МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ І. І. МЕЧНИКОВА

Odesa National University Herald вестник Одесского национального университета

ВІСНИК одеського національного університету

Серія: Хімія

Науковий журнал Виходить 4 рази на рік Серія заснована у липні 2000 р.

Том 22, випуск 1(61) 2017

Одеса ОНУ 2017 Засновник та видавець:

Одеський національний університет імені І. І. Мечникова

Редакційна колегія журналу:

І.М. Коваль (головний редактор), О.В. Запорожченко (заступник головного редактора), В.О. Іваниця (заступник головного редактора), Є.Л. Стрельцов (заступник головного редактора), С.М. Андрієвський, Ю.Ф. Ваксман, В.В. Глєбов, Л.М. Голубенко, Л.М. Дунаєва, В.В. Заморов, В. Є. Круглов, В.Г. Кушнір, В.В. Менчук, О.В. Сминтина, В.І. Труба, О.В. Тюрін, Є.А. Черкез, Є.М. Черноіваненко

Відповідальний за випуск – Р. Є. Хома

Редакційна колегія серії:

С. А. Андронаті, акад. НАН України, д-р хім. наук; В. Ф. Анікін, д-р хім. наук, професор; В. П. Антонович, д-р хім. наук, професор; А. А. Еннан, д-р хім. наук, профессор; Ю. В. Ішков, д-р хім. наук, ст. науков. співр.; Г. Л. Камалов, акад. НАН України, д-р хім. наук, професор; В. Є. Кузьмін, д-р хім. наук, професор; Т. В. Кокшарова, д-р хім. наук, доцент; О. Е. Марцинко, д-р хім. наук, доцент; Т. Л. Ракитська, д-р хім. наук, професор (*науковий редактор*); В. Ф. Сазонова, д-р хім. наук, професор; І. Й. Сейфулліна, д-р хім. наук, професор (*науковий редактор*); О. О. Стрельцова, д-р хім. наук, професор; Р. Є. Хома, канд. хім. наук, доцент (*відповідальний секретар*)

Закордонні члени редакційної колегії серії:

Ataman Osman, Dr., Emeritus Professor, Turkey; Bazel Yaroslav, DrSc., Full Professor, Košice, Slovakia; Gucer Seref, Dr., Emeritus Professor, Bursa, Turkey; Gulea Aurelian, Dr, Full Professor, Chişinău, Moldova; Lukov Vladimir, Dr, Full Professor, Rostov-on-Don, Russian Federation; Muratov Eugen, Dr, Research Assistant Professor, NC, USA; Nefedov Sergey, DrSc., Full Professor, Moscow, Russian Federation; Panyushkin Viktor, Dr, Full Professor, Krasnodar, Russian Federation; Tetko Igor, Dr, Professor, Muenchen, Germany; Timco Grigore, Dr, Senior science researcher, Manchester, United Kingdom; Varnek Alexandre, Dr, Full Professor, Strasbourg, France

> Свідоцтво про державну реєстрацію друкованого засобу інформації Серія КВ № 11461 від 7.07.2006 р. Затверджено до друку вченою радою Одеського національного університету імені І. І. Мечникова. Протокол № 5 від 24 січня 2017 р.

Відповідно до наказу МОН України № 1021 від 07.10.2015 р. науковий журнал «Вісник Одеського національного університету. Хімія» входить до Переліку наукових фахових видань України

© Одеський національний університет імені І. І. Мечникова, 2017

3MICT

Р. Є. Хома, А. АА. Еннан, О. М. Чеботарьов, С. В. Водзінський, А. О. Маянська	
ТЕРМОДИНАМІКА ДИСОЦІАЦІЇ ЕТАНОЛАМОНІЙНИХ КАТІОНІВ У ВОДНИХ РОЗЧИНАХ	6
К. О. Пілецька, О. В. Штеменко	
СИНТЕЗ БІОКОН'ЮГАТУ НА ОСНОВІ КАРБОНІЛЬНОГО КОМПЛЕКСУ РЕНІЮ(І) ДЛЯ ВІЗУАЛІЗАЦІЇ ПАТОЛОГІЧНИХ ПРОЦЕСІВ	20
О. А. Чебаненко, О. Е. Марцинко, І. Й. Сейфулліна, Е. В. Афанасенко СИНТЕЗ ТА ДОСЛІДЖЕННЯ РІЗНОМЕТАЛЬНИХ І ОНІЄВИХ КОМПЛЕКСНИХ СПОЛУК ГЕРМАНІЮ(IV) З ГАЛАКТАРОВОЮ КИСЛОТОЮ, ІОНАМИ Mg ²⁺ , Ca ²⁺ , Ba ²⁺ , ІЗОНІАЗИДОМ ТА НІКОТИНАМІДОМ	30
Т. Л. Ракитська, Г. М. Джига, Т. О. Кіосе	
АДСОРБЦІЙНІ ТА ФІЗИКО-ХІМІЧНІ ВЛАСТИВОСТІ ПРИРОДНИХ ТА МОДИФІКОВАНИХ ФОРМ МОНТМОРИЛОНІТУ	38
Л. М. Солдаткіна, В. О. Новотна, І. Шаламон	
КІНЕТИКА ДЕСТРУКЦІЇ АНТОЦІАНІВ У КИСЛИХ ВОДНИХ ЕКСТРАКТАХ ЯГІД	. 55
А. В. Єгорова, Г. А. Федосенко, Ю. В. Скрипинець, І. І. Леоненко, Г. В. Мальцев, В. П. Антонович	
ВИЗНАЧЕННЯ ЗАЛИШКОВИХ КІЛЬКОСТЕЙ РИВАСТИГМІНУ ГІДРОТАРТРАТУ НА ПОВЕРХНЯХ ФАРМОБЛАДНАННЯ МЕТОДАМИ ВЕРХ ТА ЛЮМІНЕСЦЕНЦІЇ	67
Т. В. Кокшарова, Т. В. Мандзій, Т. С. Скакун, Ю. А. Анісімов	
КООРДИНАЦІЙНІ СПОЛУКИ ПЕРЕХІДНИХ МЕТАЛІВ З БЕНЗГІДРАЗІДОМ	. 79
Т. Л. Ракитська, Л. А. Раскола, А. С. Труба, Х. О. Голубчик, І. В. Стоянова	
ГЕОМЕТРІЯ КОМПЛЕКСІВ КОБАЛЬТУ(II), НАНЕСЕННИХ НА СИНТЕТИЧНІ НОСІЇ	95
С. О. Коновалова, А. П. Авдєєнко, О. М. Лисенко	
СИНТЕЗ ГАЛОГЕНВМІСНИХ ПОХІДНИХ N-АРИЛАМІНОКАРБОНІЛ-1,4- БЕНЗОХІНОНМОНОІМІНІВ	103
О. С. Погребняк	
СУМАРНЕ ТА РОЗДІЛЬНЕ СПЕКТРОФОТОМЕТРИЧНЕ ВИЗНАЧЕННЯ ЙОДАТІВ ТА ПЕРЙОДАТІВ N,N-ДІЕТИЛАНІЛІНОМ	119
ІНФОРМАЦІЯ ДЛЯ АВТОРІВ	129

СОДЕРЖАНИЕ

Р. Е. Хома, А. АА. Эннан, А. Н. Чеботарев, С. В. Водзинский, А. О. Маянская ТЕРМОДИНАМИКА ДИССОЦИАЦИИ ЭТАНОЛАММОНИЙНЫХ КАТИОНОВ В ВОДНЫХ РАСТВОРАХ
К. А. Пилецкая, А. В. Штеменко СИНТЕЗ БИОКОНЬЮГАТА НА ОСНОВЕ КАРБОНИЛЬНОГО КОМПЛЕКСА РЕНИЯ(I) ДЛЯ ВИЗУАЛИЗАЦИИ ПАТОЛОГИЧЕСКИХ ПРОЦЕССОВ
Е. А. Чебаненко, Е. Э. Марцинко, И. И. Сейфуллина, Э. В. Афанасенко СИНТЕЗ И СТРОЕНИЕ РАЗНОМЕТАЛЛЬНЫХ И ОНИЕВЫХ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ГЕРМАНИЯ(IV) С ГАЛАКТАРОВОЙ КИСЛОТОЙ, ИОНАМИ Mg ²⁺ , Ca ²⁺ , Ba ²⁺ , ИЗОНИАЗИДОМ И НИКОТИНАМИДОМ
Т. Л. Ракитская, А. М. Джига, Т. А. Киосе АДСОРБЦИОННЫЕ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПРИРОДНЫХ И МОДИФИЦИРОВАННЫХ ФОРМ МОНТМОРИЛЛОНИТА
Л. М. Солдаткина, В. А. Новотная, И. Шаламон КИНЕТИКА ДЕСТРУКЦИИ АНТОЦИАНОВ В КИСЛЫХ ВОДНЫХ ЭКСТРАКТАХ ЯГОД
А. В. Егорова, А. А. Федосенко, Ю. В. Скрипинец, И. И. Леоненко, Г. В. Мальцев, В. П. Антонович ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ РИВАСТИГМИНА ГИДРОТАРТРАТА НА ПОВЕРХНОСТЯХ ФАРМОБОРУДОВАНИЯ МЕТОДАМИ ВЭЖХ И ЛЮМИНЕСЦЕНЦИИ
Т. В. Кокшарова, Т. В. Мандзий, Т. С. Скакун, Ю. А. Анисимов КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ПЕРЕХОДНЫХ МЕТАЛЛОВ С БЕНЗГИДРАЗИДОМ
Т. Л. Ракитская, Л. А. Раскола, А. С. Труба, К. О. Голубчик, И. В. Стоянова ГЕОМЕТРИЯ КОМПЛЕКСОВ КОБАЛЬТА(II), НАНЕСЕННЫХ НА СИНТЕТИЧЕСКИЕ НОСИТЕЛИ
С. А. Коновалова, А. П. Авдеенко, Е. Н. Лысенко СИНТЕЗ ГАЛОГЕНСОДЕРЖАЩИХ ПРОИЗВОДНЫХ N-АРИЛАМИНОКАРБОНИЛ- 1,4-БЕНЗОХИНОНМОНОИМИНОВ
О. С. Погребняк Суммарное и раздельное спектрофотометрическое определение йодатов и перйодатов n,n-диэтиланилином
ИНФОРМАЦИЯ ДЛЯ АВТОРОВ

CONTENT

УДК 541.13:547.262-304.2

Р. Е. Хома^{1,2}, А. А.-А. Эннан², А. Н. Чеботарев¹, С. В. Водзинский^{1,2}, А. О. Маянская¹

 С. Б. Бодзинский , А. О. Ічанская
 ¹Одесский национальный университет имени И. И. Мечникова, ул. Дворянская, 2, Одесса, Украина, 65082; email: rek@onu.edu.ua
 ²Физико-химический институт защиты окружающей среды и человека МОН и НАН Украины, ул. Преображенская 3, Одесса, 65082, Украина

ТЕРМОДИНАМИКА ДИССОЦИАЦИИ ЭТАНОЛАММОНИЙНЫХ КАТИОНОВ В ВОДНЫХ РАСТВОРАХ

Систематизированы и обобщены литературные данные по термодинамике диссоциации ониевых катионов этаноламинов. Выявлена взаимосвязь между термодинамическими функциями ($\Delta H \, u \, \Delta S$) диссоциации указанных катионов и физико-химическими свойствами ($T_{nn.}, T_{kun}, P_n, lgP_{ow}$ и др.) этаноламинов. Отмечена корреляция между липофильностью, определенной экспериментально, и рассчитанной методом QSAR. Для моноэтаноламмония, диэтаноламмония, их N-метил и N-этил производных обнаружена зависимость термодинамических функций диссоциации от lg P_{ow} оснований. Вследствие того, что молекулы триэтаноламина и TRIS имеют большее число H-доноров и H-акцепторов, чем остальные этаноламины, кислотно-основная диссоциация их ониевых катионов не подчиняется указанной зависимости. Отмечена энтальпийно-энтропийная компенсация, для которой изотермодинамическая температура равна 303 К.

Ключевые слова: этаноламины, водные растворы, термодинамика диссоциации, энтальпийно-энтропийная компенсация.

Водные растворы этаноламинов используются в процесах газоочистки от кислых газов (например SiF₄, SO₂, CO₂ и H₂S) [1-7], а также в качестве компонентов буферных растворов [8]. Большинство этаноламинов [9-11] (кроме TRIS [12]), в отличие от алифатических аминов [13, 14] и бензиламинов [15], в водных растворах ингибируют процессы сульфоокисления S(IV) \rightarrow S(VI), что облегчает термическую регенерацию сорбентов на их основе для десульфуризации отходящих газов [16]. Этаноламины также применяют для предотвращения окисления сульфитных соединений в присутствии кислорода воздуха при их хроматографическом определении [17-19]. Использование этаноламинов перспективно при получении иммобилизованных хемосорбентов для ионнообменного хроматографического разделения серусодержащих оксианионов (сульфитов, сульфатов и дитионатов) при их совместном присутствии в растворах.

В водных растворах N-содержащих органических оснований (Am), в частности этаноламинов, протекает реакция (1), в результате которой образуются ониевые катионы (AmH⁺) и гидроксид ионы.

$$Am + H_2O \stackrel{\rightarrow}{\underset{\leftarrow}{}} AmH^+ + OH^- (при pH > 7)$$
(1)

Кислотно-основная диссоциация ониевых катионов описывается уравнением вида:

$$AmH^{+} + H_{2}O \stackrel{\kappa_{a}}{\leftarrow} Am + H_{3}O^{+}.$$
 (2)

DOI: http://dx.doi.org/10.18524/2304-0947.2017.1(61).94707

© Р. Е. Хома, А. А.-А. Эннан, А. Н. Чеботарев, С. В. Водзинский, А. О. Маянская, 2017

Константа равновесия (2) определяется согласно:

$$K_{a} = \frac{a(\operatorname{Am}) \cdot a(\operatorname{H}_{3}\operatorname{O}^{+})}{a(\operatorname{AmH}^{+}) \cdot a(\operatorname{H}_{2}\operatorname{O})}$$
(3)

$$pK_a = -\lg K_a \tag{4}$$

Сила Ат (pK_a), в частности этаноламинов, является определяющим фактором, влияющим на:

- эффективность связывания при хемосорбции кислых газов [5-7, 20, 21];

 – буферную емкость и интервал буферного действия систем для поддержания кислотности среды в необходимом диапазоне pH [8, 22];

– удерживающую способность носителей, используемых в хроматографии [16];
 – выбор реагента при потенциометрическом определении фторокомплексных кислот (H₂SiF₆, HBF₄ и др.) [23-27].

Значения термодинамических функций диссоциации кислот и оснований зависят от их природы, температуры и ионной силы [7, 8, 28, 29]. Большинство исследователей [30-34] сравнивали термодинамические функции диссоциации этаноламмонийных катионов при одной температуре (298 К); проводился только анализ зависимостей р $K_s = f(T)$, и $\Delta G = f(T)$ [32, 33].

Среди многообразия числовых характеристик, получаемых в результате моделирования физико-химических свойств соединений, либо величин, имеющих четкую физико-химическую интерпретацию, наиболее часто используются липофильность (lgP_{ow}) и молярная рефракция (*MR*) [35].

Целью настоящего исследования было установление зависимости термодинамических функций (ΔH и ΔS) диссоциации этаноламмонийных катионов от их строения на основании литературных данных и выявление существующих закономерностей.

В качестве объектов исследования выбраны ониевые катионы моноэтаноламина (MEA), N-метилмоноэтаноламина (MMEA), N,N-диметилмоноэтаноламина (DMMEA), N,N-диэтилмоноэтаноламина (DEMEA), диэтаноламина (DEA), N-метилдиэтаноламина (MDEA), триэтаноламина (TEA) и *mpuc*(гидроксиметил)-аминометана (TRIS), физико-химические свойства которых представлены в табл. 1. Рассчитанные значения lgP_{ow} и *MR* методом QSAR с использованием программы HyperChem 8.01 [36] представлены в табл. 1.

Согласно данным, представленным в табл. 1, липофильность этаноламинов уменьшается с увеличением числа H-доноров и H-акцепторов и возрастает с увеличением степени N-алкилирования. При этом гидрофильность этаноламинов возрастает в ряду:

DEMEA < DMMEA < MMEA < MDEA < MEA < DEA < TEA < TRIS.

Значения величины липофильности определенной экспериментально ($\lg P_{ow}^{3KCR}$) и рассчитанной методом QSAR ($\lg P_{ow}^{T}$) связаны между собой линейной зависимостью:

$$\lg P_{ow}^{\text{3KCII}} = (-0,173 \pm 0,079) + (1,090 \pm 0,072) \cdot \lg P_{ow}^{\text{T}}; \text{R}^2 = 0,975; \text{n} = 9.$$
(5)

Таблица 1

	Строение и физико-химические своиства этаноламинов								
№ п/п	Этаноламин	Формула	Т _{пл.} , ⁰С	т _{кип} , °С	Р _п , Па (20 °С)	$\lg P_{_{0W}}^{_{3KCH}}$	л-ра	lgP_ow ^T	MR, Å
1.	MEA	H ₂ N OH	10,5	171	53,3	-1,31	[37]	-1,06	16,21
2.	MMEA	N H OH	-3	159	201	-0,91	[38]	-0,65	20,99
3.	DMMEA	N OH	-59	134,1	612	-0,55	[39]	-0,29	26,28
4.	DEMEA	OH	-70	163	2800	0,46	[40]	0,40	35,78
5.	DEA	HOOH	28	268,8	0,0373	-1,43	[37]	-1,09	27,28
6.	MDEA	HO OH	-21	247	0,03	-1,08	[41]	-0,73	32,57
7.	TEA	HOOH	20,5	335,4	0,0131	-1,59	[37]	-1,17	38,87
8.	TRIS	H ₂ N-OH HO	169	288		-2,31	[42]	-2,14	28,36

Строение и физико-химические свойства этаноламинов

Разложение функции р $K_a = f(T)$ в ряд Тейлора

На рис. 1 представлены зависимости $pK_a = f(T)$, которые могут быть разложены в ряд Тейлора (6), коэффициенты которого представлены в табл. 2.

Рис. 1. Температурные зависимости констант диссоциации этаноламмонийных катионов при µ = 0. Am: MEA – 1 [32]; MMEA – 2 [32]; DMMEA – 3 [33]; DEMEA – 4 [33]; DEA – 5 [43]; MDEA – 6 [44]; TEA – 7 [32]; TRIS – 8 [30]. Согласно [45], значения термодинамических функций для процесса диссоциации (2) могут быть получены решением уравнений (7)–(10).

$$pK_{a} = \frac{A_{i}}{T} - B_{i} + C_{i} \cdot T$$
(6)

$$\Delta G = \ln(10) \cdot R \cdot (A_i - B_i \cdot T + C_i \cdot T^2) \tag{7}$$

$$\Delta H = \ln(10) \cdot R \cdot (A_i - C_i \cdot T^2) \tag{8}$$

$$\Delta S = \ln(10) \cdot R \cdot (B_i - 2 \cdot C_i \cdot T) \tag{9}$$

$$\Delta C_{\rm p} = -\ln(10) \cdot \mathbf{R} \cdot (2 \cdot C_i \cdot T), \tag{10}$$

где ΔG – изменение энергии Гиббса, Дж/моль; ΔH – изменение энтальпии, Дж/моль; ΔS – изменение энтропии, Дж/моль·К; ΔC_p – изменение теплоемкости, Дж/(моль·К); R – универсальная газовая постоянная.

