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ABSTRACT. Some algorithms and pro-
grams are described for determining the pa-
rameters of processes with constant and vari-
able periods. Those are: FOUR-1 — periodo-
gram analysis by using the least squares one—
harmonic fit, FOUR-N corresponds to a num-
ber of harmonics, FOUR-T to a sine wave with
a linear trend, FOUR-M to a number of wa-
ves with independent frequencies. Multishif-
ted and mean weighted periodograms are dis-
cussed. PERMIN allows the determination of
a best fit period from the moments of ”cha-
racteristic events” only. The programs allows
one to determine not only the parameters, but
accuracy estimates and the ”false alarm” pro-
bability as well. Some applications of these
and some other methods to variable stars of
different types are discussed.
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Basic Equations

Although the method of the least squares is wi-
dely used (e.g. Whittaker and Robinson 1926,
Anderson 1958), we briefly summarize the ba-
sic equations in the notation used for the ap-
plications below.

In general, the system of normal equations
corresponding to the method of least squares
may be written as

Bg, (1)
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and the coefficients C,,a = 1...m depend on
the observations (zj obtained at moments
as well as on the shape of the basic functions
fald):

Root mean squared error o of the smoothing
function

xc(t) = anfa(t) (3)

and its derivatives of the s** derivative with
respect to the parameter £ may be determined
as
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where ¢2— is the "unit weight” error. The
mathematical expectation of it is equal to
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and A;g— is the matrix, inverse to A,g.

The moment of extremum ¢, is a root of the
equation z}’ (te) = 0. An estimate of its r.m.s.
value is

olzt(te)]
Olte| = —7—=.
& |2 (t.)]

These expressions may be generalized for the
case when the smoothing function depends on
additional parameters D,, v = 1...p. One may
choose initial values and then determine diffe-
rential corrections by using the system of equ-

(6)
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ations

Zfa (50 + Z aIEC (5D =T — IEc(tk)
(7)

After iterating one may determine the m + p
parameters C,, 4D, and corresponding error
estimates. Obviously, the derivatives

ex e (), o

a=1
may be determined by using coefficients C,,
determined from the m normal equations for
fixed values of D,.

In other words, in the linearized model (7)
one may formally write 6Cpyy = 4D, and
fmiy = 0z.(t)/0D, (computed according to
Eq. (8)) suggesting that the number of the
unknowns is m' = m -+ p. Error estimates may
be computed similar to Eq. (4-6). It is impor-
tant to point out that the error estimates of the
coefficients C, obtained from the models with
m and m + p unknowns are generally different.

In the least squares methods one compares
the variance of the residuals with that of the
initial observations. Thus as a basic function,
we have used the statistics

axc

g, g,
S(f)=Y=1-%¢ 9
(f) ) o2 (9)

where oo is the r.m.s. deviation of the ”ob-
servations” O from the sample mean. C' cor-
responds to ”calculated” values and O — C' to
the deviations of the ”observed” values from
the ”calculated” ones.

If the values zj are normally distributed,
with the same mean and variance, uncorrela-
ted random data (hereafter "random”), then
the random variable S has a B-distribution

I'(p+v)
P8) = R Tw)

(cf. Mardia and Zemroch 1978) with parame-
ters u = ny/2, v = ny/2, where n, is the num-
ber of additional degrees of freedom used for
the fit as compared with that used for deter-
mination of 0. The mathematical expectation
of the mean value is < S > = p/(u+ v).

S -8yt (10)

A brief discussion of the period search met-
hods with application to some programs desc-
ribed here was presented by Andronov (1991a).
A more detailed review and list of references is
given in Andronov (1995).

One-harmonic fit (FOUR-1)
The model is

z(t) = (11)

thus the values of the basic functions at argu-
ments &g are fi(ty) = 1, fo = sin(wty), f3 =
cos(wty). Here w = 27 f, where f is trial frequ-
ency.

The ”true” least squares fit (11) differs from
the widely used approximations by Deeming
(1975) and Lomb (1976).

