(-2E)-1/2. The more exact estimate is found 
empirically. The finite-difference scheme is con-
structed as follows. The three-point symmetric 
differences scheme is used for second derivative 
on z. The derivatives on ρ are approximated by 
(2m+1)-point symmetric differences scheme with 
the use of the Lagrange interpolation formula dif-
ferentiation. To calculate the values of the width 
G for resonances in atomic spectra in an electric 
field and crossed electric and magnetic field one 
can use the modified operator perturbation theory 
method (see details in ref.[10,20]). Note that the 
imaginary part of the state energy in the lowest 
PT order is:  

      (8)

with the total Hamiltonian of system in an electric 
and magnetic field. The state functions YEb and 
YEs are assumed to be normalized to unity and by 
the d(k -k')-condition, accordingly. Other calcula-
tion details can be found in ref. [7]. Different ap-
plication are considered in Refs. [21-57]. 

3. Illustration results and conclusion

As an illustration,, we make computing  the 
energy of the ground state of the hydrogen atom 
in crossed fields and compare results with data 
obtained within analytical perturbation theory by 
TurbinerV (see. [8]) for the case of sufficiently 
weak fields. Table 1 shows the values ​​of the en-
ergy of the ground state of the hydrogen atom (the 
following designations: E+E|| - energy for the 
case of the electric and magnetic fields are paral-
lel; E+E corresponds to the case of the electric 
and magnetic fields are perpendicular). 

Table 1 
Energy values ​(Ry) of the H ground state in 
electric  F (1au=5.14∙109 V/cm) and magnetic B 

(1 au.В=2.35∙105 T) fields 

systems in a static magnetic and electric fields. 
The hamiltonian of the multi-electron atom in 
a static magnetic and electric fields is (in 
atomic units) as follows:  
 

    
)()2/1(

)8/1(2/)/(2/1

2

22222

rVFzp

BBllpH

z

zz



 

  (7)             

                                                                     
where the electric field F and magnetic field B 
are taken along the z-axis in a cylindrical 
system; In atomic units: 1 a.u.B=2.35105T, 
1a.u.F=5,144106 kV/cm. For solution of the 
Schrödinger equation with hamiltonian 
equations (7) we constructed the finite 
differences scheme which is in some aspects 
similar to method [7]. An infinite region is 
exchanged by a rectangular  region: 0<< L , 

0<z< zL . It has sufficiently large size; inside it 
a rectangular uniform grid with steps h , 

zh was constructed. The external boundary 
condition, as usually, is: .0)(  rn  The 
knowledge of the asymptotic behaviour of 
wave function in the infinity allows to get 
numeral estimates for L , zL . A wave function 
has an asymptotic of the kind as: exp[-(-
2E)1/2r], where (-E) is the ionization energy 
from stationary state to lowest Landau level. 
Then L can be estimated as L~9(-2E)-1/2. The 
more exact estimate is found empirically. The 
finite-difference scheme is constructed as 
follows. The three-point symmetric differences 
scheme is used for second derivative on z. The 
derivatives on  are approximated by (2m+1)-
point symmetric differences scheme with the 
use of the Lagrange interpolation formula 
differentiation. To calculate the values of the 
width G for resonances in atomic spectra in an 
electric field and crossed electric and magnetic 
field one can use the modified operator 
perturbation theory method (see details in 
ref.[10,20]). Note that the imaginary part of 
the state energy in the lowest PT order is:   

                                                        
        2||2/Im  EsEb HGE        (8)                                                  

with the total Hamiltonian of system in an 
electric and magnetic field. The state functions 
Eb and Es are assumed to be normalized to 
unity and by the (k -k')-condition, 

accordingly. Other calculation details can be 
found in ref. [7]. Different application are 
considered in Refs. [21-57].  

 
3. Illustration results and conclusion 

As an illustration,, we make computing  the 
energy of the ground state of the hydrogen 
atom in crossed fields and compare results 
with data obtained within analytical 
perturbation theory by TurbinerV (see. [8]) for 
the case of sufficiently weak fields. Table 1 
shows the values of the energy of the ground 
state of the hydrogen atom (the following 
designations: E+E|| - energy for the case of the 
electric and magnetic fields are parallel; E+E 
corresponds to the case of the electric and 
magnetic fields are perpendicular).  