Am	$A_i \pm \Delta A_i$	$\boldsymbol{B}_i \pm \Delta \boldsymbol{B}_i$	$(C_i \pm \Delta C_i) \cdot 10^3$			
MEA	2230,9 ± 23,6	$-2,9979 \pm 0,1523$	$-3,4806 \pm 0,2451$			
MMEA	1573,0 ± 110,5	$-7,1033 \pm 0,6891$	-8,4971 ± 0,1070			
DMMEA	788,0 ± 129,4	$-9,9803 \pm 0,8070$	$-11,415 \pm 1,254$			
DEMEA	377,6 ± 287,0	-13,580 ± 1,7952	$-17,099 \pm 2,791$			
DEA	1819,5 ± 101,6	$-4,0988 \pm 0,6841$	$-4,4372 \pm 0,1149$			
MDEA	$1237,5 \pm 10,8$	$-6,4072 \pm 0,0628$	$-6,6959 \pm 0,0904$			
TEA	964,1 ± 42,5	$-6,7264 \pm 0,2865$	-7,5117 ± 0,4814			
TRIS	1233,7 ± 47,4	$-5,3326 \pm 0,3110$	$-5,7295 \pm 0,5092$			

Значения параметров уравнения (6) для этаноламмонийных катионов'

^{*}величина достоверности аппроксимации (R²) во всех случаях ≥ 0,999.

Анализируя данные табл. 2, следует отметить, что для моноэтаноламмония, диэтаноламмония, их N-метил и N-этил производных константы уравнения (6) A_i , B_i и C_i связаны между собой зависимостями (11) и (12).

$$B_i = (-14,770 \pm 1,0890) + (5,538 \pm 0,7382) \cdot 10^{-3} \cdot A_i; R^2 = 0,934$$
(11)

$$C_{i} = (-1,790 \pm 0,1895) \cdot 10^{-2} + (6,950 \pm 1,2843) \cdot 10^{-6} \cdot A_{i};$$

$$R^{2} = 0,882$$
(12)

Подобные зависимости характерны для аминометансульфокислот [28]; усиление электронодонорных свойств N-заместителя приводит к повышению влияния температуры на значения термодинамических функций диссоциации.

(7)

Таблица 2

Таблица 3

Необходимо отметить, что коэффициенты достоверности аппроксимации в уравнениях (11) и (12) для этаноламинов меньше таковых для аминосульфокислот ($\geq 0,998$) [28]. Очевидно, это связано с тем, что в данной работе анализируются данные, полученные авторами [30, 32, 33, 43, 44] в различных условиях. В ходе потенциометрического определения р K_a авторы [32, 33, 44] использовали КСІ в качестве фонового электролита для создания ионной силы; исследователи [30, 43] фоновые электролиты в электрохимическую ячейку не вводили и для расчета значений термодинамических констант использовали концентрационные константы в различном диапазоне ионных сил. В отличие от указанного, в работе [28] для сравнения использовались концентрационные константы в изоэлектрической точке при ионной силе 4,75·10⁻⁴ М.

Для установления характера влияния ионной силы раствора на параметры уравнения (6) нами в данной работе использованы результаты потенциометрического исследования системы MEA – $F_3CSO_3H - F_3CSO_3Na - H_2O$ при $T = 273 \div 563$ K и $\mu = 0 \div 0,3$ [29] (табл. 3).

	1 1 11 ()	3	3 3 3 2
μ, моль/кг	$A_i \pm \Delta A_i$	$\mathbf{B}_{i} \pm \Delta \mathbf{B}_{i}$	$(C_i \pm \Delta C_i) \cdot 10^4$
0	2621,9 ± 6,21	$-0,8699 \pm 0,03175$	-6,3898 ± 0,38886
0,03	2609,6 ± 7,17	$-0,9507 \pm 0,03668$	$-7,6985 \pm 0,44917$
0,10	2595,4 ± 7,27	$-1,0689 \pm 0,03721$	$-9,7319 \pm 0,45564$
0,30	2515,5 ± 8,25	$-1,6132 \pm 0,04221$	$-17,580 \pm 0,5170$

Значения параметров уравнения (6) для системы MEA – F₃CSO₃H – F₃CSO₃Na – H₂O*

*величина достоверности аппроксимации (R²) во всех случаях > 0,999.

Константы уравнения (6) A_i , B_i и C_i , характеризующие термодинамику диссоциации моноэтаноламмонийного катиона в системе MEA – $F_3CSO_3H - F_3CSO_3Na - H_2O$ (табл. 3), связаны между собой зависимостями:

$$B_i = (-19,184 \pm 0,3109) + (6,984 \pm 0,1202) \cdot 10^{-3} \cdot A_i; R^2 = 0,999;$$
(13)

$$C_i = (-2,801 \pm 0,1032) \cdot 10^{-2} + (10,04 \pm 0,399) \cdot 10^{-6} \cdot A_i; R^2 = 0,997.$$
(14)

В свою очередь, величина *A_i* связана с ионной силой антибатной зависимостью (табл. 3), которая описывается уравнением (15).

$$A_{i} = (2623, 6 \pm 4, 01) - (353, 54 \pm 25, 254) \cdot \mu_{i}; R^{2} = 0,990$$
(15)

Абсолютные значения коэффициентов в уравнении (6) связаны с липофильностью и температурой плавления этаноламинов (табл. 2) уравнениями (16) и (17) с высоким коэффициентом корреляции.

$$C_{i} = (-1,372 \pm 0,0376) \cdot 10^{-2} + (8,976 \pm 0,4911) \cdot 10^{-3} \cdot \lg P_{ow}^{T}; R^{2} = 0,988$$
(16)

$$C_{i} = (-14,33 \pm 1,227) + (-9,681 \pm 1,4396) \cdot \lg P_{ow}^{T} + (1,096 \pm 0,2072) \cdot 10^{-2} \cdot T_{nn}; R^{2} = 0,989$$
(17)

Кислотно-основная диссоциация ониевых катионов TEA и TRIS не подчиняется зависимостям (11), (12), (16) и (17). Молекулы этих оснований имеют большее число доноров H-связей (три и четыре, соответственно) и акцепторов (по четыре), чем остальные этаноламины (табл. 1). Подобное отмечено авторами [46] при попытке связать растворимость и температуры плавления соединений с их липофильностью: молекулы соединений со сравнительно большим числом H-доноров и H-акцепторов имеют, как правило, температуру плавления выше и растворимость в воде ниже, чем можно было прогнозировать по зависимостям от lgP_{ow}.

При этом TRIS и TEA, обладая максимальной гидрофильностью в ряду изученных этаноламинов (TRIS), сильно отличаются по числу молекул воды, непосредственно входящих в первую гидратную сферу их молекул [47]. В ряду TRIS, MEA, DEA, TEA число гидратации возрастает [47]. Очевидно, в силу сказаного, TRIS (первичный амин) и TEA (третичный амин) по разному действуют на водные растворы SO₂. TEA, в отличие от MEA, DEA и MMEA, обладает высаливающим эффектом по отношению к оксиду серы (IV) за счет конкурирующей гидратации, что содействует гидролизу «ониевых» сульфитных солей [48]. TRIS [12] способствует сульфоокислению S(IV) \rightarrow S(VI), в отличие от остальных этаноламинов [9-11].

Энтальпийно-энтропийная компенсация

Путем обработки вышеприведенных данных получены значения термодинамических функций (ΔH , ΔS) диссоциации ониевых катионов этаноламинов (рис. 2).

Рис. 2. Температурные зависимости термодинамических функций $(\Delta H - a; \Delta S - \delta)$ диссоциации этаноламмонийных катионов при $\mu = 0$. Am: MEA – 1; MMEA – 2; DMMEA – 3; DEMEA – 4; DEA – 5; MDEA – 6; TEA – 7; TRIS – 8.

Согласно полученным данным (рис. 2) с ростом температуры наблюдаемые значения ΔH и ΔS диссоциации этаноламмонийных катионов повышаются. Причем, реакция (2) эндотермическая. Величина угла наклона $\Delta S(T)$ -зависимости (рис. 2б) согласно уравнению (9) прямо пропорциональна коэффициенту C_i , который изменяется симбатно с липофильностью этаноламина (кроме TEA и TRIS). В силу того, что для изученных этаноламинов в области температур (273 ÷ 361 K) $\Delta H > 0$ и $\Delta S < 0$ (рис. 2), процесс (2) протекает справа налево.

Как и для многих физико-химических процессов [49, 50], в случае диссоциации этаноламмонийных катионов наблюдается энтальпийно-энтропийная компенсация (например, рис. 3), заключающаяся в том, что усиление взаимодействия между молекулами приводит к понижению конфигурационной свободы системы, следовательно, к понижению энтропии. Компенсационный эффект выражается уравнением (18), параметры которого приведены в табл. 4.

$$\Delta H = \alpha_i + \beta_i \cdot \Delta S \tag{18}$$

Согласно полученным данным (табл. 3) «изотермодинамическая температура» (β_i) [49, 50] для всех изученных в данной работе этаноламинов, как и в случае аминометансульфокислот [28], равна 303 К с высоким коэффициентом корреляции. Свободный член (α_i) в уравнении (18) колеблется в пределах 44,3 ÷ 56,4 кДж/моль; четкой зависимости α_i от температуры плавления, молярной рефракции, липофильности и молярного объема не наблюдается (табл. 1). В итоге, уменьшение гидрофильности и в ряду этаноламинов (кроме TEA и TRIS) (табл. 1) повышает влияние температуры на значения ΔG , ΔH и ΔS (рис. 2).

Рис. 3. Энтальпийно-энтропийная компенсация при диссоциации DEMEAH⁺.

Необходимо отметить, что отмеченные в данной работе взаимные зависимости между коэффициентами в уравнении (6), а также их корреляции с липофильностью (гидрофильностью) этаноламинов приведены впервые; в литературе не обнаружено описания подобных фактов. Кроме того, большинство исследователей [20, 21, 30-34] сравнивали термодинамические функции диссоциации аминоалкансульфоновых кислот и ониевых катионов при одной температуре (298 К) или в узком интервале температур.

Значения параметров уравнения (18)*

таолица 4	Т	аблица	4
-----------	---	--------	---

Am	$\alpha_i \pm \Delta \alpha_i,$ кДж/моль	$\beta_i \pm \Delta \beta_i, K$	Am	$lpha_i \pm \Delta lpha_i,$ кДж/моль	$ \begin{array}{c} \beta_i \pm \Delta \beta_i, \\ \mathbf{K} \end{array} $
MEA	54,12 ± 0,016	303,0 ± 1,70	DEA	$50,81 \pm 0,046$	303,0 ± 1,70
MMEA	56,39 ± 0,064	303,0 ± 1,70	MDEA	$49,09 \pm 0,077$	303,0 ± 1,71
DMEA	$52,92 \pm 0,052$	303,0 ± 1,70	TEA	$44,\!28 \pm 0,\!072$	303,0 ± 1,71
DEEA	55,96 ± 0,106	303,0 ± 1,70	TRIS	$44,\!49 \pm 0,\!061$	303,0 ± 1,71

*величина достоверности аппроксимации (R^2) во всех случаях > 0,999.

Таким образом, усиление липофильных свойств этаноламинов приводит к увеличению углов наклона зависимостей $\Delta H(T)$ и $\Delta S(T)$, что в свою очередь отрицательно сказывается на $\Delta G(T)$ -зависимости. Указанное действие частично ослабляется за счет энтальпийно-энтропийной компенсации. Выявленные корреляции могут оказаться полезными при разработке методов санитарной очистки воздуха от кислых газов; иммобилизованных хемосорбентов для газовой и ионнообменной хроматографии; потенциометрических методов определения фторокомплексных кислот. Очевидно, что для получения хемосорбентов наиболее перспективным представляется использование моноэтаноламина, так как термодинамические функции кислотно-основной диссоциации его ониевого катиона наименее зависят от температуры, по сравнению с другими этаноламмонийными катионами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Очистка технологических газов / Под ред. Т.А. Семеновой, И.Л. Лейтеса- М.: Химия, 1977. 488 с.
- Гельмбольдт В.О., Гаврилова Л.А., Остапчук Л.В., Эннан А.А. О соединениях кремнефтористоводородной кислоты с 2-этаноламинами // Журн. неорган. химии. – 1994. – Т. 39, № 1. – С. 43–47.
- Блохин П.В., Когтев С.Е., Петров С.В., Обливина Т.А. Очистка газовых выбросов от диоксида серы раствором метилдиэтаноламина // Журн. прикл. химии. 2000. Т. 73, № 8. С. 1344-1346.
- Хома Р.Е., Шестака А.А., Эннан А.А., Гельмбольдт В.О. О составе продуктов взаимодействия оксида серы (IV) с водными растворами этаноламинов // Вісник ОНУ. Хімія. – 2011. – Т. 16, № 5. – С. 105–113.
- 5. *Хома Р.Е., Шестака А.А., Гельмбольдт В.О.* О взаимодействии оксида серы (IV) с водными растворами этаноламинов // Журн. прикл. химии 2012. Т. 85, № 11. С. 1656-1665.
- 6. Хома Р.Е., Длубовский Р.М., Гельмбольдт В.О. Хемосорбция диоксида серы водными растворами этаноламинов в статических условиях // Журн. общей химии. – 2016. – Т. 86, № 8. – С. 1271-1279.
- Qian J., Sun R., Sun S., Gao J. Computer-Free Group-Addition Method for pKa Prediction of 73 Amines for CO₂ Capture // J. Chem. Eng. Data. – 2017. – Vol. 62, N 1. – P. 111-122. https://doi.org/10.1021/acs.jced.6b00481
- Goldberg R.N., Kishore N., Lennen R.M. Thermodynamic Quantities for the Ionization Reactions of Buffers // J. Phys. Chem. Ref. Data. – 2002. – Vol. 31, N 2. – P.231-370. https://doi.org/10.1063/1.1416902
- Хома Р.Е., Гельмбольдт В.О., Короева Л.В., Эннан А.А., Мазепа А.В., Брусиловский Ю.Э. Спектральные характеристики продуктов взаимодействия оксида серы (IV) с водными растворами этаноламинов // Вопросы химии и хим. технологии. – 2012. – № 1. – С. 133-136.

- Хома Р.Е., Эннан А.А., Мазепа А.В., Гельмбольдт В.О. Спектральные характеристики продуктов взаимодействия оксида серы (IV) с водными растворами N-алкилированных производных моноэтаноламина // Вопросы химии и хим. технологии. – 2013. – № 1. – С. 136-138.
- Хома Р.Е., Гельмбольдт В.О., Шишкин О.В., Баумер В.Н., Пузан А.Н., Эннан А.А., Ракипов И.М. Синтез и строение моногидрата сульфита N-(гидроксиэтил)этилендиаммония // Журн. неорган. химии. – 2014. – Т. 59, № 6. – С. 716-719.
- Хома Р.Е., Эннан А.А., Гельмбольдт В.О., Шишкин О.В., Баумер В.Н. Синтез, кристаллическая структура, колебательные спектры и термохимические превращения сульфата *трис*(оксиметил)аминометана // Журн. неорган. химии. – 2014. – Т. 59, № 1. – С. 60-65.
- Хома Р.Е., Эннан А.А., Шишкин О.В., Баумер В.Н., Гельмбольдт В.О. Продукты взаимодействия оксида серы(IV) с водными растворами гексаметилендиамина и трет-бутиламина. Кристаллическая структура дигидрата сульфата гексаметилендиаммония // Журн. неорган. химии. – 2012. – Т.57, № 12. – С. 1658-1661.
- Хома Р.Е., Гельмбольдт В.О., Баумер В.Н., Пузан А.Н., Эннан А.А. Синтез и строение сульфата метиламмония // Журн. неоган. химии – 2015. – Т. 60, № 10. – С. 1315-1319.
- Хома Р.Е., Эннан А.А., Гельмбольдт В.О., Шишкин О.В., Баумер В.Н., Мазепа А.В., Брусиловский Ю.Э. Синтез и некоторые физико-химические свойства сульфатов бензиламмония // Журн. общей химии. – 2014. – Т. 84, № 4. – С. 557-561.
- Киселев А.В. Межмолекулярные взаимодействия в адсорбции и хроматографии. М.: Высш. шк., 1986. С. 122-124.
- Nishikawa Y., Taguchi K. Ion chromatographic determination of nitrogen dioxide and sulphur dioxide in the atmosphere using triethanolamine-potassium hydroxide-coated cartridges // J. Chromatogr. 1987. Vol. 396. P. 251-259. https://doi.org/10.1016/s0021-9673(01)94062-2
- Michigami Y, Morooka M., Ueda K. Determination of sulphite and sulphate by ion chromatography using a weakly basic phthalate eluent // J. Chromatogr. A. 1996. Vol. 732, N 2. P. 403–407. https://doi.org/10.1016/0021-9673(95)01326-1
- Rokushika S., Hatano H. Miniaturized ion chromatography // J. Chromatogr. Library. 1985. P. 277-296. https://doi.org/10.1016/s0301-4770(08)60836-2
- Rayer A.V., Sumon K.Z., Jaffari L., Henni A. Dissociation Constants (pKa) of Tertiary and Cyclic Amines: Structural and Temperature Dependences // J. Chem. Eng. Data. 2014. Vol. 59, N 11. P. 3805 3813. https://doi.org/10.1021/je500680q
- Tagiuri A., Mohamedali M., Henni A. Dissociation Constant (pKa) and Thermodynamic Properties of Some Tertiary and Cyclic Amines from (298 to 333) K // J. Chem. Eng. Data. – 2016. – Vol. 61, N 1. – P. 247-254.
- 22. Гуляницкий А. Реакции кислот и оснований в аналитической химии. Пер. с польск. М.: Мир, 1975. 240 с.
- Чеботарев А.Н., Новак И.В. Кислотно-основное взаимодействие тетрафторборной кислоты со слабыми азотсодержащими органическими основаниями // Изв.ВУЗов. Химия и хим.технология. – 1991. – Т. 34, № 2. – С. 19 – 22.
- Чеботарев А.Н., Хома Р.Е. Реакции комплексообразования в кислотно-основных системах HBF₄ H₂O Амин // Вісник ОНУ. Хімія. – 2004. – Т. 9, № 3. – С. 117 – 126.
- 25. Чеботарев А.Н., Рахлицкая Е.М., Хома Р.Е., Качан С.В. Потенциометрическое изучение кислотно-основных равновесий в системе «гексафторокремневая кислота – вода – азотсодержащее органическое основание» // Вісник ОНУ. Хімія. – 2005. – Т. 10, № 9. – С. 85-96
- Чеботарев А.Н., Хома Р.Е., Рахлицкая Е.М. Реакции комплексообразования в кислотно-основных системах H,SiF₄ – H₂O – Амин // Вопросы химии и хим. технологии. – 2009. – № 5. – С. 90-96.
- 27. *Чеботарев А.Н.* Состав и устойчивость продуктов взаимодействия в системе «вода тетрафтороборная кислота гексаметилентетрамин» // Вісник ОНУ. Хімія. 2013. Т. 18, № 3. С.79-88.
- 28. Хома Р.Е. Термодинамика диссоциации аминометансульфокислоты и ее N-замещенных производных в водных растворах при 293–313 К // Журн. физ. химии. 2017. Т. 91, № 1. С. 79-82.
- Benezeth P., Wesolowski D.J., Palmer D.A. Potentiometric study of the dissociation quotient of the aqueous ethanolammonium ion as a function of temperature and ionic strength // J. Chem. Eng. Data. – 2003. – Vol. 48, N 1. – P. 171-175. https://doi.org/10.1021/je0201424
- Bates R.G., Hetzer H.B. Dissociation constant of the protonated acid form of 2-amino-2-(hydroxymethyl)-1,3propanediol [tris(hydroxymethyl)-aminomethane] and related thermodynamic quantities from 0 to 50^o // J. Phys. Chem. – 1961. – Vol. 65, N 4. – P. 667-671. https://doi.org/10.1021/j100822a017
- Kim J.-H., Dobrogowska C., Hepler L.G. Thermodynamics of ionization of aqueous alkanolamines // Can. J. Chem. – 1987. – Vol. 65, N 8. – P. 1726-1728. https://doi.org/10.1139/v87-289