To determine oy one uses n — 1 independent
variables with the mean subtracted. For the
one—frequency model two additional parame-
ters Cy and C5 are determined, thus the num-
ber of the degrees of freedom are n; = 2 and
ng =n—1—mn; =n —3 (cf. Andronov 1991):

C: + Csysin wt + C5 cos wt,

_ g)n-5)/2

(12)

with a corresponding mean value < § > =
2/(n— 1) The probability Pry = Prob(S > Sy)
of § > 5 is equal to

1
PT1=/P
So

It may be noted that this expression differs
significantly from the approximation Pr; =
exp(—Sp/ < S >) (e.g. Scargle 1982) which
is usually used. This approximation in fact
corresponds to the x2-distribution. However,
the y2-approximation may be used only if one
knows the general variance of the observations
0. The estimate o3 is used instead for the
definition of S(f). Thus the statistically ju-
stified distribution for the case of random nor-
mally distributed observations is described by
the expressions mentioned above.

For many frequencies one has to estimate a
”false alarm” probability

(S)dS = (1 — Sp)»=3/2 (13)

Pr=1-(1-Pr)¥, (14)
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(Scargle 1982, Terebizh 1992) where K is the
number of ”independent frequencies” which
may be estimated for n observations which
are nearly equidistantly distributed in time as
K & (fumaz — fmin)/Af, where Af =
n/((n—1)(t,—11)) for observations equidistan-
tly distributed in time.
The spectral window is computed as

(15)
(cf. Deeming 1975, Terebizh 1992). It is equal
to unity for w = 0 and must be close to zero for
"good” (nearly equidistant in time) observati-
ons. If the signal contains periodic components
with frequencies fo; and the spectral window
has peaks at frequencies f,; then a number of
”alias” peaks at frequencies | fo; & fyi| may be
seen.

One may note that the periodograms of real
observations often obey a power law: S(f)
F~7 indicating correlations between the sub-
sequent data. For infinite data with ”white
noise” v = 0, or "flicker noise” v = 1, and
for "random walks” v = 2 (Terebizh 1992).
Influence of the finite length of data runs on
periodogram shapes is discussed by Andronov
(1995). The power laws may be produced by
several mechanisms — e.g. fractals, autoregres-
sive processes, slow trends, and non-coherent
oscillations.

The program FOUR-1 is arranged in the fol-
lowing way. First input file with 7 guidelines
contains:

1. File name with the input data in a free
format: two columns %y, z, separated by a
blank space.

2. Qutput file 1 — results of the perio-
dogram analysis determining the highest peak
by using the differential corrections and desc-
ribing all the peaks by fitting them by a para-
bola.

3. Output file name 2 - periodogram con-
taining the columns: frequency, S(f) + 0.6,
Sw(f). Such format is convenient for drawing
a periodogram using graphic editors. The ar-
bitrary shift 0.6 is included to show in the same
figure both the periodogram and the spectral

1 Zcoswt + l Zsinwt
n k n £ k

window.

4. First trial frequency f;.

5. Frequency step Af = n/(tn
n = 0.10 (cf. Kholopov 1971).

6. Number of trial frequencies.

7. Output file containing two columns with
tr, and 2 —z.(tx). One may use this file to com-
pute a periodogram for these ”prewhitened”
(O — C) observations.

The program is "non-stop”, i.e. after finis-

hing computation of the periodogram it reads
from the file next 7 guidelines and starts again.

- tl) with

Multi-Harmonic Fit (FOUR-N)

For one-frequency signals with a complica-
ted shape one may use basic functions (f; =
1, fo; =sin(jwt), faj+1 = cos(jwt), j =1...s).
For random data the number of degrees of fre-
edom is ny = 2s, no = n — 1 — 2s. After preli-
minary determination of the best-fit frequency
one may use the method of differential correc-
tions with

fas4a(t) = tz Ca; cos(jwt) —Cajt1sin(jwi))j.