 
Table 1. Energy values (Ry) of the H ground 
state in electric  F (1au=5.14109 V/cm) and 

magnetic B (1 au.В=2.35105 T) fields  
 

F,B 
10-2 

E+E|| 

Turbiner theory 
[8] 

E+E|| 

[5] 

0,0 
0,1 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 
5,0 

-1,000000 
-1,000004 
-1,000099 
-1,000402 
-1,000906 
-1,001617 
-1,002542 
-1,003685 
-1,005054 
-1,0066619 
-1,008520 
-1,010642 

-1,000000 
-1,000004 
-1,000099 
-1,000401 
-1,000905 
-1,001616 
-1,002540 
-1,003682 
-1,005053 
-1,006659 
-1,008517 
-1,010636 

F,B 
10-2 

E+E|| 

This work 
E+E 

This work 
0,0 
0,1 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 
5,0 

-1,000000 
-1,000004 
-1,000100 
-1,000402 
-1,000906 
-1,001617 
-1,002541 
-1,003684 
-1,005054 
-1,006686 
-1,008519 
-1,010638 

-1,000000 
-1,000004 
-1,000099 
-1,000401 
-1,000905 
-1,001616 
-1,002535 
-1,003673 
-1,005036 
-1,006627 
-1,008464 
-1,010556 

 
Since the considered electric field is  
sufficiently weak, difference between all data 

systems in a static magnetic and electric fields. 
The hamiltonian of the multi-electron atom in 
a static magnetic and electric fields is (in 
atomic units) as follows:  
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where the electric field F and magnetic field B 
are taken along the z-axis in a cylindrical 
system; In atomic units: 1 a.u.B=2.35105T, 
1a.u.F=5,144106 kV/cm. For solution of the 
Schrödinger equation with hamiltonian 
equations (7) we constructed the finite 
differences scheme which is in some aspects 
similar to method [7]. An infinite region is 
exchanged by a rectangular  region: 0<< L , 

0<z< zL . It has sufficiently large size; inside it 
a rectangular uniform grid with steps h , 

zh was constructed. The external boundary 
condition, as usually, is: .0)(  rn  The 
knowledge of the asymptotic behaviour of 
wave function in the infinity allows to get 
numeral estimates for L , zL . A wave function 
has an asymptotic of the kind as: exp[-(-
2E)1/2r], where (-E) is the ionization energy 
from stationary state to lowest Landau level. 
Then L can be estimated as L~9(-2E)-1/2. The 
more exact estimate is found empirically. The 
finite-difference scheme is constructed as 
follows. The three-point symmetric differences 
scheme is used for second derivative on z. The 
derivatives on  are approximated by (2m+1)-
point symmetric differences scheme with the 
use of the Lagrange interpolation formula 
differentiation. To calculate the values of the 
width G for resonances in atomic spectra in an 
electric field and crossed electric and magnetic 
field one can use the modified operator 
perturbation theory method (see details in 
ref.[10,20]). Note that the imaginary part of 
the state energy in the lowest PT order is:   

                                                        
        2||2/Im  EsEb HGE        (8)                                                  

with the total Hamiltonian of system in an 
electric and magnetic field. The state functions 
Eb and Es are assumed to be normalized to 
unity and by the (k -k')-condition, 

accordingly. Other calculation details can be 
found in ref. [7]. Different application are 
considered in Refs. [21-57].  

 
3. Illustration results and conclusion 

As an illustration,, we make computing  the 
energy of the ground state of the hydrogen 
atom in crossed fields and compare results 
with data obtained within analytical 
perturbation theory by TurbinerV (see. [8]) for 
the case of sufficiently weak fields. Table 1 
shows the values of the energy of the ground 
state of the hydrogen atom (the following 
designations: E+E|| - energy for the case of the 
electric and magnetic fields are parallel; E+E 
corresponds to the case of the electric and 
magnetic fields are perpendicular).  

 
Table 1. Energy values (Ry) of the H ground 
state in electric  F (1au=5.14109 V/cm) and 

magnetic B (1 au.В=2.35105 T) fields  
 

F,B 
10-2 

E+E|| 

Turbiner theory 
[8] 

E+E|| 

[5] 

0,0 
0,1 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 
5,0 

-1,000000 
-1,000004 
-1,000099 
-1,000402 
-1,000906 
-1,001617 
-1,002542 
-1,003685 
-1,005054 
-1,0066619 
-1,008520 
-1,010642 

-1,000000 
-1,000004 
-1,000099 
-1,000401 
-1,000905 
-1,001616 
-1,002540 
-1,003682 
-1,005053 
-1,006659 
-1,008517 
-1,010636 

F,B 
10-2 

E+E|| 

This work 
E+E 

This work 
0,0 
0,1 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 
5,0 

-1,000000 
-1,000004 
-1,000100 
-1,000402 
-1,000906 
-1,001617 
-1,002541 
-1,003684 
-1,005054 
-1,006686 
-1,008519 
-1,010638 

-1,000000 
-1,000004 
-1,000099 
-1,000401 
-1,000905 
-1,001616 
-1,002535 
-1,003673 
-1,005036 
-1,006627 
-1,008464 
-1,010556 

 
Since the considered electric field is  
sufficiently weak, difference between all data 
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Since the considered electric field is  suffi-
ciently weak, difference between all data in Table 
1 is quite little. At the same time it is clear that 
the perturbation theory in the standard quantum-
mechanical version is correct exclusively for the  
weak fields, while for strong fields it can lead to 
substantially inaccurate data. Really, in Table 2 
we list the results for the Stark resonances en-
ergies and widths of the ground state hydrogen 
atom in the DC electric field with the strength 
ε=0.1 and 0.8 a.u., obtained within the most exact 
alternative  methods and our data (see [2]).