Термодинамика диссоциации этаноламмонийных катионов в водных растворах

- Hamborg E.S., Versteeg G.F. Dissociation constants and thermodynamic properties of amines and alkanolamines (293 to 353) K // J. Chem. Eng. Data. – 2009. – Vol. 54, N 4. – P. 1318-1328. https://doi.org/10.1021/je800897v
- Hamborg E.S., Versteeg G.F. Dissociation constants and thermodynamic properties of alkanolamines // Energy Procedia. – 2009. – Vol. 1, N 1. – P. 1213-1218. https://doi.org/10.1016/j.egypro.2009.01.159
- Hamborg E.S., van Aken C., Versteeg G.F. The effect of aqueous organic solvents on the dissociation constants and thermodynamic properties of alkanolamines // Fluid Phase Equilib. – 2010. – Vol. 291, N 1. – P. 32-39. https://doi.org/10.1016/j.fluid.2009.12.007
- Раевский О.А. Дескрипторы молекулярной структуры в компьютерном дизайне биологически активных веществ. // Успехи химии. – 1999. – Т. 68, № 6. – С. 555-575.
- 36. http://hypercube.com
- Mackay D., Shiu W.-Y., Ma K.-C., Lee S.C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol. IV Nitrogen and Sulfur Containing Compounds and Pesticides, 2nd Ed., CRC Press. – 2006. – P. 3236-3242. https://doi.org/10.1201/9781420044393
- Safety Data Sheet N-Methylethanolamine BASF [Электронный ресурс] URL: http://worldaccount.basf. com/wa/NAFTA/Catalog/ChemicalsNAFTA/doc4/BASF/PRD/30036882/.pdf. – Дата обращения 12.01.2017.
- Safety Data Sheet N,N-Dimethylethanolamine BASF [Электронный ресурс] URL: http://worldaccount.basf. com/wa/NAFTA~es_MX/Catalog/ChemicalsNAFTA/doc4/BASF/PRD/30041927/.pdf. – Дата обращения 12.01.2017.
- 2-Diethylaminoethanol CDC [Электронный ресурс] URL: https://www.cdc.gov/niosh/ipcsneng/neng0257. html – Дата обращения 12.01.2017.
- N-Methyldiethanolamine CDC [Электронный pecypc] URL: https://www.cdc.gov/niosh/ipcsneng/neng1600. htm l – Дата обращения 12.01.2017.
- Trizma® (TRIS base) Sigma-Aldrich [Электронный ресурс] URL: https://www.nwmissouri.edu/naturalsciences/sds/t/Trizma%20base.pdf – Дата обращения 12.01.2017.
- Bower V.E., Robinson R.A., Bates R.G. Acid dissociation constant and related thermodynamic quantities for diethanolammonium ion in water from 0 to 50 °C // J. Res. Natl. Bur. Stand. – 1962. – Vol. 66A, N 1. – P. 71–75. https://doi.org/10.6028/jres.066A.008
- Hamborg E.S., Niederer J.P.M., Versteeg G.F. Dissociation constants and thermodynamic properties of amino acids used in CO₂ absorption from (293 to 353) K // J. Chem. Eng. Data. – 2007. – Vol. 52, N 6. – P. 2491-2502. https://doi.org/10.1021/je700275v
- Roy R.N., Robinson R.A., Bates R.G. Thermodynamics of the two dissociation steps of N-tris(hydroxymethyl) methylglycine (Tricine) in water from 5 to 50^o // J. Am. Chem. Soc. – 1973. – Vol. 95, N 25. – P. 8231–8235. https://doi.org/10.1021/ja00806a004
- Box K.J., Comer J.E. Using measured pKa, LogP and solubility to investigate supersaturation and predict BCS class. // Curr. Drug Metab. – 2008. – Vol. 9, N 9. – P. 869–878. https://doi.org/10.2174/138920008786485155
- Burakowski A., Gliński J. Hydration Numbers of Nonelectrolytes from Acoustic Methods // Chem. Rev. 2012. – Vol. 112, N 4. – P. 2059–2081. https://doi.org/10.1021/cr2000948
- 48. Хома Р.Е., Длубовский Р.М., Гельмбольдт В.О. Хемосорбция диоксида серы водными растворами этаноламинов в статических условиях // Журн. общей химии. – 2016. – Т. 86, № 8. – С. 1271-1279. https://doi. org/10.1134/S1070363216080065
- Лихтенштейн Г.И. Компенсационный эффект // Химическая энциклопедия / Под ред. Зефирова Н.С. Т. 2. М.: Советская энциклопедия, 1990. С. 868.
- Starikov E.B. Norden B. Entropy-enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. // Chem. Phys. Lett. 2012. Vol. 538. P. 118–120. https://doi.org/10.1016/j. cplett.2012.04.028

Стаття надійшла до редакції 22.01.2017

Р. Є. Хома^{1,2}, А. А.-А. Еннан², О. М. Чеботарьов¹, С. В. Водзінський^{1,2}, А. О. Маянська¹ ¹Одеський національний університет імені І.І. Мечникова, вул. Дворянська, 2, Одеса, Україна, 65082; email: rek@onu.edu.ua ²Фізико-хімічний інститут захисту навколишнього середовища і людини МОН і НАН України, вул. Преображенська 3, Одеса, 65082, Україна

ТЕРМОДИНАМІКА ДИСОЦІАЦІЇ ЕТАНОЛАМОНІЙНИХ КАТІОНІВ№У ВОДНИХ РОЗЧИНАХ

Систематизовані та узагальнені літературні дані щодо фізико-хімічних властивостей (T_{nn} , T_{knn} , P_n та lgP_{ow}) етаноламінів і термодинаміки дисоціації їх онієвих катіонів. Відмічена кореляція між ліпофільністю, що визначена експериментально, та розрахованою методом QSAR. Для моноетаноламонію, діетаноламонію, їх N-метил та N-етил похідних виявлена залежність термодинамічних функцій дисоціації ($\Delta H u \Delta S$) від lgP_{ow} основ. Внаслідок того, що молекули триетаноламіни, кислотно-основна дисоціація їх онієвих катіонів не підпорядковується зазначеній залежності. Відмічена ентальпійно-ентропійна компенсація, для якої ізотермодинамічна температура дорівнює 303 К.

Ключові слова: етаноламіни, водні розчини, термодинаміка дисоціації, ентальпійногоентропійна компенсація.

R. E. Khoma^{1,2}, A. A.-A. Ennan², A. N. Chebotaryov¹, S. V. Vodzinskii^{1,2}, A. O. Mayans'kaya¹ ¹Odessa I.I. Mechnikov National University, Dvoryankaya str., 2, Odessa, 65082, Ukraine; rek@onu.edu.ua ²Physico-Chemical Institute of Environment and Human Protection, Preobrazhenskaya str., 3, Odessa, 65082, Ukraine; eksvar@ukr.net

THERMODYNAMICS OF ETHANOLAMMONIUM CATIONES DISSOCIATION IN AQUEOUS SOLUTIONS

The literature data on the thermodynamics of ethanolamines onium cations dissociation have been systematized and generalized. The correlation between these cations dissociation thermodynamic functions (Δ H and Δ S) and physicochemical properties (T_{mp}, T_{bn}, P_p , lgP_{ow} et al.) has been revealed. There was a correlation between lipophilicity determined experimentally and calculated by QSAR. For monoethanolammonium, diethanolammonium, and their N-methyl and N-ethyl derivatives it was found dissociation thermodynamic functions to depend on bases lgP_{ow} . Acid-base dissociation of TRIS and triethanolamine onium cations does not correspond to said relationship because TRIS (primary amine), TEA (tertiary amine) act differently on aqueous solutions of SO₂. TEA, unlike MEA, DEA and MMEA, has a salting out effect towards sulfur dioxide because of competing hydration that promotes sulfite «onium» salts hydrolysis. TRIS promotes S(IV) \rightarrow S(VI) sulphooxidation, in contrast to another ethanolamines. Enthalpy–enthropy compensation with isothermodynamic temperature 303 K has been recorded.

The revealed correlations may be useful in developing of procedures for air sanitary cleaning from acidic gases; chemisorbents immobilized for gas and ion exchange chromatography; potentiometric methods for fluorocomplex acids determinations. The use of monoethanolamine is most promising to obtain chemisorbents because the thermodynamic functions of its onium cation acid-base dissociation are least dependent on temperature compared to other etanolammonium cations.

Keywords: ethanolamines, aqueous solutions, thermodynamics of the dissociation, enthalpyentropy compensation.

REFERENCES

- 1. Ochistka tehnologicheskih gazov Pod red. T.A. Semenovoj, I.L. Lejtesa, Moscow, Chemistry, 1977, 488 p. (in Russian)
- Gel'mbol'dt V.O., Gavrilova L.A., Ostapchuk L.V., Ennan, A.A. *Hexafluorosilicic acid compounds with 2-ethanolamines*. Zhurnal Neorganicheskoi Khimii, 1994, vol. 39, no 1, pp. 43-47. (*in Russian*)
- Blokhin P.V., Kogtev S.E., Petrov A.V., Oblivina T.A. Treatment of exhaust gases with methyldiethanolamine solution to remove sulfur dioxide. Russ. J. Appl. Chem., 2000, vol. 73, no 8, pp. 1417-1419. (in Russian)
- Khoma R.E., Shestaka A.A., Ennan A.A., Gelmboldt V.O. On the structure of interaction products of sulfur dioxide with ethanolamines in aqueous solutions. Visn. Odes. nac. univ., Him., 2011, vol. 16, no 5, pp. 105–113. (in Russian)
- Khoma R.E., Shestaka A.A., Gelmboldt V.O. On interaction of sulfur(IV) oxide with aqueous solutions of ethanolamines. Russ. J. Appl. Chem., 2012, vol. 85, no 11, pp. 1667–1675. https://doi.org/10.1134/ s1070427212110067
- Khoma R.E., Dlubovskiy R.M., Gelmboldt V.O. Chemisorption of Sulfur (IV) Oxide by Aqueous Solutions of Ethanolamines Under Static Conditions. Russ. J. Gen. Chem., 2016, vol. 86, no 8, pp. 1811-1818. https://doi. org/10.1134/s1070363216080065
- Qian J., Sun R., Sun S., Gao J. Computer-Free Group-Addition Method for pKa Prediction of 73 Amines for CO₂ Capture J. Chem. Eng. Data., 2017, vol. 62, no 1, pp. 111-122. https://doi.org/10.1021/acs.jced.6b00481
- Goldberg R.N., Kishore N., Lennen R.M. Thermodynamic Quantities for the Ionization Reactions of Buffers. J. Phys. Chem. Ref. Data., 2002, vol. 31, no 2, pp. 231-370. https://doi.org/10.1063/1.1416902
- 9. Khoma R.E., Gelmboldt V.O., Koroeva L.V., Ennan A.A., Mazepa A.V., Brusilovskiy Yu.E. *Spectral characterization of products descriptions of sulphur (IV) oxide ineraction with ethanolamines aqueous solutions.* Voprosy khimii i khimicheskoi tekhnologii, 2012, no 1, pp. 133-136. (*in Russian*).
- Khoma R.E., Ennan A.A., Mazepa A.V., Gelmboldt V.O. Spectral characterization of products ineraction of sulphur dioxide with N-alkylated monoethanolamines derivatives aqueous solutions. Voprosy khimii i khimicheskoi tekhnologii, 2013, no 1, pp. 136-138. (in Russian).
- Khoma R.E., Gelmboldt V.O., Shishkin O.V., Baumer V.N., Puzan A.N., Ennan A.A., Rakipov I.M. Synthesis and structure of N-(hydroxyethyl)ethylenediammonium sulfite monohydrate Russ. J. Inorg. Chem., 2014, vol. 59, no 6, pp. 541-544. https://doi.org/10.1134/S0036023614060096
- Khoma R.E., Gel'mbol'dt V.O., Shishkin O.V., Baumer V.N., Ennan A.A. Synthesis, crystal structure, vibrational spectra, and thermochemical transformations of tris(hydroxymethyl)aminomethane. Russ. J. Inorg. Chem., 2014, vol. 59, no 1, pp. 1-6. https://doi.org/10.1134/S0036023614010069
- Khoma R.E., Ennan A.A., Shishkin O.V., Baumer V.N., Gel'mbol'dt V.O. Products of interaction between Sulfur(IV) oxide and aqueous solutions of hexamethylendiamine and tert-Butylamine: The crystal structure of hexamethylenediammonium sulfate dihydrate. Russ. J. Inorg. Chem., 2012, vol. 57, no 12, pp. 1559-1562. https://doi.org/10.1134/S003602361212008X
- Khoma R.E., Gel'mbol'dt V.O., Baumer V.N., Puzan A.N., Ennan A.A. Methylammonium sulfate: Synthesis and structure. Russ. J. Inorg. Chem., 2015, vol. 60, no 10, pp. 1199-1203. https://doi.org/10.1134/S0036023615100101
- Khoma R.E., Ennan A.A., Gelmboldt V.O., Shishkin O.V., Baumer V.N., Mazepa A.V., Brusilovskii Yu.E. Preparation and some physicochemical properties of benzylammonium sulfates. Russ. J. Gen. Chem., 2014, vol. 84, no 4, pp. 637-641. https://doi.org/10.1134/S1070363214040069
- Kiselev A.V. Intermolecular Interactions in Adsorption and Chromatography. Moscow, Vysshaja shkola, 1986, pp. 122-124. (in Russian)
- Nishikawa Y., Taguchi K. Ion chromatographic determination of nitrogen dioxide and sulphur dioxide in the atmosphere using triethanolamine-potassium hydroxide-coated cartridges. J. Chromatogr. A., 1987, vol. 396, pp. 251-259. https://doi.org/10.1016/s0021-9673(01)94062-2
- Michigami Y., Morooka M., Ueda K. Determination of sulphite and sulphate by ion chromatography using a weakly basic phthalate eluent. J. Chromatogr. A., 1996, vol. 732, no 2, pp. 403–407. https://doi. org/10.1016/0021-9673(95)01326-1
- Rokushika S., Hatano H. Miniaturized ion chromatography. J. Chromatogr. Library., 1985, pp. 277-296. https:// doi.org/10.1016/s0301-4770(08)60836-2
- Rayer A.V., Sumon K.Z., Jaffari L., Henni A. Dissociation Constants (pKa) of Tertiary and Cyclic Amines: Structural and Temperature Dependences. J. Chem. Eng. Data., 2014, vol. 59, no 11, pp. 3805–3813. https:// doi.org/10.1021/je500680q

- 21. Tagiuri A., Mohamedali M., Henni A. Dissociation Constant (pKa) and Thermodynamic Properties of Some Tertiary and Cyclic Amines from (298 to 333) K. J. Chem. Eng. Data., 2016, vol. 61, no 1, pp. 247-254.
- 22. Guljanickij A. Reakcii kislot i osnovanij v analiticheskoj himii. Moscow, Mir, 1975, 240 p. (in Russian)
- Chebotarev A.N., Novak I.V. Kislotno-osnovnoe vzaimodejstvie tetraftorbornoj kisloty so slabymi azotsoderzhashhimi organicheskimi osnovanijami Izvestija vuzov. Himija i himicheskaja tehnologija., 1991, vol. 34, no 2, pp. 19-22. (in Russian)
- Chebotarev A.N., Khoma R.E. Complexation reactions in the acid-base HBF₄ Amine H₂O systems. Visn. Odes. nac. univ., Him., 2004, vol. 9, no 3, pp. 114 126. (in Russian)
- 25. Chebotaryov A.N., Rakhlickaya E.M., Khoma R.E., Kachan S.V. Potentiometric investigation of the acid-basic equilibria in system «hexafluorosilicic acid water nitrogen-containing organic base». Visn. Odes. nac. univ., Him., 2005, vol. 10, no 9, pp. 85-96. (in Russian)
- Chebotaryov A.N., Khoma R.E., Rakhlickaya E.M. Complexation reactions in acid-base systems H₂SiF₆-H₂Oamine. Voprosy khimii i khimicheskoi tekhnologii, 2009, no 5, pp. 90-96. (in Russian)
- 27. Chebotaryov A.N. Composition and relative stability of ion-molecular forms that are realized in the system water tetrafluoroboric acid hexamethylenetetramine. Visn. Odes. nac. univ., Him., 2013, vol. 18, no 3, pp. 79-88. (in Russian)
- 28. Khoma R.E. Thermodynamics of the dissociation of aminomethanesulfonic acid and its N-substituent derivatives at 293-313 K. Russ. J. Phys. Chem., 2017, vol. 91, no 1, pp. 76-79. https://doi.org/10.1134/S0036024417010125
- Benezeth P., Wesolowski D.J., Palmer D.A. Potentiometric study of the dissociation quotient of the aqueous ethanolammonium ion as a function of temperature and ionic strength. J. Chem. Eng. Data. – 2003, vol. 48, no 1, pp. 171-175. https://doi.org/10.1021/je0201424
- Bates R.G., Hetzer H.B. Dissociation constant of the protonated acid form of 2-amino-2-(hydroxymethyl)-1,3propanediol [tris(hydroxymethyl)-aminomethane] and related thermodynamic quantities from 0 to 50° J. Phys. Chem., 1961, vol. 65, no 4, pp. 667-671. https://doi.org/10.1021/j100822a017
- Kim J.-H., Dobrogowska C., Hepler L.G. Thermodynamics of ionization of aqueous alkanolamines. // Can. J. Chem., 1987, vol. 65, no 8, pp. 1726-1728. https://doi.org/10.1139/v87-289
- 32. Hamborg E.S., Versteeg G.F. Dissociation constants and thermodynamic properties of amines and alkanolamines (293 to 353) K J. Chem. Eng. Data., 2009, vol. 54, no 4, pp. 1318-1328. https://doi.org/10.1021/je800897v
- Hamborg E.S., Versteeg G.F. Dissociation constants and thermodynamic properties of alkanolamines. Energy Procedia., 2009, vol. 1, no 1, pp. 1213-1218. https://doi.org/10.1016/j.egypro.2009.01.159
- Hamborg E.S., van Aken C., Versteeg G.F. The effect of aqueous organic solvents on the dissociation constants and thermodynamic properties of alkanolamines. Fluid Phase Equilib., 2010, vol. 291, no 1, pp. 32-39. https:// doi.org/10.1016/j.fluid.2009.12.007
- Raevsky O.A. Molecular structure descriptors in the computer-aided design of biologically active compounds. Russ. Chem. Rev., 1999, vol. 68, no 6, pp. 505-524. http://dx.doi.org/10.1070/RC1999v068n06ABEH000425
 http://hypercube.com
- Mackay D., Shiu W.-Y., Ma K.-C., Lee S.C. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol. IV *Nitrogen and Sulfur Containing Compounds and Pesticides*, 2nd Ed., CRC Press., 2006, pp. 3236-3242. https://doi.org/10.1201/9781420044393
- Safety Data Sheet N-Methylethanolamine BASF Available at: http://worldaccount.basf.com/wa/NAFTA/ Catalog/ChemicalsNAFTA/doc4/BASF/PRD/30036882/.pdf (accessed 12 January 2017)
- Safety Data Sheet N,N-Dimethylethanolamine BASF Available at: http://worldaccount.basf.com/wa/ NAFTA~es MX/Catalog/ChemicalsNAFTA/doc4/BASF/PRD/30041927/.pdf (accessed 12 January 2017)
- 2-Diethylaminoethanol CDC Available at: https://www.cdc.gov/niosh/ipcsneng/neng0257.html (accessed 12 January 2017)
- N-Methyldiethanolamine CDC Available at: https://www.cdc.gov/niosh/ipcsneng/neng1600.htm l (accessed 12 January 2017)
- Trizma® (TRIS base) Sigma-Aldrich Available at: https://www.nwmissouri.edu/naturalsciences/sds/t/Trizma%20base.pdf (accessed 12 January 2017)
- Bower V.E., Robinson R.A., Bates R.G. Acid dissociation constant and related thermodynamic quantities for diethanolammonium ion in water from 0 to 50 °C J. Res. Natl. Bur. Stand., 1962, vol. 66A, no1, pp. 71–75. https://doi.org/10.6028/jres.066A.008
- Hamborg E.S., Niederer J.P.M., Versteeg G.F. Dissociation constants and thermodynamic properties of amino acids used in CO₂ absorption from (293 to 353) K. J. Chem. Eng. Data., 2007, vol. 52, no 6, pp. 2491-2502. https://doi.org/10.1021/je700275v

