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ABSTRACT. We apply the False Alarm Probability
analysis, (FAP), to the multiperiodicity search. Then
we show the necessity of using the FAP method in the
analysis of the astronomical time-series. We present
the results obtained for 153 stars supposed or known
to be pulsating variables. We examine the statistical
properties of the excited frequencies and find a relation
between the parameters of the fitted sine-curves and
the FAP. Finally we show the application of our re-
sults to the individual stars and large samples of stars.
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1. Introduction

Testing significance of periodigram peaks is very im-
portant. Identyfying a frequency we should be sure
that we do not take stochastical fluctuations of noise
as an intrinsic variability. In our analysis we exam-
ined the Hp magnitudes of 153 stars observed by the
Hipparcos satellite (ESA 1997). All of the stars are sit-
uated in the domain of instability of Slowly Pulsating B
stars. We computed the least—squares power spectra as
described in Jerzykiewicz & Pamyatnykh (2000), using
the Lomb (1976) method modified by adding a float-
ing mean and weights calculated for each Hp magni-
tude. Then we prewhitend data fitting simultaneously
all frequencies found so far. The False Alarm Proba-
bility method described by Cumming et al. 1999 was
used by us to test significance of periodogram peaks.
We generated hundrets sets of gaussian noise and com-
pared the height of the highest peaks produced by the
noise with the height of the highest peak, zpax, Ob-
tained for the stellar data.

Having derived all excited frequencies, we examined
the distributions of A;/c 4, obtained for all the stars.
We analysed the statistical properties of the distribu-
tions and compared the results obtained for the Hip-
parcos observations with the results obtained for pure
gaussian noise and for gaussian noise with the sinu-
soidal signal added.
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Figure 1: A periodogram of pure gaussian noise.
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Figure 2: A periodogram of the pure gaussian noise
from Fig 1 with a sine—curve added. The highest peak
indicates the hidden periodicity.
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2. Testing significance of periodogram peaks.

It is well-known that noise can give rise to high pe-
riodogram peaks and fluctuations of noise can mimic
periodic variations. To show how high such noise—
originated peaks can be, we show two periodograms
in Figs 1 and 2. In Fig 1 we can see a periodogram of
pure gaussian noise while in Fig 2 we can see a peri-
odogram of the same noise with a sine—curve added. In
both figures the highest peaks, zmax, have comparable
height. When we analyse data which consists of lit-
tle number of observations scattered over hundrets of
days, as in the case of Hipparcos observations, we often
face situation when fluctuations of noise are compara-
ble with the supposed variability. Therefore for stars
with small-amplitude variations it is easy to miss a hid-
den periodicity taking it as fluctuations of the noise.

Most of the statistical tests are not applicable in as-
tronomy. The majority of the tests are devised for
equally spaced observations containing noise or noise
with a known number of periodic signal present. While
the stellar observations are usually unequally spaced
and contain huge gaps. The False Alarm Probability
(FAP) method used by us gives the probability that
the highest periodigram peak, znax, is due to the noise—
fluctuations. The adventage of the FAP method is that
FAP does not require equally—spaced observations and
can be applied to all data with the know distribution.

In case of gaussian distribution, which is the most
common in astronomy, we are able to generate sets of
gaussian noise with the same mean and variance as the
original observations. Computing the power—spectra
we can compare the height of peaks computed for the
noise, with the height of z,,,x computed for the original
observations. When we express in percents the num-
ber of peaks which are higher than z,,x, we obtain the
probability (FAP) that we deal with pure noise. Using
the FAP method we obtain information of presence of
not periodic variations which produce more power than
the pure noice could do. We can also know whether
the high peaks in the low frequency region indicate a
changing mean of the time—series or are rather due to
fluctuations of the noise.

3. Analysis of individual stars.

As the FAP method requires knowledge of the
distribution of observations we used the Lilieforse-
Kolmogorov and the Shapiro-Wilk statistical tests to
find stars with gaussian distribution of observations.
We used the STATISTICA software package which pro-
vides both tests. We found that over 50% of the dis-
tributions were accepted by both tests as gaussian at
the @ = 0.05 level, where a is the probability that
we uncorrectly classify a distribution as non—gaussian.
For these stars we performed the periodogram analysis

and, having found the frequency of the hidden period-
icity, we fitted the data with a sine—curve and obtained
the amplitude of the variation, A; 0 4,. Then we per-
formed the FAP analysis accepting a periodicity as real
only if the FAP was less then 1%. Seeking for the next
frequencies we repeated all the described procedure.