Table 2 
The energies and widths of the Stark resonances 
of the H ground state (F=0.1, 0.8 a.u.). 
Notation: (A) Hehenberger, H.V. McIntosh and 
E. Brändas, (B) Farrelly and Reinhardt, (C) 
Rao, Liu and Li  [18], (D) Glushkov-Ivanov, 
the standard OPT method; (E)- Popov et al; 

(F) – our data

F , 
a.u.

Method Er, a.u. G/2, a.u.

0.10 A -0.52743 0.725×10-2

C -0.527418 0.7269×10-2

D -0.527419 0.2269×10-2

E -0.527 0.227×10-2

F -0.527418 0.7269×10-2

0.80 B -0.6304 0.5023
C -0.630415 0.50232
D -0.630416 0.50232
F -0.630415 0.50231

The comparison of our data (Table 2: F) with 
earlier similar results, obtained within the sum-
mation of divergent PT series, the numerical so-
lution with expansion of the wave function over 
finite basis, a complex scaling plus B-spline cal-
culation, the standard OPT one (Table 2: A-E) 
shows quite acceptable agreement. We believe 
that the OPT method with new elements will be 
especially efficient for atoms in the strong crossed 
electric and magnetic fields, where the standard 
methods (usual perturbation theory etc) deal with 
great principal and computational problems).  
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ADVANCED DATA FOR HYDROGEN ATOM  IN CROSSED ELECTRIC AND 
MAGNETIC FIELDS

Summary
Spectroscopy of atoms in the crossed external electric and magnetic fields is investigated on the 

basis of the operator perturbation theory. As a novel element within the operator perturbation theory, 
we use more flexible functions for model function, which imitates an electric field. In a case of the 
crossed electric and magnetic fields we develop more effective finite differences numerical scheme. 
As illustration, some advanced data for the hydrogen atom in the electric and crossed external electric 
and magnetic fields are listed.  Advanced data for hydrogen atom are listed.     
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АТОМ ВОДОРОДА В СКРЕЩЕННЫХ ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ

Резюме
Работа посвящена изучению спектроскопических параметров атомов в постоянном электри-

ческом и скрещенных электрическом и магнитном  полях на основе формализма известной опе-
раторной теории возмущений. В качестве нового элемента в операторную теорию возмущений 
оператора вводится применение более эффективной функции для модельной функции, имитиру-
ющей электрическое поле. В случае скрещенных электрического и магнитного полей разработа-
на более эффективная численная конечно-разностная схема. В качестве иллюстрации приведены 
некоторые уточненные данные для атома водорода в сильном электрическом поле и скрещенных 
электрическом и магнитном полях. Приведены численные данные для атома водорода.

Ключевые слова: атом, водород, скрещенные электрическое и магнитное поля  
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АТОМ  ВОДНЮ В СХРЕЩЕНИХ ЕЛЕКТРИЧНОМУ І МАГНІТНОМУ ПОЛЯХ

Резюме
Робота присвячена вивченню спектроскопічних параметрів атомів у сталому електричному 

та схрещених електричному та магнітному полях на основі відомої операторної теорії збурень. 
В якості нового елементу в операторну теорію збурень вводиться використання більш ефектив-
ної функції для модельної функції, яка імітує зовнішнє електричне поле. У випадку схрещених 
електричного та магнітного полей  розроблена ефективна чисельна скінченно-різницева схема. 
В якості ілюстрації наведені уточнені данні для атома водню в сильному електричному полі і 
схрещених електричному та магнітному полях полях.   Наведено чисельні дані для атома водню.  

Ключові слова: атом, водень, схрещені електричне і магнітне поля
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Fig. 1. Time-dependence of the current due to 
atmosphere changing: 1– dry air → (t1) NH3+H2O 
vapors → (t2) dry air; 2– dry air → (t1) NH3+H2O 
vapors → (t2) H2O vapors→ (t3) dry air. 
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Fig. 2. Time-dependence of the current due to 
the ambient atmosphere changing: dry air → (t1) 
H2O vapors → (t2) dry air.  
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Fig. 4a. The "fast" exponential component of the 
curve 2 decay section in Fig. 1. 
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Fig 3. Schematic of a p-n structure, placed in a 
donor gas: 1 – oxide layer; 2 – іоns; 3 – 
depletion layer; 4 – conducting channel; 5 – 
surface (fast) centers; 6 – states on the oxide 
surface (slow centers). Arrows: а – direction of 
the electron movement along the channel; b – 
tunneling from the channel into the р+ region. 
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Fig. 4b. Two  "slow" exponential components of 
the curve 2 decay section in Fig. 1.   
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