Термодинамика диссоциации этаноламмонийных катионов в водных растворах

- Roy R.N., Robinson R.A., Bates R.G. Thermodynamics of the two dissociation steps of N-tris(hydroxymethyl) methylglycine (Tricine) in water from 5 to 50^o. J. Am. Chem. Soc., 1973, vol. 95, no 25, pp. 8231–8235. https:// doi.org/10.1021/ja00806a004
- 46. Box K.J., Comer J.E. Using measured pK_a, LogP and solubility to investigate supersaturation and predict BCS class. Curr. Drug Metab., 2008, vol. 9, no 9, pp. 869–878. https://doi.org/10.2174/138920008786485155
- Burakowski A., Gliński J. Hydration Numbers of Nonelectrolytes from Acoustic Methods Chem. Rev., 2012, vol. 112, no 4, pp. 2059–2081. https://doi.org/10.1021/cr2000948
- Khoma R.E., Dlubovskiy R.M., Gelmboldt V.O. Chemisorption of Sulfur (IV) Oxide by Aqueous Solutions of Ethanolamines Under Static Conditions. Russ. J. Gen. Chem., 2016, vol. 86, no 8, pp. 1811-1818. https://doi. org/10.1134/S1070363216080065
- Likhtenshtein G.I. The *Compensation effect*. Chemical Encyclopedy, Ed. by N. S. Zefirov, Sov. Entsiklopedia, Moscow, 1990, Vol. 2, p. 868 (*in Russian*).
- Starikov E.B. Norden B. Entropy-enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data. Chem. Phys. Lett., 2012, vol. 538, pp. 118–120. https://doi.org/10.1016/j. cplett.2012.04.028

УДК 541.49:546.719

К. О. Пілецька, О. В. Штеменко

ДВНЗ «Український державний хіміко-технологічний університет», кафедра неорганічної хімії, пр. Гагаріна, 8, м. Дніпро, 49005, Україна

СИНТЕЗ БІОКОН'ЮГАТУ НА ОСНОВІ КАРБОНІЛЬНОГО Комплексу ренію(і) для візуалізації патологічних процесів

Синтезовано новий комплекс [Re(CO)₃MebpyCOOHBr], склад та будову якого встановлено за допомогою мас-спектрометрії, ІЧ– та ПМР спектроскопії. Розроблено методику синтезу біокон'югату шляхом приєднання пептиду до комплексу ренію(І). Проведено селективне сполучення енкефаліну з комплексом [Re(CO)₃MebpyCOOHBr]. Утворення нового продукту підтверджено за допомогою високоефективної рідинної хроматографії та мас-спектрометрії.

Ключові слова: реній, карбоніли, пептиди, енкефалін маркер.

вступ

Карбонільні комплекси ренію(І) з N,N-гетероциклічними лігандами проявляють фотофізичні властивості придатні для візуалізації клітин, тканин та процесів, що проходять у них. Їх люмінесценція характеризується високою інтенсивністю і великими зсувом Стокса та тривалістю життя [1-3], що дозволяє зафіксувати сигнал за невисокої концентрації речовини та виділити його на фоні автофлуорисценції клітин. Крім того, комплекси на основі ядра *fac*-[Re(CO)₃] є кінетично стабільними і нетоксичними для біологічних систем [4]. Не дивлячись на весь цей набір цінних для візуалізації властивостей використання цих сполук обмежено проблемою доставки комплексу до клітин.

Одним із способів створення біомаркерів є одержання кон'югату за рахунок приєднання біомолекул, наприклад пептидів, до комплексів металів. Кожна із складових таких кон'югатів має своє завдання. Комплекс металу, який виступає в якості функціональної мітки несе спектроскопічні властивості. Друге завдання виконується пептидною послідовністю, яка, як правило, виконує транспортну роль. Одним з різновидів пептидів, що доволі часто використовуються для цієї мети, є специфічні рецепторні пептиди [5].

У наших дослідженнях як металоорганічну складову ми обрали трикарбонільний комплекс ренію(І) з 4-метил-2,2'-біпіридин-4'-карбоксилатом. Це пов'язано з тим, що комплекси з похідними біпіридину проявляють фотофізичні властивості, що є цінними для візуалізації. Крім того, вільна карбоксильна група дозволяє шляхом пептидного синтезу приєднувати до неї біомолекули. Для такого приєднання ми обрали пентамірний опіоїдний рецепторний пептид [Leu⁵]-енкефалін (Enk).

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ

Матеріали. Для проведення синтезу ренієвого комплексу використовували пентакарбонілреній(І) бромід, що був синтезований за методикою [6]. Ліганд

4-метил-2,2'-біпіридин-4'-карбоксилат (рис. 1) синтезували за відомою методикою [7].

Рис. 1. Будова 4-метил-2,2'-біпіридин-4'-карбоксилату.

Реагенти для твердофазного пептидного синтезу (SPPS) були придбані у наступних компаній: Fmoc-амінокислоти (Iris Biotech, Novabiochem), смола для синтезу пептидів (Iris Biotech). Такі допоміжні реагенти для SPPS, як ТВТU (O-(бензотріазол-1-іл)-N,N,N',N'-тетраметилсечовини тетрафлуорборат), HOBt (гідроксібензотриазол), DIPEA (диізопропілетиламін), HATU (гексафторфосфат 2-(7-аза-1H-бензотриазол-1-ил)-1,1,3,3-тетраметилурония) придбали у Sigma-Aldrich. Твердофазний синтез пептиду проводили у DMF (Roth) пептидного класу. HPLC проводили з використанням Millipore®-Q води, ацетонітрилу та трифлуороцттової кислоти класу для HPLC.

Методи. *ІЧ-спектри* в області 4000–400 см⁻¹ записували за допомогою Фур'єспектрометра ФСМ 1201 з застосуванням стандартної методики пресування речовини з калій бромідом. *Спектри ¹Н ЯМР* реєстрували на спектрометрах Bruker DRX 200, 250, 400 або 600 у ДМСО-d₆. *Мас-спектри* фіксували за допомогою мас-спектрометра Bruker Esquire 6000 у метанолі. *Високоефективну рідинну хроматографію* проводили на приладі Varian Prostar з використанням аналітичної колонки RP Varian Dynamax (C18 сорбент 60 Å, діаметр 4.5 мм, довжина 250 мм) води та ацетонітрилу, що містять 0,1 % ТFA. Як елюент, використовували лінійний градієнт ацетонітрилу 20-100% протягом 30 хв, швидкість потоку 1мл/хв.

СИНТЕЗ БІОКОН'ЮГАТУ

Синтез [Re(CO)₃MebpyCOOHBr] Взаємодію 4-метил-2,2'-біпіридин-4'карбоксилату з пентокарбонілренієм(І) проводили за наступною методикою відповідно до схеми 1.

Схема 1. Реакція між [Re(CO), Br] та МевруСООН у толуолі

До круглодонної колби поміщали 100 мг [Re(CO)₅Br] та 60 мг МевруСООН і додавали 40 мл толуолу. Суміш, що одержали, нагрівали протягом 16 годин у інертній атмосфері за температури 80°С. Після розчин охолоджували. Яскравий помаранчів осад, що утворився, відфільтровували та промивали гексаном та діетиловим ефіром. Вихід продукту склав 74,3 %. Нова комплексна сполука добре розчинна у метанолі, обмежено розчинна у полярних органічних розчинниках і нерозчинна у воді та неполярних розчинниках.

Синтез енкефаліну. За допомогою (SPPS) твердофазного пептидного синтезу (схема 2) було синтезовано [Leu⁵]-енкефалін (рис. 2).

Рис. 2. Будова [Leu⁵]-енкефаліну

Спочатку смолу поміщали у пластиковий шприц об'ємом 2 мл з поліпропіленовим диском у якості фільтра («реактор періодичної дії»). Всі синтетичні кроки, в тому числі набухання, зняття Fmoc-захисту, промивання, приєднання амінокислоти та відщеплення проводили шляхом перемішування реакційної суміші на лабораторному шейкері (400 – 480 обертів на хвилину) за кімнатної температури. Розчини (табл. 1), необхідні для твердофазного синтезу енкефаліну і використані реагенти (табл. 2) перераховані нижче.

Таблиця 1

Розчини для твердофазного синтезу пептидів

Реагент	Склад
для зняття Fmoc-захисту	20% піперидин у DMF
лужний розчин	0,2 DIPEA y DMF

Смолу (0,2 ммоль) поміщали в «реактор періодичної дії» об'ємом 2 мл, доавали в ~ 1,5 мл DMF, і суміш збовтували за кімнатної температури протягом 1 години. Після цього знімали захисну групу. Для цього промивали 20% розчином піперидину у DMF (~ 1 мл, 2 · 9 хв). Далі знову промивали DMF (~ 1 мл, 3 · 1 хв). Смолу промивали після кожної стадії синтезу: Fmoc-зняття захисту, зв'язування для того, щоб видалити надлишок реагентів і не бажані реагенти. Після промивання додавали заздалегідь підготовлений розчин з амінокислоти, TBTU, HOBt та DIPEA і суспензію збовтували протягом 45 хвилин. Далі знову промивали DMF (~ 2 мл, 3 · 1 хв) і повторювали, описані вище дії відповідно до схеми 2 з іншими амінокислотами. Після приєднання останньої амінокислоти та промивання DMF, пептид на твердій фазі промивали DCM (~ 2 мл, 3 · 1 хв). Таким чином був одержаний енкефалін придатний для наступних досліджень.

Схема 2. Зображення SPPS з використанням Fmoc-методу захисту

К. О. Пілецька, О. В. Штеменко

Реагент	и лля тверлофазного синтезу	Таблиця 2 пептилів
Реагент	v, ммоль	т, г
Fmoc-Leu-OH	0,8	0,283
Fmoc-Phe-OH	0,8	0,310
Fmoc-Gly-OH	0,8	0,238
Fmoc-Gly-OH	0,8	0,238
Fmoc-Tir(tBu)-OH	0,8	0,368
TBTU	0,8	0,257
HOBt	0,8	0,108
DIPEA	1,6	0,207

Взаємодія [Re(CO)₃MebpyCOOHBr] з енкефаліном. Приєднання ренієвого комплексу до енкефаліну проводили відповідно наступним чином (схема 3)

Схема 3. Взаємодія [Re(CO)₃(MebpyCOOH)Br] з енкефаліном у розчині

До мікропробірки Епендорфа поміщали 2 мг (1 еквівалент) енкефаліну 2 мг (1 еквівалент) [Re(CO)₃MebpyCOOHBr] 1,4 мг (1,2 еквіваленти) НАТU, 2,1 мкл (4 еквіваленти) DIPEA та 250 мкл DMF. Одержаний розчин збовтували протягом двох діб.

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Аналіз [Re(CO)₃MebpyCOOHBr] проводили за допомогою мас-спектрометрії, IU– та ¹Н ЯМР спектроскопії.

У мас-спектрі спостерігали патерн (рис. 2) що за масою та ізотопним складом відповідає іону [Re(CO)₃MebpyCOOH]⁺, що свідчить про приєднання MebpyCOOH до ренію.

Рис. 2. Фрагмент мас-спектру [Re(CO)₃(MebpyCOOH)Br] у метанолі

У ¹Н ЯМР спектрі спостерігаємо хімічні зсуви, що відповідають атомам Гідрогену ліганду МерруСООН. На підставі одержаних результатів можна говорити про приєднання 4-метил-2,2'-біпіридин-4'-карбоксилату до ядра *fac*-[Re(CO)₃]⁺.

Дві інтенсивні смуги 2026 та 1896 см⁻¹ в ІЧ-спектрі (рис. 3), що відповідають асиметричним та симетричним валентним коливанням СО, вказують на присутність трьох карбонільних груп у *fac*-конфігурації відносно атому ренію [8]. А смуга у області 1708 см⁻¹ свідчить про наявність вільної карбоксильної групи [9]. Таким чином, карбоксильна група органічного ліганду залишається некоординованою і тому є можливим за допомогою пептидного синтезу приєднання до неї біомолекул.

Рис. 3. IЧ-спектр [Re(CO)₃(MebpyCOOH)Br] у KBr

Після проведення приєднання енкефаліну до [Re(CO)₃(MebpyCOOH)Br] розчин, що утворився дослідили за допомогою HPLC (високоефективної рідинної хроматографії). Аналіз показав утворення нового продукту (рис. 4 (смуга 7), рис. 5 (смуга 8)).

Рис. 4. Дослідження продукту реакції приєднання енкефаліну до [Re(CO)₃MebpyCOOHBr] за допомогою HPLC. Довжина випромінення 214 нм

Рис. 5. Дослідження продукту реакції приєднання енкефаліну до [Re(CO)₃MebpyCOOHBr] за допомогою HPLC. Довжина випромінення 254 нм

Нову сполуку було досліджено за допомогою мас-спектрометричного методу аналізу.№У мас-спектрі (рис. 6) спостерігали патерн, що за масою та ізотопним складом відповідає іону [Re(CO)₃MebpyCO-Enk]⁺, що підтверджує приєднання енкефаліну до ренієвого комплексу.

Рис. 6. Мас-спектр продукту взаємодії [Re(CO)₃MebpyCOOHBr] з енкефаліном

Подібним чином можливе приєднання інших пептидів до $[Re(CO)_3MebpyCOOHBr]$. Зміною пептидів можна впливати на розподіл комплексної сполуки у певних частинах організму та проводити діагностику. Недоліком цього методу є неможливість приєднання пептидів, що є не стійкими без твердої фази.

СПИСОК ЛІТЕРАТУРИ

- Zhao Q., Huang C., Li F. Phosphorescent heavy-metal complexes for bioimaging //Chem. Soc. Rev. 2011 Vol. 40, N 5. – P. 2508-2524. http://dx.doi.org/10.1039/C0CS00114G
- Pitchumony T.S., Banevicius L., Janzen N., Zubieta J., Valliant J. F. Isostructural Nuclear and Luminescent Probes Derived From Stabilized [2+1] Rhenium(I)/Technetium(I) Organometallic Complexes // Inorg. Chem. – 2013. – Vol. 52, N 23. – P. 13521–13528. http://dx.doi.org/10.1021/ic401972g
- 3. *Kirgan R.A. Sullivan B.P., Rillema D.P.* Photochemistry and Photophysics of Coordination Compounds: Rhenium // Top. Curr. Chem. – 2007. – Vol. 281. – P. 45–100. http://dx.doi.org/10.1007/128_2007_143
- Hartwig J.F. Organotransition Metal Chemistry From Bonding to Catalysis California: University Science Books, Mill Valley, 2010. – 1160 p.
- Strack M., Bedini A., Yip K.T., Lombardi S., Siegmund D., Stoll R, Spampinato S.M., Metzler-Nolte N.A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin // Chem. Eur. J. – 2016. – Vol. 22, N 41. – P. 14605–14610. http://dx.doi.org/10.1002/chem.201602432
- 6. Штеменко А.В., Шаповал А.Н. Восстановление перрената калия гипофосфитом натрия в смеси муравьиной и бромистоводородной кислот // Укр. хим. журнал. – 2006. – Т. 72, № 11. – С. 17–20.
- Banerjee T., Rawalekar S., Das A., Ghosh H. N. Interfacial Electron Transfer Dynamics of Two Newly Synthesized Catecholate Bound Ru^{II} Polypyridyl-Based Sensitizers on TiO₂ Nanoparticle Surface A Femtosecond Pump Probe Spectroscopic Study // Eur. J. Inorg. Chem. 2011. Vol. 2011, N 27. P. 4187–4197. http://dx.doi.org/10.1002/ejic.201100411
- 8. Stuart B. Infrared Spectroscopy: Fundamentals and Applications.-John Wiley & Sons, Ltd., 2004. 244 p.
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6 ed.– NJ, USA : John Wiley & Sons, Inc., Hoboken, 2009. – 408 p.

Стаття надійшла до редакції 15.01.2017

К. А. Пилецкая, А. В. Штеменко

ГВУЗ «Украинский государственный химико-технологический университет», кафедра неорганической химии, пр. Гагарина, 8, г. Днепр, 49005, Украина

СИНТЕЗ БИОКОНЬЮГАТА НА ОСНОВЕ КАРБОНИЛЬНОГО КОМПЛЕКСА РЕНИЯ(I) ДЛЯ ВИЗУАЛИЗАЦИИ ПАТОЛОГИЧЕСКИХ ПРОЦЕССОВ

Синтезирован новый комплекс [Re(CO)₃MebpyCOOHBr], состав и строение которого установлены с помощью масс-спектрометрии, ИК и ПМР спектроскопии. Разработана методика синтеза биоконьюгата, путем присоединения пептида к комплексу рения(I). Проведено селективное связывание энкефалина с комплексом [Re(CO)₃MebpyCOOHBr]. Образование нового продукта подтверждено с помощью высокоэффективной жидкостной хроматографии и масс-спектрометрии.

Ключевые слова: рений, карбонилы, пептиды, энкефалин маркер.

K. O. Piletska, A. V. Shtemenko

Ukrainian State University of Chemical Technology Department of Inorganic Chemistry

THE SYNTHESIS OF BIOCONJUGATE BASED ON RHENIUM(I) CARBONYL COMPLEX FOR VISUALIZATION OF PATHOLOGICAL PROCESS

Tricarbonyl rhenium(I) complexes have a great potential like biomarkers. It is caused their biological stability, low toxicity, large Stokes shifts, and long luminescence lifetimes. Rhenium tricarbonyl complexes fac-[Re(CO)₃(N^N)], where N^N is a ligand with low π^* orbitals are excellent candidates as imaging dyes. The method of obtaining potential biomarkers based on tricarbonyl rhenium(I) complex with a 4-methyl-2,2'-bipyridine-4'-carboxylate by the addition of biomolecules by peptide synthesis was developed. The new complex [Re(CO)₃MebpyCOOHBr] was synthesized, composition and structure of which were established by mass spectrometry, IR and NMR spectroscopy. A selective attachment of receptor peptide enkephalin to complex [Re(CO)₃(MebpyCOOH)Br] was performed. The formation of a new compound and its structure has been confirmed by HPLC and mass spectral analysis. The method which has been developed allows to connect various peptides to rhenium(I) complex in the solution.