"~ (10
An error estimate ofw] = 0y - (A5 5542)"%
Obviously, o[ f] = o[w]/(27) and
o[Pl=0[f]- f7%

The problem is to choose an adequate num-
ber of harmonics s. In our program we cho-
ose the maximal number sy (usually 4-5) and
compute periodograms for all s < so. Than
we choose a preliminary value of the frequency
and use the method of differential corrections.
If one will plot a 0.(s) diagram, one may see
that o, decreases with s for small s and then it
is nearly constant within error estimates. Thus
one method is to determine the number s, af-
ter which the significant decrease of o, stops
(cf. Terebizh 1992). One may compute the
parameter

(n=2s+1oi(s—1) )

Vs = (n—2s—1)o2(s)

(17)

which (for random data) has the Fischer dis-
tribution with 2 and (n — 2s — 1) degrees of
freedom (cf. Mardia and Zemroch 1978). Thus
one may choose a confidence level and deter-
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mine s in the interval from 1 to sg.

The r.m.s. value of the error estimate o5 of
the smoothing function at the times of obser-
vations is defined as

2 03  — -1 m 4
obs — ; Z Z Aaﬂfa(tk)-fﬂ(tk) = 50-*'

k=1 ap=1

o

(18)
To minimize the statistical error of the smo-
othing curve, one has to choose m minimizing
the right side of this equation. However, for
noisy signals, the value of o, decreases with m
not very fast, thus one may formally prefer to
use one—harmonic fit or even a constant mean
value.

The same problem occurs for minimizing the
r.m.s. error estimate oppese 0f the smoothing

function at all phases:
1 P&
e = 0o [ D Afalt)a(t)dt =
P =l (19)

1 m
2 -1 -1
= AT+ = E A .
O, ( 11 9 ~ aa)

Contrary to the error estimate of the moment
of extremum (Eq.(6)), the error estimate o[U]|
of the asymmetry of the light curve defined as
U = (tmaz—tmin)/ P may be computed by using
the more complicated expression

o?[U] = P~ %02 f: ZoZg (20)
af=1
Here Z, = 2(tmaz) — 2(tmin) and
) = -2 e
;Csfs(t)
For multiharmonic fit, z,(¢) = 0,
22j(t) = —j cos(jwt)/(wY)
Z2j+1(t) = jsin(jwt)/(wY) (22)

Y =37 j2(Cy;sin(jwt) + Cajy1 cos(jwi))

j=1
Multi-Frequency Fit (FOUR-M)
The basic functions are fi(f) = 1, fo;(t) =

sin(w;t), faj41(t) = cos(wjt), j = 1...s. For pre-
liminary determination of the frequencies one

may compute a grid of models with different
combinations of the values of w; with frequency
steps defined as for one—frequency models. The
test function S(f, ..., fs) for random observa-
tions obeys B— distribution with y = s and
v = (n — 1 — 2s)/2. For more precise deter-
minations of the parameters one may use the
method of the differential corrections, so

Jas145(t) = (Coj cos(wjt) — Cajpasin(w;t))z.
(23)

An alternate method is ” prewhitening” (e.g.
Terebizh 1992), in which one frequency models
are applied to the initial observations. Then
the best fit is subtracted from the data, the
periodogram is recomputed for the residuals,
the new wave is subtracted etc. This method
is useful for preliminary determination of the
frequencies. However, the method of differen-
tial corrections allows the determination of all
the frequencies correctly.

A popular program to determine parameters
of the multi—-harmonic and multi—frequency fits
was published by Breger (1990). Our program
allows also one to obtain the corresponding er-
ror estimates.

An example of application of this code to the
semiregular variable RX Boo was published by
Andronov and Kudashkina (1988b).

Multi-Shift Fit (FOUR-S)

Such a model may be applied if the observa-
tions are subdivided into r separate runs and
there may be run-to-run changes owed to the
long-term variations of the object. Also there
may be small shifts between the instrumental
systems if the runs were obtained in different
observatories.

The basic functions are the following:
fo(t) = 1, if the observation belongs to the "
run and 0 else. Other basic functions are sines
and cosines similar to the discussed above. If
the number of the frequencies used is s than
m = r + 2s and the parameters of the B—
distribution are p = s and v = (n —r — 2s)/2.