Then we found that FAP is strongly correlated to
the value of A;/04,, where i is the number of a de-
rived frequency (Molenda—Zakowicz 2000) and found
this correlation as a usefull tool for testing significance
peaks for stars with non—gaussian distribution of data.
We show this correlation in Fig. 3 where we denoted
A1 /o4, with dots, As/oa, with squares, As/o 4, with
triangles and A4/ 4, with crosses. One can see that
for each next frequency the threshold where FAP be-
comes greater than 1% is higher. We list in Table 1 the
thresholds accepted by us for the first four periodicities
detectable in the Hipparcos data.

Table 1: The accepted thresholds for A;/o 4.
number of frequency, ¢ threshold for A;/o 4,

1 5.8
2 6.2
3 7.0
4 7.8

When dealing with stars with non-gaussian distri-
bution of observations, we assume that the general
population of the observations was gaussian and the
observed irregularities were due to sampling. Then we
performed the periodogram analysis and accepted only
these frequencies for which the values of A;/o 4, were
greater than the accepted thresholds. Because there
was some scatter present around each thershold, we
set the thersholds high enough to protect us from con-
sidering fluctuations of noise as a hidden periodicity.

2. Analysis of large samples of stars

In this section we pay attention to large samples of
stars. We defined a sapmle as large when the number
of stars exceeds 30 and ananysed the distribution of the
values of A;/0 4, of constant, mono— and multiperiodic
stars in order to examine the statistical properties of
these distributions.

We studied samples of stars denoted as constant in
the Hipparcos Catalogue and mono— and multiperiodic
stars extracted from the 153 stars examined by us. In
all cases we obtained skewed distributions of A;/o4;
(in case of constant stars we analysed distribution of
A; /o4, obtained by fitting data with a sine—curve with
the frequency indicated by the highest peak of the pe-
riodogram). This result is in a full agreement with the
theoretically predicted distribution of extreme values
(Sachs 1984 and references therein). The new result
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Figure 3: The correlation of 4;/o4, and FAP for the
first four frequencies detectable in the Hipparcos obser-
vations. We denoted ¢ = 1 with asterisks, ¢ = 2 with
triangles, ¢ = 3 with squares and ¢ = 4 with dots.

is a dependence of the skewness coefficient, 7, on the
amount of multiperiodic stars in the sample. The skew-
ness coeflicient, ~, is defined as

_ M3
7_57

with
1
ps = E_ (zi —%)°

where g is the third central moment, x; is the observed
magnitude, X is the mean magnitude derived from the
data, n is the number of observations, and o is the
standard deviation of the analysed time—series.

We found that the distribution of A/o4 obtained
for constant stars was steep on the left and flat to the
right as we expected. For all the other distributions
we observed cutting of the left tail. This cutting arises
because of the observational selection: the histograms
obtained for variable stars were limited from the left
side to these values of A;/c 4, for which FAP was less
than 1%. This result is an important indication that
we still miss many low—amplitude periodicities looking
for multiperiodic stars.

Analysing the dependence of y on the amount of mul-
tiperiodic stars in the sample we found that the higher
is the value of v, the higher is the amount of multi-
periodic stars. For samples containing only constant

stars we obtained values of v from the range 0.6-0.9
while for samples containing a mixture of mono— and
multiperiodic stars, ¥ was much higher. We preformed
the same analysis for pure gaussian noise and noise
with sinusoidal signal added and obtained a full agree-
ment with the results for Hipparcos observations. In
this way we showed that not only the cutting of the
distribution of A;/o4, but also its skewness gives in-
formation of the non—detected periodicities hidden in
data.

3. Conclusions

Basing on our results we reccomend the FAP analysis
as a tool that should be used to testing periodogram
peaks of mono— and multiperiodic stars. Our work
gave two important results. The first was the relation
of A;/o4,—FAP which should be used for testing signif-
icance of periodogram peaks when it is not possible to
compute FAP directly. The second result was the rela-
tion between v and the amount of multiperiodic stars
in the sample. This relation, however not so strict as
the first one, can be used for estimating the number of
not—detected variables present in large data-bases.
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