Key words: rhenium, carbonyl, peptide, enkephalin, marker.

REFERENCES

- Zhao Q., Huang C., Li F. Phosphorescent heavy-metal complexes for bioimaging. Chem. Soc. Rev. 2011, vol. 40, no. 5, pp. 2508-2524. http://dx.doi.org/10.1039/C0CS00114G
- Pitchumony T.S., Banevicius L., Janzen N., Zubieta J., Valliant J. F. Isostructural Nuclear and Luminescent Probes Derived From Stabilized [2+1] Rhenium(I)/Technetium(I) Organometallic Complexes. Inorg. Chem. 2013, vol. 52, no. 23, P. 13521–13528. http://dx.doi.org/10.1021/ic401972g
- Kirgan R.A. Sullivan B.P., Rillema D.P. Photochemistry and Photophysics of Coordination Compounds: Rhenium. Top. Curr. Chem. 2007, vol. 281, pp. 45–100. http://dx.doi.org/10.1007/128_2007_143
- Hartwig J.F. Organotransition Metal Chemistry From Bonding to Catalysis. California, University Science Books, Mill Valley, 2010, 1160 p.
- Strack M., Bedini A., Yip K.T., Lombardi S., Siegmund D., Stoll R, Spampinato S.M., Metzler-Nolte N.A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin. Chem. Eur. J. 2016, vol. 22, no. 41, pp. 14605–14610. http://dx.doi.org/10.1002/chem.201602432
- Shtemenko A.V., Shapoval A.N. Reducing of potassium perrhenate by sodium hypophosphite in a mixture of formic acid and hydrobromic [Vosstanovlenie perrenata kalija gipofosfitom natrija v smesi murav'inoj i bromistovodorodnoj kislot]. Ukrainskij himicheskij zhurnal, 2006, vol. 72, no. 11, pp. 17-20.
- Banerjee T., Rawalekar S., Das A., Ghosh H. N. Interfacial Electron Transfer Dynamics of Two Newly Synthesized Catecholate Bound Ru^{II} Polypyridyl-Based Sensitizers on TiO₂ Nanoparticle Surface – A Femtosecond Pump Probe Spectroscopic Study Eur. J. of Inorg. Chem. 2011, vol. 2011, no 27, pp. 4187–4197. http://dx.doi. org/10.1002/ejic.201100411
- 8. Stuart B. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd., 2004, 244 p.
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6 ed. NJ, USA, John Wiley & Sons, Inc., Hoboken, 2009, 408 p.

УДК 541.49+546.814

Е. А. Чебаненко, Е. Э. Марцинко, И. И. Сейфуллина, Э. В. Афанасенко Одесский национальный университет, кафедра общей химии и полимеров ул. Дворянская 2, Одесса, 65082, Украина

СИНТЕЗ И СТРОЕНИЕ РАЗНОМЕТАЛЛЬНЫХ И ОНИЕВЫХ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ГЕРМАНИЯ(IV) С ГАЛАКТАРОВОЙ КИСЛОТОЙ, ИОНАМИ Mg²⁺, Ca²⁺, Ba²⁺, ИЗОНИАЗИДОМ И НИКОТИНАМИДОМ

Разработаны методики синтеза и выделены в твердом виде координационные соединения германия(IV) с галактаровой кислотой (H₆Gala), ионами Mg²⁺, Ca²⁺, Ba²⁺ и экзолигандами (изониазидом (Ind) и никотинамидом (Nad)). По результатам элементного анализа, ИК-спектроскопии и термогравиметрии установлено, что они представляют собой разнометалльные [M(H₂O)₆][Ge₂(µ-HGala)₂]·nH₂O (M= Mg (I), Ca (II), Ba (III)) и ониевые (HL)₂[Ge₂(µ-HGala)₂] (L = Ind (IV) и Nad (V)) соединения катион-анионного типа.

Ключевые слова: германий, галактаровая кислота, координационные соединения, изониазид, никотинамид.

В результате многолетних исследований на кафедре общей химии и полимеров было синтезировано ряд координационных соединений эссенциального ультрамикроэлемента германия(IV) с используемыми в медицине, косметологии, фармацевтической промышленности биологически активными гидроксикарбоновыми кислотами – лимонной, винной, ксиларовой [1].

Так, из водных растворов были выделены ониевые и разнометалльные бис(цитрато)-, тартрато– и бис(ксиларато)германаты с экзо-лигандами (L) –никотиновой кислотой (Nic), никотинамидом, изониазидом и др., а также катионами Mg, Ca, Ba различного состава и строения: мономерные (HL)₂[Ge(HCit)₂]·nH₂O, [M(H₂O)₂]]Ge(HCit)₂]·nH₂O, [Ge(μ -HXylar)₂{M(H₂O)₂}]·4H₂O (M = Mg, Ca), (HL)₂[Ge(H₂Xylar)₂]·nH₂O, [Ge(μ -HXylar)₂{Ba(H₂O)₄}]·4H₂O; димерные (HL)₂[Ge(μ -Tart)₂(OH)₂]·nH₂O; полимерные {[Ba(H₂O)₃(μ -HCitr)₂Ge]·3H₂O}_n, {[Ba(H₂O)₄(μ -Tart)₂Ge₂(μ -OH)₂]·5H₂O}_n (H₄Cit – лимонная, H₄Tart – винная, H₅Xylar – ксиларовая кислота) [2-8]. Многие из них запатентованы в качестве субстанций лекарственных средств [9-12].

Цель данной работы – синтез комплексов германия(IV) с галактаровой кислотой, установление их строения и определение физико-химических характеристик. Такое исследование представляет как самостоятельный научный, так и практический интерес в плане возможности создания на их основе новых биологически активных координационных соединений, поскольку галактаровая кислота широко применяется в сельском хозяйстве, фармацевтической промышленности, при синтезе полимерных материалов (полиангидридов, полисахаров и биополиэфиров) на основе возобновляемых биоресурсов [13-15].

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В качестве исходных веществ для синтеза координационных соединений использованы следующие реактивы (содержание основного вещества 99% –

99.5%): диоксид германия (GeO₂), галактаровая кислота (H₆Gala), гидразид изоникотиновой кислоты (изониазид, Ind), амид никотиновой кислоты (никотинамид, Nad), карбонаты магния, кальция, бария (MgCO₂, CaCO₃, BaCO₂).

Для синтеза всех соединений на первом этапе растворяли 1,05 г (5 ммоль) H₆Gala и 0.523 г (5 ммоль) GeO₂ в 250 мл горячей воды, раствор упаривали до 50 мл и охлаждали до комнатной температуры (рабочий раствор). Затем к 10 мл рабочего раствора добавляли навески MgCO₃ (комплекс I), CaCO₃ (II), BaCO₃ (III), Ind (IV), Nad (V) в мольном соотношении Ge : H₆Gala : M= 1:1:0.5 и Ge : H₆Gala : L= 1:1:1, где M – Mg²⁺, Ca²⁺, Ba²⁺, L – Ind, Nad и оставляли для кристаллизации в течение двух суток. Осадки белого (I-III, V) и желтого (IV) цветов были выделены из полученных растворов фильтрованием с последующим их промыванием и высушиванием до постоянной массы при комнатной температуре. Выход продуктов 60-70%.

По результатам элементного анализа соединениям соответствовал состав: $I - C_{12}H_{24}O_{23}$ Ge, Mg вычислено/найдено %: Ge-20.59/20.68, Mg-3.40/3.43, C-20.42/20.45, H-3.41/3.48;

II – С₁₂H₂₆O₂₄Ge₂Ca вычислено/найдено %: Ge-19.64/19.81, Ca-5.41/5.43, C-19.48/19.50, H-3.52/3.55;

III – С₁₂Н₃₄О₂₈Ge₂Ва вычислено/найдено %: Ge-15.99/16.04, Ba-15.08/15.10, C-15.86/15.89, H-3.74/3.78;

IV – С₁₂H₁₀O₁₆Ge₂Ind вычислено/найдено %: Ge-20.98/21.02, N-19.79/19.81, C-20.80/20.82, H-1.44/1.48;

 $\mathbf{V}-\mathbf{C}_{12}\mathbf{H}_{10}\mathbf{O}_{16}\mathbf{G}\mathbf{e}_2\mathbf{N}\mathbf{ad}$ вычислено/найдено %: Ge-21.44/21.47, N-18.02/18.04, C-21.26/21.28, H-1.48/1.51.

Содержание германия определяли пирокатехиновым методом после предварительного разложения комплексов кипячением в течение часа в 20%-ном растворе азотной кислоты, углерода и водорода – с помощью полуавтоматического С, N, H-анализатора. Содержание германия и других металлов при совместном присутствии определяли методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой на приборе фирмы "Perkin Elmer" "Optima 2000 DV", H₂O – термогравиметрически.

Термоаналитические кривые (ДТА, ДТГ, ТГ) получены на дериватографе Q-1500 Д системы Паулик-Паулик-Эрдей. Скорость нагревания образцов – 10 град/мин, навеска образца – 60(70) мг, эталон – прокаленный оксид алюминия, платиновый тигель, атмосфера статическая воздушная, интервал температур 20-1000°С.

ИК спектры поглощения (400-4000 см⁻¹) лиганда и комплексов записывали на спектрофотометре Frontier фирмы Perkin Elmer.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На основании данных элементного анализа в комплексах I-III реализуется мольное соотношение Ge : HGala^{5–} : M (Mg²⁺, Ca²⁺, Ba²⁺) =1:1:0.5, а в IV, V – Ge : HGala^{5–} : L (Ind, Nad)= 1:1:1.

В ИК-спектрах комплексов I-V, по сравнению со спектром исходной кислоты, исчезает полоса валентных колебаний СООН групп и появляются полосы асимметричных и симметричных колебаний ионов СОО⁻ (табл. 1). Следовательно, карбоксильные группы лиганда депротонированы и связаны с германием моно-

дентатно ($\Delta v = v_{as}(COO^{-}) - v_s(COO^{-}) \sim 332 \text{ см}^{-1}$). Последнее нашло подтверждение в появлении полосы валентных колебаний связи Ge-O.

Основные полосы поглощения в ИК-спектрах I-V

T	~ ~ ·	- 1
L	OUTITIO	
L	aominia	
-		

Частота колебаний, см ⁻¹	I (Mg)	II (Ca)	III (Ba)	IV (Ind)	V (Nad)
v _{as} (COO ⁻)	1686	1685	1690	1688	1687
v _s (COO ⁻)	1349	1359	1349	1332	1352
ν(C-OH)	1121	1114	1109	1111	1109
ν(C-O _{алк})	1051	1047	1046	1046	1048
δ(Ge-OH)	851	849	847	845	847
v(Ge-O)	720	738	736	737	740

 v(Ge-O)
 720
 738
 736
 737
 740

 В ИК-спектрах I-V также обнаружено наличие полос валентных колебаний свясо OH, короктории и для H Gala, и ноярноше у(C, O) анкоролятиров типа [16]. На

В иК-спектрах I-V также оонаружено наличие полос валентных колеоании связи C-OH, характерных для H₆Gala, и появление v(C-O) алкоголятного типа [16]. На основании этого был сделан вывод, что часть гидроксигрупп депротонируется и принимает участие в образовании связей с германием.

Термолиз I-III происходит однотипно. В широком интервале температур от 90 до 900 °С наблюдаются три следующих друг за другом эндотермичеких эффекта, сопровождающихся большой убылью массы, и экзоэффект (табл. 2). Первый эндоэффект в интервале 90-160 °С свидетельствует об удалении молекул кристаллизационной [1], второй (при 160-280 °С) – координированной воды, а третий эндоэффект (при 280-360 °С) обусловлен декарбоксилированием, т.е. удалением молекул СО₂.

В результате последнего экзоэффекта происходит окончательный глубокий окислительный термораспад комплекса и образование в качестве конечного продукта смеси оксидов GeO₂ и MgO (CaO, BaO) в соотношении 2:1 (экспериментально найденная масса остатка которых соответствует теоретически вычисленной, табл. 2).

В отличие от I-III на термогравиграммах комплексов IV, V отсутствует низкотемпературный эндоэффект, характерный для дегидратации, из чего сделан вывод, что исследуемые комплексы не являются кристаллогидратами. Единственный эндоэффект в интервале температур 60-340°C сопровождается удалением двух молекул CO_2 и экзо-лигандов. Дальнейшее декарбоксилирование происходит одновременно с окислительной термодеструкцией комплексов в интервале температур 340-800°C. Конечным продуктом термораспада является диоксид германия. Широкий интервал температурных эффектов термолиза IV,V объясняется особой упаковкой их молекул и наличием в их структуре сильных внутри– и межмолекулярных водородных связей, что характерно для исходной галактаровой кислоты [17].

Для комплексов I-V на основании совокупности данных элементного анализа, термогравиметрии (наличие в I-III 6 молекул координированной и 2 (I, III) либо 6 (III) молекул кристаллизационной воды), ИК-спектроскопии были предложены молекулярные формулы полученных соединений [Mg(H₂O)₆][Ge₂(µ-HGala)₂]·2H₂O

(I), $[Ca(H_2O)_6][Ge_2(\mu-HGala)_2] \cdot 2H_2O$ (II), $[Ba(H_2O)_6][Ge_2(\mu-HGala)_2] \cdot 6H_2O$ (III), $(HInd)_2[Ge_2(\mu-HGala)_2]$ (IV), $(HNad)_2[Ge_2(\mu-HGala)_2]$ (V) и уравнения реакций их образования:

 $2\text{GeO}_{2} + 2\text{H}_{6}\text{Gala} + \text{MCO}_{3} + (1+x)\text{H}_{2}\text{O} = [\text{M}(\text{H}_{2}\text{O})_{6}][\text{Ge}_{2}(\mu-\text{HGala})_{2}]\cdot x\text{H}_{2}\text{O}(\textbf{I-III}) + \text{CO}_{2}$ $2\text{GeO}_{2} + 2\text{H}_{6}\text{Gala} + 2\text{L} = (\text{HL})_{2}[\text{Ge}_{2}(\mu-\text{HGala})_{2}](\textbf{IV},\textbf{V}) + 5\text{H}_{2}\text{O}$

Таблица 2 Результаты исследования термической устойчивости комплексов I-V

№ ĸ-ca	Характер и температурные интервалы процессов протекающих							
	- xH ₂ O		Декарбоксилирование		Окислительная деструкция		Остаток	
	t_* (ДТА), °С	Δm TГ, %	t _{max} (ДТА), °С	Δm TΓ, %	t _{max} (ДТА), °С	Δm TГ, %	т ТГ, %	m P, %
I	90-170 (120↓) 180-260 (250↓)	9,2 x=2 17,3 x=6	270-360 (300↓)	27, 4	370-790 (410↑)	13,2	32.9	33.71 MgO 2GeO ₂
п	90-160 (100↓) 170-290 (280↓)	10,4 x=2 16,8 x=6	300-350 (330↓)	26,8	360-790 (450↑)	10,3	35.7	35.99 CaO 2GeO ₂
ш	90-160 (120↓) 170-220 (180↓)	12,00 x=6 12.28 x=6	230-400 (320↑)	17,15	410-770 (570↑)	18,57	40,0	41,24 BaO 2GeO ₂
IV	-	-	60-340 (310↓)	38,89	340-800 (620↑)	28,41	32.7	32.5 GeO ₂
V	-	-	60-340 (300↓)	36,74	350-800 (630↑)	31,66	31,6	31.2 GeO ₂

*↓↑ – эндо – (экзо) термический эффект.

**Р – рассчитанное значение.

Обнаруженное сходство ИК-спектров комплексов **I-III** свидетельствует о том, что в них формируется одинаковый димерный галактаратогерманатный анион, для которого может быть предложена следующая схема строения (рис.1).

Заряд комплексного димерного аниона в **I-III** компенсируется гексааквакатионами второго металла (Mg²⁺, Ca²⁺, Ba²⁺), происходит образование комплексов катион-анионного типа. Анион HGala⁵⁻ выполняет мостиковую функцию, проявляет себя как тридентный бисхелатный лиганд по отношению к каждому атому германия (суммарно – гексадентатный).

Рис. 1. Схема строения галактарогерманатного аниона [Ge₂(µ-HGala)₂]²⁻ в I-V

Заряд комплексного аниона в ониевых соединениях компенсируется за счет протонирования гетероциклических атомов азота Ind и Nad водородами координационно-связанных с германием карбоксильных групп и образования пиридиниевых катионов. Следует отметить, что наблюдается корреляция данных термогравиметрии и ИК-спектроскопии: одновременное удаление экзо-лигандов и двух карбоксильных групп и повышение частот v(C=N) гетероциклического кольца в ИК-спектрах на 20-22 см⁻¹ (1570 (Ind), 1590 (IV); 1550 (Nad), 1572 (V)). Последнее является следствием изменения гибридизации (sp²) гетероциклического го атома азота в лигандах на sp³ в комплексах.