This model was applied e.g. for 2-frequency
fits of 15 runs of the cataclysmic variable
TT Ari (Tremko et al. 1992) taking into acco-
unt different weights of the individual observa-
tions.
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Mean weighted periodograms

The mean weighted test function S(f) calcu-
lated from the values S; corresponding to the
season No. ¢ and the given trial frequency, by
using the expression

1

q
> Y niogSi(f),

no
0O =1

S(f)
(24)

q

q
2 _ 2
nog = E Ni0 045

i=1 i=1

where n; is the number of observations in the
it" season, and o2, - is the variance in the same
run. This model (24) takes into account the
possibility that the variations of the mean brig-
htness a; occur, as well as the amplitude and
the initial phase. The variations of the values
op; are assumed to be attributed to the ap-
parent random changes from run to run, but
the general dispersion oy is the same for all ¢
runs. For random data the test function S(f)
has the ” B—type” probability distribution fun-
ction with n; = 2¢g and ne = n — 3¢ degrees of
freedom (see Andronov et al. 1992 for details).
The mean value of S(f) for randomly distri-
buted observations is < S > = 2¢/(n — q).

Moments of the Characteristic Events
(PERMIN)

Andronov (1991, 1993) proposed the method
and studied the statistical properties of test
functions which are more complicated compa-
red with that for normally distributed obser-
vations. The trial frequencies are chosen to be
fi = i/(tn — t1) with corresponding least squa-
res correction for all . The program is compu-
tationally efficient because the frequency step
is & 10 times larger than that in the above
mentioned cases.

A more complicated method was proposed
by Dumont et al. (1978). Their method is
compared with the least squares method in An-
dronov (1988).

Some dwarf nova stars show fast period ch-
anges from one value to another. These data
were fitted by hyperbolic functions (Andronov
and Shakun 1990). Similar changes occured in
the semi-regular variable AF Cyg (Andronov

and Chernyshova 1989).

Periodic Variations of O—C (FOUR-T)

This method may be applied for the moments
of the characteristic events, but mathemati-
cally it is the same as the one-harmonic model
with trend, so

(5T0 + Ek(SP + Cs cos(wEEk) -+
+Cy sin(wEEk) = (O — C)k

Here C = 6Ty, Cy = § P are differential correc-
tions to the initial epoch and period, respecti-
vely, and (O — C);, are deviations of the ob-
served times from the ones ”calculated” using
a linear ephemeris Ty, = Ty + PEj. The trial
period Pg = 27 /wg. The test function S(f) for
random data obeys the B— distribution (10),
but for n equal to the number of observations
minus unity. After determination of the preli-
minary value of wg one may correct it by the
method of differential corrections.

This program was applied to study various
phenomena, e.g. the orientation changes of the
white dwarf in the magnetic binaries AM Her
(Andronov et al. 1982) and QQ Vul (Andro-
nov and Fuhrmann 1987), the Blazhko effect in
TT Cnc (Andronov et al. 1985), the presence
of the third body in the eclipsing variable AK
Her (Andronov et al. 1989).

(25)

”Smoothing the Smoothing Cubic
Splines”

The method was proposed by Andronov (1987)
and applied e.g. to the exotic binary V 361 Lyr
(Andronov and Richter 1987) with a hot spot
between the components, to a polar MR Ser
(Andronov et al. 1992) and to a number of
the Mira—type stars (Andronov et al. 1988ac,
1992a).

Autocorrelation Function Analysis of the
Detrended Data of Finite Length

Influence of the finite length of the data run
and subtraction of the least squares fit in ge-
neral form was discussed by Andronov (1994).
If the unbiased ACF is p,, the biased one is 7,
one may write the mathematical expectation

Ty = Ru/R07



54 Odessa Astronomical Publications, vol. 7, part 1 (1994)

- (26)
=0

The matrix Z;, is a degenerate, thus one may
not restore the unbiased ACF from observati-
ons. The only way involves the modeling of p;
and the determination of the model parame-
ters by fitting the observed ACF with a com-
puted one r,. Thus the restored ACF is model-
dependent.

One may note that the n x n matrix Z;,
depends on the basic functions used to deter-
mine the removed trend and on the run length
n. Computational time for n = 256 and cu-
bic polynomial is & 60 hours using a 33 MHz
PC—486. Such a matrix is to be computed for
a desired regime and then stored as a file for
further data fits.

Although the ACF may be used to study pe-
riodic signals, it is much more useful to deter-
mine parameters of the autoregressive proces-
ses which allows estimates of the contribution
of the uncorrelated noise.
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