СПИСОК ЛИТЕРАТУРЫ

- Сейфуллина И.И., Марцинко Е.Э. Координационные соединения германия(IV) с анионами лимонной, винной и ксиларовой кислот. Одесса: ОНУ, 2015. – 148 с.
- Seifullina I.I., Pesaroglo A.G., Minacheva L.Kh., Martsinko E.E., Sergienko V.S. Bis(citrato)germanate complexes with organic cations: Crystal structure of (HNic)₂[Ge(HCit)₂]·3H₂O // Russ. J. Inorg. Chem. – 2006. – Vol. 51, N 12. – P. 1892-1899. http://dx.doi.org/10.1134/S0036023606120096
- Martsinko E.E., Pesaroglo A.G., Minacheva L.Kh., Seifullina I.I., Sergienko V.S., Churakov A.V. Crystal and molecular structure of tetraaquabarium Di-µ-tartrato-di-µ-hydroxodigermanate(IV) pentahydrate [Ba(H₂O)₄] [Ge₂(µ-Tart)₂(µ-OH)₂]·5H₂O // Russ. J. Inorg. Chem. – 2011. – Vol. 56, N 1. – P. 26-31. http://dx.doi. org/10.1134/S0036023611010190
- Setfullina I.I., Ilyukhin A.B., Martsinko E.E., Sergienko V.S., Chebanenko E.A. Products of reaction between bis(citrate)hydroxogermanic acid and organic molecules. molecular and crystal structure of (HNad)₂[Ge(HCit)₂] · 4H₂O // Russ. J. Inorg. Chem. – 2015. – Vol. 60, N 1. – P. 36-40. http://dx.doi. org/10.1134/S0036023615010143
- Pesaroglo A.G., Martsinko E.E., Minacheva L.Kh., Seifullina I.I., Sergienko V.S. The Coordination Polymer Triaquabarium-µ-bis(citrato)germanate Trihydrate: Synthesis, Properties, Molecular and Crystal Structure of {[Ge(µ-HCit)₂Ba(H₂O)₃]·3H₂O}_n // Russ. J. Inorg. Chem. – 2010. – Vol. 55, N 9. – P. 1366-1372. http:// dx.doi.org/10.1134/s0036023610090068
- Martsinko E. E., Pesaroglo A. G., Minacheva L.Kh., Seifullina I.I., Sergienko V. S., Churakov A.V. Crystal and molecular structure of tetraaquabarium Di-µ-tartrato-di-µ-hydroxodigermanate(IV) pentahydrate [Ba(H₂O)₄][Ge₂(µ-Tart)₂(µ-OH)₂] · 5H₂O // Russ. J. Inorg. Chem. – 2011. – Vol. 56, N 1. – P. 29-34. http://dx.doi.org/10.1134/ S0036023611010190

- Марцинко Е.Э. Синтез, строение и свойства ониевых бис(ксиларато)германатов // Укр. хим. журн. 2015. – Т.81, № 9. – С. 38-42.
- Марцинко Е.Э. Синтез и строение бис(ксиларато)германатов(IV) магния, кальция и бария // Вісник ОНУ. Хімія. – 2015. – Т. 20, № 1. – С. 36-41. http://dx.doi.org/10.18524/2304-0947.2015.1(53).44549
- Seifullina, I.I., Martsinko, E.E., Afanasenko E.V. Design and synthesis of new homo- and heterometal coordination compounds of germanium(IV) for creation of low toxic preparations with a wide therapeutic action // Visn. Odes. nac. univ., Him., - 2015. - Vol. 20, N 4. - P. 6-17. http://dx.doi.org/10.18524/2304-0947.2015.4(56).56690
- 10. Патент України на корисну модель № 93994, МПК (2006.01) А61К 31/19. Кобальт біс(цитрато)германат – протигрипозний засіб / Годован В.В., Матюшкіна М.В., Сейфулліна І.Й., Гридіна Т.Л., Марцинко О.Е., Мудрик Л.М. – Заявл. 05.05.2014; Опубл. 27.10.2014, Бюл. № 20. – 6 с.
- 11. Патент України на корисну модель № 96363, МПК (2015.01) А61К 33/00, G09B 23/00. Спосіб фармакотерапії травматичного пошкодження головного мозку / Лук'янчук В.Д., Поліщук Є.М., Сейфулліна І.Й., Рисухіна Н.В., Марцинко О.Е., Чебаненко О.А. Заявл. 14.02.2014; Опубл. 10.02.2015, Бюл. № 3. 7 с.
- Патент на винахід №112912, Україна, МПК(2016.01) А61К 31/19, А61Р 31/16, С07F 7/30, С07F 1/10, С07С 59/265. Протигрипозний засіб аргентум біс(цитрато)германат / Сейфулліна І. Й., Марцинко О. Е., Чебаненко О. А., Гридіна Т. Л., Мудрик Л. М., Федчук А. С. Заявл. 11.03.2015; Опубл. 10.11.2016, Бюл. № 21.
- Warner R.C., Weber I. The Metal Combining Properties of Conalbumin // J. Am. Chem. Soc. 1953. Vol. 75, N 20. – P. 5094-5101. http://dx.doi.org/10.1021/ja01116a056
- Tean W., Liao H., Wu J.-G., Yang G.-D. Study on the coordination of the hydroxyl group: crystal structure and FT-IR spectra of potassium hydrogen galactarate // Polyhedron – 1997. – Vol. 16, N 12. – P. 2055-2058. http://dx.doi.org/10.1016/s0277-5387(96)00512-8
- Марцинко Е.Э. (2S,3R,4S,5R)-2,3,4,5-тетрагидроксигександиовая (галактаровая) кислота: особенности строения, изомерия, комплексообразующие свойства // Вісник ОНУ. – Хімія. – 2015. – Т. 20, № 3. – Р. 25-33. http://dx.doi.org/10.18524/2304-0947.2015.3(55).53991
- Григорьев А.И. Введение в колебательную спектроскопию неорганических соединений. М.: Наука, 1977. – 85с.
- Jeffrey G.A., Wood R.A. The crystal structure of galactaric acid (mucic acid) at -147°: an unusually dense, hydrogen-bonded structure // Carbohydr. Res. 1982. Vol. 108, N 2. P. 205-211. http://dx.doi.org/10.1016/S0008-6215(00)81790-5

Стаття надійшла до редакції 13.01.2017

О. А. Чебаненко, О. Е. Марцинко, І. Й. Сейфулліна, Е. В. Афанасенко

Одеський національний університет імені І.І. Мечникова, кафедра загальної хімії та полімерів, вул. Дворянська, 2, м. Одеса, 65082, Україна

СИНТЕЗ ТА ДОСЛІДЖЕННЯ РІЗНОМЕТАЛЬНИХ І ОНІЄВИХ КОМПЛЕКСНИХ СПОЛУК ГЕРМАНІЮ(IV) З ГАЛАКТАРОВОЮ КИСЛОТОЮ, ІОНАМИ Mg²⁺, Ca²⁺, Ba²⁺, ІЗОНІАЗИДОМ ТА НІКОТИНАМІДОМ

Розроблено методики синтезу та виділено в твердому стані координаційні сполуки германію(IV) з галактаровою кислотою (H_6 Gala), іонами Mg^{2+} , Ca^{2+} , Ba^{2+} та екзолігандами (ізоніазидом (Ind) та нікотинамідом (Nad)). За результатами елементного аналізу, IЧ-спектроскопії та термогравіметрії встановлено, що сполуки являють собою різнометальні [$M(H_2O)_6$][$Ge_2(\mu$ -HGala)_2]·nH_2O (M= Mg (I), Ca (II), Ba (III)) та онієві (HL)₂[$Ge_2(\mu$ -HGala)₂] (L = Ind (IV) и Nad (V)) комплекси катіон-аніонного типу.

Ключові слова: германій, галактарова кислота, координаційні сполуки, ізоніазид, нікотинамід.

E. A. Chebanenko, E. E. Martsinko, I. I. Seifullina, E. V. Afanasenko Odessa Mechnikov National University, Department of General Chemistry and Polymers, Dvoryanskaya St., 2, Odessa, 65082

SYNTHESIS AND STRUCTURE OF DIFFERENT-METAL AND ONIUM GERMANIUM (IV) COORDINATION COMPOUNDS WITH GALACTARIC ACID, Mg²⁺, Ca²⁺, Ba²⁺ IONS, ISONIAZID AND NICOTINAMIDE

According to the new-designed method of synthesis the solid coordination compounds of Germanium (IV) with galactaric acid (H_6Gala), Mg^{2+} , Ca^{2+} , Ba^{2+} ions and exo-ligands (isoniazide (Ind) and nicotinamide (Nad)) were obtained: $M(H_2O)_6][Ge_2(\mu$ -HGala)_2] nH_2O (M= Mg (I), Ca (II), Ba (III)), (HL)_2[Ge_2(\mu-HGala)_2] (L = Ind (IV) and Nad (V)).

Due to the data of elemental analyses the molar ration in compounds I-III is Ge : HGala⁵⁻ : M (Mg²⁺, Ca²⁺, Ba²⁺) =1:1:0.5 and in IV, V – Ge : HGala⁵⁻ : L (Ind, Nad)= 1:1:1. Comparatively to the spectrum of initial acid, in the IR-spectra of compounds I-V the stretching vibrations of COOH group are absent and symmetrical and asymmetrical valence vibrations of COO^{\Box} ions appear. Consequently carboxylic groups of ligand are deprotonated and bonded with Germanium atom monodentate ($\Delta v = v_{as}(COO⁻) - v_s(COO⁻) ~ 332 \text{ cm}^{-1}$). This was confirmed by presence of Ge-O valence vibrations

The molecular formulas of the compounds **I-V** and their preparation reactions were suggested due to the data of elemental analyses, thermogravimetry (presence of 6 coordinated water molecules and 2 (**I**, **III**) or 6 (**III**) crystallization water molecules) and IR-spectroscopy: $2\text{GeO}_2 + 2\text{H}_6\text{Gala} + \text{MCO}_3 + (1+x)\text{H}_2\text{O} = [\text{M}(\text{H}_2\text{O})_6][\text{Ge}_2(\mu-\text{HGala})_2] \cdot \text{xH}_2\text{O}(\text{I-III}) + \text{CO}_2$ $2\text{GeO}_2 + 2\text{H}_6\text{Gala} + 2\text{L} = (\text{HL})_2[\text{Ge}_2(\mu-\text{HGala})_2](\text{IV}, \text{V}) + 5\text{H}_2\text{O}$

Key words: germanium, galactaric acid, coordination compounds, isoniazid, nicotinamide.

REFERENCES

- 1. Seifullina I.I., Martsinko E.E. Koordinatsionnyie soedineniya germaniya(IV) s anionami limonnoy, vinnoy i ksilarovoy kislot. Odessa, ONU, 2015, 148 p. (in Russian)
- Seifullina I.I., Pesaroglo A.G., Minacheva L.Kh., Martsinko E.E., Sergienko V.S. *Bis(citrato)germanate complexes with organic cations: Crystal structure of (HNic)₂[Ge(HCit)₂]·3H₂O. Russ. J. Inorg. Chem, 2006, vol. 51, no 12, pp. 1892-1899. http://dx.doi.org/10.1134/S0036023606120096*
- Martsinko E.E., Pesaroglo A.G., Minacheva L.Kh., Seifullina I.I., Sergienko V.S., Churakov A.V. Crystal and molecular structure of tetraaquabarium Di-µ-tartrato-di-µ-hydroxodigermanate(IV) pentahydrate [Ba(H₂O)₄] [Ge₂(µ-Tart)₂(µ-OH)₂]·5H₂O. Russ. J. Inorg. Chem, 2011, vol. 56, no 1, pp. 26-31. http://dx.doi.org/10.1134/ S0036023611010190
- Seifullina I.I., Ilyukhin A.B., Martsinko E.E., Sergienko V.S., Chebanenko E.A. Products of reaction between bis(citrate)hydroxogermanic acid and organic molecules. molecular and crystal structure of (HNad)₂[Ge(HCit)₂] · 4H₂O. Russ. J. Inorg. Chem, 2015, vol. 60, no 1, pp. 36-40. http://dx.doi.org/10.1134/ S0036023615010143
- Pesaroglo A.G., Martsinko E.E., Minacheva L.Kh., Seifullina I.I., Sergienko V.S. *The Coordination Polymer Triaquabarium-µ-bis(citrato)germanate Trihydrate: Synthesis, Properties, Molecular and Crystal Structure of {[Ge(µ-HCit)₂Ba(H₂O)₃]·3H₂O}_n. Russ. J. Inorg. Chem., 2010, vol. 55, no 9, pp. 1366-1372. http://dx.doi. org/10.1134/s0036023610090068*
- Martsinko E. E., Pesaroglo A. G., Minacheva L.Kh., Seifullina I.I., Sergienko V. S., Churakov A.V. Crystal and molecular structure of tetraaquabarium Di-µ-tartrato-di-µ-hydroxodigermanate(IV) pentahydrate [Ba(H₂O)₄] [Ge₂(µ-Tart)₂(µ-OH)₂]·5H₂O. Russ. J. Inorg. Chem., 2011, vol. 56, no 1, pp. 29-34. http://dx.doi.org/10.1134/ S0036023611010190
- 7. Martsinko E.E. *Sintez, stroenie i svoystva onievyih bis(ksilarato)germanatov.* Ukr. him. zhurn., 2015, vol. 81, no 9, pp. 38-42. *(in Russian)*
Разнометалльные и ониевые комплексные соединения германия(IV)

- Martsinko E.E. Synthesis and structure bis(xylarato)germanates of magnesium, calcium and barium. Visn. Odes. nac. univ., Him., 2015, vol. 20, no 1, pp. 36-41. http://dx.doi.org/10.18524/2304-0947.2015.1(53).44549
- Seifullina, I.I., Martsinko, E.E., Afanasenko E.V. Design and synthesis of new homo- and heterometal coordination compounds of germanium(IV) for creation of low toxic preparations with a wide therapeutic action. Visn. Odes. nac. univ., Him., 2015, vol. 20, no 4, pp. 6-17. http://dx.doi.org/10.18524/2304-0947.2015.4(56).56690
- 10. Godovan V.V., Matyushkina M.V., Seifullina I.I., Gridina T.L., Martsinko E.E., Mudrik L.M. Cobaltbis(citrato)germanate, featuring an anti-influenza effect. Patent UA, no 93994, 2014. (in Ukrainian)
- 11. Luk'yanchuk V.D., Polischuk E.M., Seyfullina I.I., Risuhina N.V., Martsinko E.E., Chebanenko E.A. *Sposib* farmakoterapiyi travmatichnogo poshkodzhennya golovnogo mozku. Patent UA, no 96363, 2015. (in Ukrainian)
- 12. Seifullina I.I., Martsinko E.E., Chebanenko E.A., Gridina T.L., Mudrik L.M., Fedchuk A. S. Protigripozniy zasib argentum bis(tsitrato)germanat. Patent UA, no 112912, 2016. (in Ukrainian)
- Warner R.C., Weber I. *The Metal Combining Properties of Conalbumin*. J. Am. Chem. Soc, 1953, vol. 75, no 20, pp. 5094-5101. http://dx.doi.org/10.1021/ja01116a056
- Tean W., Liao H., Wu J.-G., Yang G.-D. Study on the coordination of the hydroxyl group: crystal structure and FT-IR spectra of potassium hydrogen galactarate. Polyhedron, 1997, vol. 16, no 12, pp. 2055-2058. http:// dx.doi.org/10.1016/s0277-5387(96)00512-8
- Martsinko E.E. (2S, 3R, 4S, 5R) -2,3,4,5-tetrahydroxyhexanedioic (galactaric) acid: structural features, isomers, complexing properties. Visn. Odes. nac. univ., Him., 2015, vol.20, no 3, pp. 25-33. http://dx.doi. org/10.18524/2304-0947.2015.3(55).53991
- 16. Grigor'ev A.I. Vvedenie v kolebatel'nuju spektroskopiju neorganicheskih soedinenij. Moscow, Nauka, 1977, 85p. (in Russian)
- Jeffrey G.A., Wood R.A. *The crystal structure of galactaric acid (mucic acid) at -147°: an unusually dense, hydrogen-bonded structure.* Carbohydr. Res., 1982, vol. 108, no 2, pp. 205-211. http://dx.doi.org/10.1016/S0008-6215(00)81790-5.

УДК 54.128.13:541.124:542.943

Т. Л. Ракитська, Г. М. Джига, Т. О. Кіосе

Одеський національний університет імені І.І. Мечникова, кафедра неорганічної хімії та хімічної екології, вул. Дворянська, 2, Одеса, 65026, Україна E-mail: tlr@onu.edu.ua

АДСОРБЦІЙНІ ТА ФІЗИКО-ХІМІЧНІ ВЛАСТИВОСТІ ПРИРОДНИХ ТА МОДИФІКОВАНИХ ФОРМ МОНТМОРИЛОНІТУ

Узагальнені літературні та власні результати щодо впливу різних чинників на фізикохімічні властивості та структурні параметри монтморилоніту різного походження. Систематично досліджено адсорбційно-десорбційні властивості відносно парів води зразків природного бентоніту з трьох родовищ України, а також модифікованих різними способами.

Ключові слова: природний та модифікований бентоніт, структурно-адсорбційні властивості, питома поверхня, активність адсорбованої води.

Розробка закріплених на різних носіях металокомплексних каталізаторів (ЗМКК) знешкодження газоподібних токсичних речовин (СО, О₃, SO₂) потребує детального вивчення фізико-хімічних властивостей носіїв. Не зважаючи на те, що бентоніти досконало вивчені, їх продовжують інтенсивно досліджувати в зв'язку з новими областями застосування. Нами вперше використовуються бентоніти з різних родовищ України в якості носіїв комплексів паладію(ІІ) та купруму(ІІ), що виявили каталітичну активність в реакціях окиснення монооксиду вуглецю та розкладання озону.

Мета роботи — узагальнити літературні та власні результати щодо впливу різних чинників на фізико-хімічні властивості та структурні параметри бентонітів, які містять переважно фазу монтморилоніту (шаруваті алюмосилікати типу 2:1).

В зв'язку з цим необхідно було вирішити такі завдання дослідження: узагальнити літературні дані [1-34] та з їх використання здійснити розрахунки для отримання додаткової інформації; виявити вплив природи катіонів металів в іонообмінних формах монтморилоніту та умов кислотного модифікування мінералу на його деякі фізико-хімічні властивості та величину питомої поверхні; визначити зміну базальної відстані d (001) залежно від вмісту води в зразках; визначити термодинамічну активність води, адсорбованої різними зразками бентоніту; дослідити адсорбцію-десорбцію парів води зразками бентоніту з трьох родовищ України та зіставити отримані результати з літературними.

Вплив природи іонообмінних катіонів та умов кислотного модифікування на фізико-хімічні властивості і структурні параметри монтморилоніту

У результаті кислотного модифікування природних бентонітів, що переважно містять монтморилоніт, істотно змінюються їх фізико-хімічні властивості і структурні характеристики, що безперечно впливатиме на активність нанесених металокомплексних каталізаторів редокс-реакцій за участю монооксиду вуглецю та озону. Внаслідок кислотної обробки змінюється хімічний склад бентонітів за рахунок розчинення катіонів Mg^{2+} , Fe^{2+} , Fe^{3+} , Al^{3+} [1-5], швидкість видалення яких зменшується у такому порядку $Mg^{2+} > Fe^{2+} > Fe^{3+} > Al^{3+}$ [2]. Кислотна обробка бентоніту призводить до збільшення кислотності поверхні за рахунок зростання кількості бренстедовських кислотних центрів (B); число льюїсовських кислотних центрів (L) може зменшуватися через вилучення Al^{3+} [1, 3, 4]. Так, за даними [4] кислотність природного монтморилоніту різко зростає з 9,4 до 63 ммоль/г в результаті його обробки 5M H_2SO_4 при 90 °С протягом 1 години, а потім, зі збільшенням часу контакту (2, 6, 10 годин), кислотність убуває з 55 до 48 ммоль/г, що обумовлено зменшенням кількості L-центрів.

Зміна хімічного складу бентонітів і кислотності поверхні впливає на термічні властивості кислотно-модифікованих зразків. Наприклад, двоступінчата дегідратація і дегідроксилювання П-Бент (Анкерія, Греція) відбуваються при 140, 210 і 720 °С, а ці ж процеси для Н-Бент – при більш низьких температурах 105, 150-155 і 675 °С [2].

У табл. 1 узагальнені деякі дані про вплив природи іонообмінних катіонів [7-9, 13, 16] і умов кислотного модифікування на величину площі питомої поверхні (S_{nur}), розрахованої за даними адсорбції азоту та парів води [1-4, 6]. Як видно з даних табл. 1, гомоіонні зразки монтоморилоніту характеризуються більшою питомою поверхнею, ніж природні. При цьому величина S_{nur} залежить від природи катіонів, а також походження бентоніту (монтморилоніту).

Для деяких гомоіонних зразків Монт величина S_{пит} змінюється у такій послідовності: П-Монт (26) < Na⁺-Монт (33) < Al³⁺-Монт (48) < Ca²⁺-Монт (50) < К⁺-Монт (56) < Н-Монт (60) [13]. Видно, що кислотно-модифікована форма Монт має найбільшу величину питомої поверхні. Дані авторів [16] демонструють несуттєвий вплив природи одно- і двозарядних катіонів на величину S_{пил}, розраховану виходячи з адсорбції азоту, а характер зміни цього параметра ніяк не корелює з величиною іонного радіусу катіонів. Так, іони Li⁺ і Mg²⁺ мають близькі значення іонного радіусу (0,68 і 0,66 Å) і S_{пит} (45 і 46 м²/г), відповідно; іонний радіус Ba^{2+} в два рази більше (1,34 Å), проте величина S_{пит} зразка Ва²⁺-Монт така ж, як для двох попередніх. №У той же час величина S_{пит}, розрахована виходячи з адсорбції парів води (табл. 1) істотно залежить від природи катіонів. Так, для зразків з однозарядними іонами величина питомої поверхні зменшується зі збільшенням іонного радіусу (А) у ряді: Li⁺(0,68) < Na⁺(0,97) < Cs⁺(1,67). Для зразків з двозарядними катіонами зі збільшенням радіусу (Å) у ряді: $Mg^{2+}(0,66) < \hat{Ca}^{2+}(0,99) < Sr^{2+}(1,12) < \hat{Ca}^{2+}(1,12) < \hat{Ca}$ Ва²⁺(1,34) величина S_{пит} змінюється нерегулярно. Очевидно, що і ступінь гідратації катіонів значно впливає на структуру монтморилоніту. З даних [1, 7-9, 16,26] також випливає, що $S_{nur}(H_2O) >> S_{nur}(N_2)$. На думку [1, 16, 26] це обумовлено меншим розміром площі поперечного перерізу молекули води в порівнянні з молекулою азоту, що полегшує проникнення молекул Н,О в міжшаровий простір, який не доступний для молекул азоту.

Умови кислотного модифікування, а саме, концентрація і природа кислоти, час контакту кислоти зі зразком, а також співвідношення Т : Р істотно впливають на структуру і структурно-адсорбційні параметри (S_{пит}, пористість) бентонітів.

Дані табл. 1 демонструють вплив концентрації кислоти (HCl, H₂SO₄) [1-3, 26], тривалості [4] і температури обробки [6] на величину S_{пит} кислотно-модифікованих зразків монтморилоніту. Можна зробити наступні узагальнюючі висновки: кислотне модифікування призводить до багаторазового збільшення питомої поверхні

Назва	Умови	Зразки	S _{nur}	S _{пит} , м²/г		
(місцезнаходження) родовища	модифі- кування	Зразки	БЕТ (N ₂)	БЕТ (H ₂ O)	ратура	
1	2	3	4	5	6	
Елсови Поток (Словаччина)	-	Li ⁺ -Монт	45,0	291	[16]	
		Na ⁺ -Монт	40,0	253		
		Сs ⁺ -Монт	40,0	208		
		Са ²⁺ -Монт	37,0	175		
		Мд ²⁺ -Монт	46,0	230		
		Sr ²⁺ -Монт	41,0	200		
		Ва ²⁺ -Монт	46,0	190		
Провінція Сан Хуан (Аргентина)	1,5:100 [моль/л]	П-Бент	26,0	-	[13]	
	24 год	*2Н-Монт	60,0	-		
		Na ⁺ -Монт	33,0	-		
		К+-Монт	56,0	-		
		Са ²⁺ -Монт	50,0	-		
		А1 ³⁺ -Монт	48,0	-		
Кем-Берто (Марокко)	-	Са ²⁺ -Монт	88,0	345	[9]	
		Na ⁺ -Монт	110,0	262		
Чито (Аризона, США)	-	Li ⁺ -Монт	78,0	-	[8]	
Хмельник (Польща)	-	Са ²⁺ -Монт	48,9	732	[7]	
		Na ⁺ -Монт	56,5	644		
		К+-Монт	49,9	336		
Пижевське (Росія)	H ₂ SO ₄ [моль/л]	П-Бент	34,0	695	[1, 26]	
	[]	*0,5Н-Монт	175,0	517		
		*1,2Н-Монт	322,0	406		
		*1,7Н-Монт	302,0	374		
		*2,3Н-Монт	235,0	298		
		*3Н-Монт	222,0	272		

Таблиця 1 Вплив природи іонообмінних катіонів та умов кислотно-термального модифікування на величину питомої поверхні бентонітів з різних родовищ

			1	продовження	таолиці і
1	2	3	4	5	6
Кутч (Дауілия Інлія)	1:50	П-Бент	38,0	-	[3]
(Західна індія)	[моль/л],	*0,5Н-Монт-2	138,4	-	
	80 °C	*1Н-Монт-2	189,8	-	
		*1,5Н-Монт-2	326,3	-	
		*2Н-Монт-2	347,7	-	
		*2,5Н-Монт-2	370,4	-	
		*3Н-Монт-2	370,4	-	
		*3,5Н-Монт-2	297,5	-	
		*4Н-Монт-2	377,0	-	
Хіос (Греція)	1:15	П-Бент	53,5	-	[2]
	псі [моль/л],	*0,5Н-Монт-6	110,0	-	
	/0 °C	*1Н-Монт-6	150,0	-	
		*2Н-Монт-6	200,0	-	
		*3Н-Монт-6	175,0	-	
		*5Н-Монт-6	140,0	-	
		*8Н-Монт-6	125,0	-	
Анкерія (Греція)	1:15 HCl	П-Бент	61,8	-	[2]
	пст [моль/л],	*0,5Н-Монт-6	120,0	-	
	70°C	*1Н-Монт-6	180,0	-	
		*2Н-Монт-6	260,0	-	
		*3Н-Монт-6	210,0	-	
		*5Н-Монт-6	200,0	-	
		*8Н-Монт-6	180,0	-	
Адеразава (Японія)	1:50 H SO	П-Монт	15,0	-	[4]
	[моль/л],	*5Н-Монт-1	138,0	-	
	90°C	*5Н-Монт-2	145,0	-	
		*5Н-Монт-6	170,0	-	
		*5Н-Монт-10	136,0	-	

Адсорбційні та фізико-хімічні властивості різних форм монтморилоніту

Проловження таблиці 1

Закінчення таблиці 1

1	2	3	4	5	6
Колормінас Колорифісіо	1:30 HCl	П-Монт	-	-	[6]
(Мексика)	[моль/л]	*2H-Монт-6 (50°С)	96,0	-	
		*4H-Монт-6 (50°С)	114,0	-	
		*3Н-Монт-6 (65°С)	150,0	-	
		*2H-Монт-6 (80°С)	176,0		
		*4Н-Монт-6 (80°С)	216,0	-	

 перше число вказує молярність кислоти, що використовується, друге – час контакту зразка з кислотою

монморилоніту; зі збільшенням концентрації кислоти [1-4] і часу контакту кислоти зі зразком монтморилоніту [4] величина $S_{nur}(N_2)$ проходить через максимум; з підвищенням температури кислотної обробки S_{nur} зростає [6]. У той же час, за даними [26], величина $S_{nur}(H_2O)$ убуває зі збільшенням концентрації кислоти.

Про зміни в структурі монтморилоніту за різних умов кислотного модифікування судять за даними РФА та ІЧ-спектроскопії. Найбільш чутливим до структурних змін є базальний рефлекс 001, інтенсивність і положення якого залежать від концентрації кислоти, часу контакту та температури обробки [2-6]. Так, зниження інтенсивності і уширення рефлексу (001) відбувається при \geq 3N (1,5M), а при = 8N (4M) цей рефлекс зникає і з'являється аморфний SiO₂ [3]. Процес аморфізації помітно посилюється зі збільшенням тривалості контакту кислоти з мінералом. Так, базальний рефлекс (001) зникає після десяти (5M H₂SO₄, 90 °C) [4], семи (6M HCl, 90 °C) [5] і двох годин (4M H₂SO₄, 80 °C) [3] обробки глинистого мінералу. З підвищенням температури модифікування кристалічність зразків знижується навіть при низьких С_{HCl}[6].

ІЧ-спектри кислотно-модифікованих зразків демонструють зміни октаедричної структури монтморилоніту – зменшується інтенсивність смуг 3629 см⁻¹ (Al-Al-OH), 835 см⁻¹ (Al-Mg-OH), 875 см⁻¹ (Al-Fe-OH) [2, 3, 6]. Зміну тетраедричної структури 1032 см⁻¹ (Si-O-Si) та 535 см⁻¹ (Si-O) спостерігали при CH₂SO₄ \ge 3,5M, хоча вже при CH₂SO₄ \ge 1,5M інтенсивність смуг при 468 і 804 см⁻¹ для вільного SiO₂ збільшується [3].

Адсорбційно-десорбційні властивості природних та модифікованих бентонітів відносно парів води

Важливу інформацію про властивості природних сорбентів можна отримати шляхом дослідження адсорбції-десорбції парів води. Молекула води належить до полярних молекул з діаметром 0,266 нм і високим значенням дипольного моменту. Ці властивості обумовлюють її легке проникнення в структуру природних сорбентів та сильну специфічну взаємодію з катіонними центрами, що призводить до селективної адсорбції парів води. Процеси адсорбції-десорбції парів води глинистими мінералами різного складу та походження детально вивчені [1, 26, 27]. Ізотерми адсорбції парів води зразками мінералів, які переважно містять монтморилоніт, мають S-подібний характер з різким підйомом при P/P_s \rightarrow 1. З цього випливає, що монтморилоніт характеризується структурною неоднорідністю, тобто наявністю мікро-, мезо– і макропор. Десорбція води характеризується чітко вираженим капілярно-конденсаційним гістерезисом, що є одним із свідчень зміни властивостей сорбенту під дією молекул води. У табл. 2 наведені деякі приклади впливу умов кислотної активації та природи катіону в іонообмінному комплексі монтморилоніту на параметри рівняння БЕТ для ізотерм адсорбції парів води та значення S_{пит}.

Таблиця 2

	монтморилонтту								
Назва		Параметј	ои БЕТ	S _{пит}	Tirono				
(місцезнаходження) родовища	Зразок	а _т , ммоль/г	С	БЕТ (H ₂ O)	БЕТ (N ₂)	тура			
Черкаський	П-Бент	4,60	-	410	-	[26]			
(Україна)	*0,5Н-Монт	3,70	-	329	-				
	*1,2Н-Монт	3,30	-	294	-				
	*1,7Н-Монт	3,00	-	268	-				
	*2,3Н-Монт	2,30	-	204	-				
	*3Н-Монт	1,80	-	162	-				
Штат Вайомінг (США)	П-Бент	-	-	752	-	[10]			
	Li+-Монт	3,79*	-	246**	-				
	Na ⁺ -Монт	0,64*	-	41**	-				
	Мд ²⁺ -Монт	4,85*	-	315**	-				
	Са ²⁺ -Монт	5,72*	-	371**	-				
	Си ²⁺ Монт	2,88*	-	187**	-				
	Fe ³⁺ -Монт	4,05*	-	263**	-				
Елсови Поток	Li ⁺ -Монт	4,55	10	291	45	[16]			
(Словаччина)	Na ⁺ -Монт	3,96	5	253	40				
	Сѕ+-Монт	3,26	6	208	40				
	Са ²⁺ -Монт	2,75	9	175	37				
	Мд ²⁺ -Монт	3,60	31	230	46				
	Sr ²⁺ -Монт	3,13	25	200	41				
	Ва ²⁺ -Монт	2,97	27	190	46				

Параметри рівняння БЕТ ізотерм адсорбції парів води та S _{пит} різних зразків	
монтморилоніту	

*- число вказує на молярність кислоти

** – параметри *a*_m (ммоль/г) та розраховані нами

Т. Л. Ракитська, Г. М. Джига, Т. О. Кіосе

При варіюванні сірчаної кислоти від 0,5 до 3М ємність моношару з молекул води $(a_{\rm m})$ та величина S $_{\rm пит}$ зменшуються, що вказує на структурні зміни монтморилоніту, а саме зникають мікропори і утворюється адсорбент з більш крупними порами. Результати досліджень [10, 16] та узагальнюючі дані [26] вказують на те, що адсорбційна здатність монтморилоніту визначається також індивідуальними властивостями обмінних катіонів – їх розміром, зарядом, координаційним числом та будовою зовнішніх електронних оболонок [26]. Але характер впливу катіонів на адсорбцію парів води залежить від походження бентоніту. За даними [10] величина а, зразка Na⁺-Монт в шість разів менша ніж зразка Li⁺-Монт, в той же час за даними [16] ця різниця зовсім незначна. Інший приклад, за даними [10] зразок Ca²⁺-Монт має найбільшу величину ємності моношару, а за даними [16] – найменшу. Одночасне використання двох методів дослідження зразків монтморилоніту – адсорбційного та рентгенівського дало можливість розмежувати адсорбцію води на зовнішній поверхні та в міжпакетних проміжках мінералу. У першому випадку адсорбція води відбувається при низьких значеннях Р/Р, молекули води не проникають в міжпакетний простір, тому базальна відстань d(001) мало відрізняється від товщини елементарного пакету для монтморилоніту, яка становить 9,4 Å. Зі збільшенням P/P параметр d(001), або товщина міжпакетного простору $\Delta d = d(001) - 9.4$ зростають, що свідчить про утворення одного (1W), двох (2W), трьох (3W) і навіть більше шарів молекул води в міжпакетному просторі. Звертаємо увагу на те, що значення d(001) повітряно-сухих зразків бентоніту залежать від його походження [5, 6, 12]; дегідратація бентоніту за 500° С призводить до втрати міжпакетної води та зниження базальної відстані до 9,9 Å [11]; значення d(001) кислотно-модифікованих зразків монтморилоніту зменшуються [5, 6], але більш помітно у разі [6], що вказує на значний ступінь обміну міжпакетних катіонів на іони водню; для катіонних форм монтморилоніту значення d(001) зростає зі збільшенням кількості адсорбованої води [13, 14, 21-26]. У роботі [20] зроблено аналіз літературних даних щодо взаємозв'язку між адсорбційними властивостями різних за походженням глинистих мінералів переважно з фазою монтморилоніту та значеннями базальної відстані d(001). Залежно від кількості молекулярних шарів води (nW) параметр d(001) має наступні значення, Å: 10,0 (0W); 11,5 – 12,5 (1W); 14,5 – 15,5 (2W); 18,0 - 19,1 (3W).

Важливим термодинамічним параметром, що характеризує властивості адсорбованої та об'ємної води, є активність води, яка визначається величиною P/P_s , де P – рівноважний тиск парів води, P_s – тиск насичених парів води [28-30]. Показано, що активність води залежить від сукупності структурних та фізикохімічних властивостей сорбентів, а також природи та концентрації іонів металів, які різними способами закріплені на поверхні сорбенту [31-33].

Ми проаналізували наведені в літературі [1, 26, 27] ізотерми адсорбції парів води природними та катіонзаміщеними монтморилонітами та визначили активність води за умови сталої величини адсорбції, а саме 4,0 і 8,0 ммоль/г (табл. 3).

З наведених даних можна зробити наступні висновки. Активність адсорбованої води залежить від походження бентоніту та природи катіону у структурі монтморилоніту. Так, для Пижевського бентоніту активність води набагато менша, ніж для Горбського бентоніту. Після прожарювання при 280 °C зразка Na⁺-Монт активність адсорбованої води зростає до 0,8. Аналіз даних щодо сорбції води катіон-заміщеними зразками монтморилоніту (Ca²⁺, Ba²⁺, H⁺, K⁺,

Назва	Зразок	a _{H.O} =	$\mathbf{a}_{\mathrm{H},\mathrm{O}} = \mathbf{P}/\mathbf{P}_{\mathrm{S}}$			
(місцезнаходження) родовища Пижевське (Росія)		4,0 ммоль/г	8,0 ммоль/г	тура		
Пижевське (Росія)	П-Бент	0,10	0,30	[27]		
Горбське (Україна)	П-Бент	0,42	0,80	-		
Пижевське (Росія)	Na ⁺ -Монт	0,18	0,56	[1]		
	Na ⁺ -Монт прожар. при 280°С)	~ 0,80	-			
	Са ²⁺ -Монт	0,06	0,25	[26]		
	Ва ²⁺ -Монт	0,13	0,56	-		
	Na ⁺ -Монт	0,37	0,60	-		
Жабинське (Росія)	Са ²⁺ -Монт	0,08	0,22	[27]		
	Na ⁺ -Монт	0,28	0,80	-		
	К+-Монт	0,56	0,90	-		
Штат Вайомінг (США)	Са ²⁺ -Монт	0,05	0,20	[27]		
	Н-Монт	0,10	0,35	-		
	Na ⁺ -Монт	0,20	0,55	-		
	К+-Монт	0,30	0,82	-		
Побіянковське (Росія)	Са ²⁺ -Монт	0,03	0,16	[27]		
	Н-Монт	0,05	0,21	-		
	Na ⁺ -Монт	0,19	0,69	-		
	К+-Монт	0,33	0,86	-		

Таблиця 3 Вплив природи бентоніту та катіонів на термодинамічну активність адсорбованої води при постійній величині адсорбції

 Na^+) приводить до висновку, що при одній і тій же величині сорбції, наприклад 4 ммоль/г, активність води істотно підвищується в рядах $Ca^{2+} < Ba^{2+} < Na^+$ (Пижевський бентоніт); $Ca^{2+} < Na^+ < K^+$ (Жабинський бентоніт); $Ca^{2+} < H^+ < Na^+ < K^+$ (Побіянковський бентоніт). Також видно, що значення для однакових катіонних форм монтморилоніту з різних родовищ, відрізняються. Все це, на нашу думку, безперечно впливатиме на рівновагу реакцій поверхневого комплексоутворення, що призведе до зміни складу комплексів та їх реакційної здатності.

Адсорбція парів води зразками природного та модифікованого іонами водню, паладію(II) та купруму(II) бентоніту

У роботі досліджувалися зразки бентоніту з трьох родовищ України: Горбського – Бент(Γ) (ТУУ 26.8 05792908.005:2005), Дашуковського – Бент(Д) (ТУУ 14.2-00223941-006:2010) та Кіровоградського – Бент(К) (ТУУ 14.2-23231149-001-2002).

Модифіковані зразки бентоніту (М-Бент) отримували кип'ятінням у дистильованій воді впродовж 1 години – H₂O-Бент; прожарюванням при 300° C впродовж 1 години – 300-Бент; кип'ятінням в 1М HNO₃ впродовж 1 години – 1H-Бент-1. Відповідні форми бентоніту використовували для закріплення методом імпрегнування за вологоємністю солей паладію(II) та купруму(II) – Pd(II)-Cu(II)/ П-Бент (або М-Бент).

Сорбцію парів води зразками природного бентоніту та його модифікованих форм досліджували в термостатованій при 21 °C вакуумній установці із кварцовими пружинними вагами Мак Бена-Бакра [31-33].

На рис. 1 представлені ізотерми адсорбції-десорбції парів води зразками бентонітів з трьох родовищ України та відповідних модифікованих форм. Ізотерми сорбції парів води для всіх зразків мають S-подібну форму з чітко вираженою петлею капілярно-конденсаційного гістерезису, яка має аномальний характер, а саме, існує аж до низьких значень P/P_s. Для всіх ізотерм за умови P/P_s \rightarrow 1 спостерігається різкий підйом, що свідчить про наявність в зразках бентоніту великих пор з $r \geq 300$ Å. Бентоніти характеризуються наявністю мікро-, мезо– і макропор, тобто ці мінерали є структурно неоднорідними.

Причини появи аномальної петлі гістерезису можуть бути наступні: повільне встановлення адсорбційно-десорбційної рівноваги і необоротна адсорбція молекул води в мікропорах бентоніту; гідратація катіонів, в тому числі, і іонів Pd(II) і Cu(II); поява нових центрів адсорбції за рахунок руйнування точечних контактів не тільки під час адсорбції води, але і в процесі закріплення на носії ацидокомплексів Pd(II) і Cu(II); і Cu(II).

Отримані ізотерми проаналізовані за допомогою рівняння полімолекулярної адсорбції Брунауера, Еммета, Теллера – БЕТ (1):

$$\frac{\frac{P}{P_{s}}}{a(1-P/P_{s})} = \frac{1}{a_{m} \cdot C} + \frac{C-1}{a_{m} \cdot C} \cdot \frac{P}{P_{s}},$$
(1)

де а – величина адсорбції при відносному тиску P/P_s; а_m – ємність моношару; С – константа, що характеризує спорідненість молекул води до адсорбенту в першому шарі. Рівняння (1) з коефіцієнтом кореляції R² = 0,98-0,99 залежно від зразка виконується аж до P/P_s» 0,5-0,6 (як приклад, рис. 2). З використанням константи С розраховували теплоту адсорбції Q₁ в першому шарі за допомогою наближеного співвідношення [26]:

$$C \approx e^{\frac{Q_1 - Q_L}{RT}}$$
(2)

де Q_L – теплота конденсації води (Q_L = 135,9Дж/моль).

Питому поверхню зразків розраховували за допомогою рівняння:

$$S_{\text{nurr}} = a_{\text{m}} \cdot N_{\text{A}} \cdot \omega \cdot 10^{-20}, \, \text{m}^2/\text{r}, \tag{3}$$

де $a_{\rm m}$ – ємність моношару, ммоль/г; $N_{\rm A}$ – число Авогадро; ω – площа поперечного перерізу молекули адсорбату (для молекули води в глинистих мінералах $\omega = 10.8 \cdot 10^{-20} \text{ M}^2$).

Аналіз результатів, представлених у табл. 4, приводить до наступних висновків. Величина ємності моношару для природних бентонітів зменшується у ряді: П-Бент(Д) > П-Бент(Г) > П-Бент(К) (I). Така ж послідовність зберігається для кожної серії зразків модифікованих бентонітів. Крім того, незалежно від походження бентоніту у разі кислотного модифікування величина а_m незначно зростає, а при нанесенні комплексів Pd(II) і Cu(II) – помітно зменшується.

Таблиця 4

	Константи	Константи ріняння		S _{пит} , м ² /г		<i>a</i> _{H,0}	
Зразок	ьет а _m ,ммоль/г С		Q ₁ , Дж/моль	Ar	БЕТ (Н ₂ О)	<i>а</i> = 2,0 ммоль/г	<i>a</i> = 4,0 ммоль/г
П-Бент(Г)	1,96	26,92	8180	33	127	0,19	0,56
H ₂ O-Бент(Γ)	1,57	19,95	7450	61	102	0,27	0,63
Рd(II)-Cu(II)/H ₂ O- Бент(Γ)	1,21	17,72	7160	51	79	0,42	0,83
300-Бент(Г)	1,29	17,42	712	44	84	0,39	0,77
Pd(II)Cu(II)/300-Бент(Г)	1,27	16,06	6920	26	83	0,39	0,81
1Н-Бент(Г)-1	2,00	3,36	3100	50	130	0,28	0,62
Рd(II)-Cu(II)/1Н- Бент(Г)-1	1,22	10,85	5960	42	79	0,42	0,80
П-Бент(Д)	3,11	32,78	8610	34	202	0,06	0,26
Н ₂ О-Бент(Д)	3,40	10,87	5960	-	221	0,1	0,3
Рd(II)-Cu(II)/H ₂ O- Бент(Д)	2,76	11,03	6000	-	180	0,12	0,42
300-Бент(Д)	2,77	9,54	5650	-	180	0,14	0,48
Pd(II)Cu(II)/300-Бент(Д)	2,45	9,56	5650	-	160	0,10	0,30
1Н-Бент(Д)-1	3,36	20,96	7570	31	218	0,10	0,24
Рd(II)-Cu(II)/1Н- Бент(Д)-1	2,44	14,03	6590	18	159	0,17	0,43
П-Бент(К)	1,79	25,81	8080	35	117	0,22	0,67
1Н-Бент(К)-1	1,87	6,01	4520	23	122	0,27	0,63
Рd(II)-Cu(II)/1Н- Бент(К)-1	1,23	11,80	6170	15	80	0,43	0,82

Структурно-адсорбційні характеристики зразків природних
і модифікованих бентонітів та термодинамічна активність адсорбованої води

Виходячи з результатів [1, 26] ємність моношару зразка Черкаського бентоніту (табл. 2) складає 4,60 ммоль/г і значно зменшується для зразків модифікованих сірчаною кислотою. До такого ж висновку можна дійти, якщо взяти до уваги значення $S_{nur}(H_2O)$ для кислотно-модифікованих (H_2SO_4) зразків бентоніту Пижевського родовища (табл. 1).

Деяку розбіжність між отриманими нами результатами та літературними даними можна пояснити неоднорідністю зразків бентоніту навіть з одного і того ж родовища та різними умовами кислотного модифікування. Параметр С, який характеризує спорідненість молекул води до адсорбенту, має невеликі значення, які змінюються залежно від походження бентоніту та способу його модифікування. Так, для природних зразків параметр С і теплота адсорбції Q₁ змінюються у послідовності (I). №У разі кислотно-модифікованих зразків величини С та Q₁ суттєво зменшуються відносно природних зразків і залежно від походження бентоніту змінюються наступним чином: 1H-Бент(Д)-1 > 1H-Бент(К)-1 > 1H-Бент(Г)-1 (II).

Треба зазначити, що значення параметру С близькі до літературних (табл. 2) для катіонних форм бентонітів, але в багато разів менші ніж для природного та кислотно-модифікованих зразків клиноптилоліту [32-34].

У табл. 4 наведені значення площі питомої поверхні природних і модифікованих зразків бентоніту, визначені методами теплової десорбції аргону та адсорбції парів води.

Отримані результати не суперечать літературним даним (табл. 1, 2): значення $S_{nut}(H_2O) >> S_{nut}(Ar)$, що пояснюється меншим розміром молекули H_2O та проникненням її в міжшаровий простір, який недоступний молекулам аргону.

Зіставлення ізотерм сорбції (рис. 1) демонструє, що походження бентоніту та спосіб його модифікування істотно впливає на адсорбцію парів води. Нами визначено термодинамічну активність води для двох значень величини адсорбції – 2,0 і 4,0 ммоль/г (табл. 4). Активність води зразків природного бентоніту зростає у ряді: П-Бент(Д) < ПБент(Г) < ПБент(К) (III), що корелює з висновком про зменшення теплоти адсорбції Q₁ (зменшується спорідненість молекул води до адсорбенту – збільшується їх термодинамічна активність). Значення $a_{\rm H_2O}$ для зразка П-Бент(Г) близьке до літературного (табл. 3).

У разі кислотного модифікування зразків бентоніту та закріплення на них Pd(II) та Cu(II) активність води зростає у послідовності (III), що також корелює зі зменшенням параметру C (Q_1) для цих зразків (табл. 4).

висновки

Доведено, що активація монтморилоніту кислотою супроводжується видаленням катіонів металів, деструкцією структури монтморилоніту, формуванням аморфної фази SiO, і багаторазовим збільшенням S_{пит}.

Виявлені загальні тенденції зміни величини питомої поверхні монтморилоніту за умови його кислотного модифікування. Значення S_{пит} істотно залежать від походження бентоніту, тому в кожному конкретному випадку необхідно детально досліджувати вплив умов кислотного модифікування на структурно-адсорбційні параметри монтморилоніту.

Встановлено, що величина базальної відстані d (001) в монтморилоніті залежить від походження бентоніту, способу його активації, природи катіонів металів та ступеня гідратації бентонітів. На підставі результатів дослідження адсорбції-десорбції парів води встановлено, що ємність моношару (a_m), параметри С та теплота адсорбції в першому шарі (Q_1) для природних бентонітів з трьох родовищ України (Дашуковське, Горбське, Кіровоградське) змінюється у такій послідовності П-Бент(Д) > П-Бент(Г) > П-Бент(К). Для кислотно-модифікованих зразків бентоніту величини С та Q_1 змінюються наступним чином 1Н-Бент(Д)-1 > 11Н-Бент(К)-1 > 1Н-Бент(Г)-1 та суттєво зменшуються відносно природних зразків.

Вперше встановлена кореляція між зростанням термодинамічної активності адсорбованої води $(a_{\rm H,O})$ у ряді П/М-Бент(Д) < П/М-Бент(Г) < П/М-Бент(К) (П/М – природний або модифікований бентоніт) та зменшенням теплоти адсорбції води (Q₁) для відповідних зразків.

ЛІТЕРАТУРА

- Тарасевич Ю.И., Овчаренко Ф. Д. Строение и химия поверхности слоистых силикатов. К.: Наук.думка, 1988. – 248 с.
- Christidis G. E., Scott P. W., Dunham A. C. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece // Appl. Clay Sci. – 1997. – Vol. 12, N 4. – P. 329-347. http://dx.doi. org/10.1016/S0169-1317(97)00017-3
- Kumar P., Jasra, R. V., Bhat, T.S. Evolution of Porosity and Surface Acidity in Montmorillonite Clay on Acid Activation // Ind. Eng. Chem. Res. – 1995. – Vol. 34, N 4 – P. 1140-1148. https://doi.org/10.1021/ ie00043a053
- Okada K., Arimitsu N., Kameshima Y., Nakajima A., MacKenzie, K. J. Solid acidity of 2:1 type clay minerals activated by selective leaching // Appl. Clay Sci. – 2006. – Vol. 31, N 3. – P. 185–193. http://dx.doi. org/10.1016/j.clay.2005.10.014
- Rodrigues M. G. F., Pereira K. R. O., Valenzuela-Diaz. Obtenção e caracterizacao de materiais argilosos quimicamente ativados para utilização em catálise // Ceramica – 2006. – Vol. 52. – P. 260-263. https://doi. org/10.1590/s0366-69132006000400008
- Bieseki L., Treichel H., Araujo A. S., Pergher S. B. C. Porous materials obtained by acid treatment processing followed by pillaring of montmorillonite clays // Appl. Clay Sci. – 2013. – Vol. 85. – P. 46–52. http://dx.doi. org/10.1016/ j.clay.2013.08.044
- Kozlowski T. Temperature dependence of the solidification enthalpy as experimentally determined between 245 and 203K for montmorillonite-water systems // Thermochim. Acta. – 2016. – Vol. 634. – P. 12–25. http:// dx.doi.org/10.1016/j.tca.2016.04.008
- Pálková H., Hronský V., Bizovská V., Madejov, J. Spectroscopic study of water adsorption on Li⁺, TMA⁺ and HDTMA⁺ exchanged montmorillonite // Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy. – 2015. – Vol. 149. – P. 751–761. http://dx.doi.org/10.1016/j.saa.2015.04.065.
- Elmchaouri A., Simonot-Grange M. H., Mahboub R. Water vapour adsorption onto Ca²⁺ Camp-Berteau montmorillonite and comparison with properties of Na⁺ sample // Thermochim. Acta. – 2004. – Vol. 421, N 1. – P. 193–201. http://dx.doi.org/10.1016/j.tca.2004.03.017
- Cancela G. D., Huertas F. J., Taboada E. R., Sánchez-Rasero F., Laguna, A. H. Adsorption of Water Vapor by Homoionic Montmorillonites. Heats of Adsorption and Desorption // J. Colloid Interface Sci. – 1997. – Vol. 185, N 2. – P. 343–354 http://dx.doi.org/10.1006/jcis.1996.4572
- Onal M. Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments // Appl. Clay Sci. - 2007. - Vol. 37, N 1. - P. 74-80. http://dx.doi. org/10.1016/j.clay.2006.12.004
- Woumfo D., Kamga R., Figueras F., Njopwouo D. Acid activation and bleaching capacity of some Cameroonian smectite soil clays // Appl. Clay Sci. – 2007. – Vol. 37, N 1. – P. 149–156. http://dx.doi.org/10.1016/j. clay.2006.12.008
- Volzone C., Ortiga J. Influence of the exchangeable cations of montmorillonite on gas adsorptions // Process Saf. Environ. Prot. – 2004. – Vol. 82, N 2. – P. 170–174. http://dx.doi.org/10.1205/095758204322972807

- Kharroubi M., Balme S., Henn F., Giuntini J.C., Belarbi H., Haouzi A. Dehydration enthalpy of alkali-cationsexchanged montmorillonite from thermogravimetric analysis // J. Colloid Interface Sci. – 2009. – Vol. 329, N 2. – P. 339–345. http://dx.doi.org/10.1016/j.jcis.2008.09.058
- Randelovic M. S., Purenovic M. M., Matovic B. Z., Zarubica A.R., Momcilovic M. Z., Purenovic J. M. Structural, textural and adsorption characteristics of bentonite-based composite // Microporous Mesoporous Mater.– 2014.– Vol. 195. – P. 67–74. http://dx.doi.org/10.1016/j.micromeso.2014.03.031
- EL-Akkad T., Flex N., Guindy N., EL-Massry S., Nashed S. Nitrogen and water vapour adsorption on monovalent and divalent montmorillonite derivatives and their heats of immersion in polar liquid // Surface Technology. – 1982. – Vol. 17, N 1. – P. 69 – 77. http://dx.doi.org/10.1016/0376-4583(82)90062-0
- Lantenois S., Nedellec Y., Prélot B., Zajac J., Muller F., Douillard J.-M. Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays during adsorption of water// J. Colloid Interface Sci. – 2007. – Vol. 316, N 2. – P. 1003–1011. http://dx.doi.org/10.1016/j.jcis.2007.07.024
- Elm'chaour A., Simonot-Grange M. Donrkes experimentales d'adsorption du systeme H₂0(g)/montmorillonite sodique de Camp-Berteau et Modelisation // Thermochim. Acta. – 1995. – Vol. 249. – P. 21–40. http://dx.doi. org/10.1016/0040-6031(95)90668-1
- Hatch C. D., Greenaway A. L., Christie M. J., Baltrusaitis, J. Water adsorption constrained Frenkele-Halseye-Hill adsorption activation theory: Montmorillonite and illite // Atmos. Environ. – 2014. – Vol. 87. – P. 26–33. http://dx.doi.org/10.1016/j.atmosenv.2013.12.040
- Kadoura A., Nair A. K. N., & Sun S. Adsorption of Carbon Dioxide, Methane, and Their Mixtute by Montmorillonite in the Presence of Water // Microporous and Mesoporous Mater. – 2016. – Vol. 225. – P. 331–341. http://dx.doi.org/10.1016/j.micromeso.2016.01.010
- Chavez-Paez M., Van Workum K., DePablo L., DePablo J. J. Monte Carlo simulations of Wyoming sodium montmorillonite hydrates // J. Chem. Phys. – 2016. – Vol. 114, N 3. – P. 1405–1413. http://dx.doi. org/10.1063/1.1322639
- Chávez-Páez M., DePablo L., DePablo J. J. Monte Carlo simulations of Ca-montmorillonite hydrates// J. Chem. Phys. - 2001. - Vol. 114, N 24. - P. 10948-10953. http://dx.doi.org/10.1063/1.1374536
- Cygan R. T., Liang J. J., Kalinichev A. G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field // J. Phys. Chem. – 2004. – Vol. 108, N 4. – P. 1255–1266. http:// dx.doi.org/10.1021/jp0363287
- Schaef H. T., Loring J. S., Glezakou V. A., Mille, Q. R., Chen J., Owen A. T., Thompson C. J. Competitive Sorption of CO₂ and H₂O in 2:1 Layer Phyllosilicates // Geochim. Cosmochim. Acta. – 2015. – Vol. 161. – P. 248–257. http://dx.doi.org/10.1016/j.gca.2015.03.027
- Fu M. H., Zhang Z. Z., Low P. F. Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water: hysteresis // Clays Clay Miner. – 1990. – Vol. 38, N 5. – P. 485–492. https://doi.org/10.1346/ccmn.1990.0380504
- 26. Тарасевич Ю. И., Овчаренко Ф. Д. Адсорбция на глинистых минералах. К.: Наук.думка, 1975. 352 с.
- 27. Овчаренко Ф. Д. Гидрофильность глин и глинистых минералов. К.: изд-во АНУССР, 1961. 291 с.
- 28. Ракитская Т. Л., Кошелева Н. Н., Школьникова О. Л. Каталитическая активность растворенных и нанесенных бромидных комплексов меди(II) // Координац. Химия. 1981. Т.7, № 3. С. 355-358.
- 29. Ракитская Т. Л., Абрамова Н. Н., Криштофикова Л. Я. Адсорбция паров воды оксидными носителями с нанесенными металлокомплексными соединениями // Журн. физ. химии. 1983. Т.57, № 8. С. 2055-2057.
- Ракитская Т. Л., Эннан А. А., Волкова В. Я. Низкотемпературная каталитическая очистка воздуха от монооксида углерода. – Одесса: Экология, 2005. – 191 с.
- 31. Ракитская Т. Л., Длубовский Р. М., Киосе Т. А., Труба А. С., Олексенко Л. П., Волкова В. Я. Адсорбция паров воды природным и химически модифицированным базальтовым туфом // Хімія, фізика та технологія поверхні. 2011. Т.2, № 1. С. 76-80.
- 32. Ракитская Т. Л., Эннан А. А, Киосе Т. А., Голубчик К. О., Олексенко Л. П., Длубовский Р. М., Герасева В. Г. Влияние продолжительности кислотно-термального модифицирования на адсорбционно-структурные характеристики клиноптилолита // Вестник ОНУ 2016. Т.21, № 1(57). С. 24-35. https://doi. org/10.7868/s0044453716060182
- 33. Ракитская, Т. Л., Труба, А. С., Эннан А. А., Длубовский Р. М. Адсорбция паров воды природными и модифицированными хлоридами марганца (II) и кобальта (II) сорбентами // Вопросы химии и химической технологии. — 2014. – № 1. – С. 131-135.

 Cakicioglu-Ozkan F, Ulku S. The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite // Microporous Mesoporous Mater. – 2005. – Vol. 77, N 1. – P. 47–53. https://doi.org/10.1016/j.micromeso.2004.08.013

Стаття надійшла до редакції 18.01.2017

Т. Л. Ракитская, Т. А. Киосе, А. М. Джига

Одесский национальный университет имени И.И. Мечникова, кафедра неорганической химии и химической экологии, ул. Дворянская, 2, Одесса, 65082, Украина E-mail: tlr@onu.edu.ua

АДСОРБЦИОННЫЕ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПРИРОДНЫХ И МОДИФИЦИРОВАННЫХ ФОРМ МОНТМОРИЛЛОНИТА

Обобщенные литературные и собственные результаты по влиянию различных факторов на физико-химические свойства и структурные параметры монтмориллонита различного происхождения. Систематически исследованы адсорбционно-десорбционные свойства относительно паров воды образцов природного бентонита из трех месторождений Украины, а также модифицированных различными способами.

Ключевые слова: природный и модифицированный бентонит, структурно-адсорбционные свойства, удельная поверхность, активность адсорбированной воды.

T. L. Rakyts'ka, T. O. Kiose, G. M. Dzhyga

I. I. Mechnikov Odessa National University, Department of Inorganic Chemistry and Chemical Ecology, 2, Dvoryanskaya St., Odessa, 65082. Ukraine E-mail: tlr@onu.edu.ua

ADSORPTION AND PHYSICOCHEMICAL PROPERTIES OF NATURAL MONTMORILLONITES AND THEIR MODIFIED FORMS

The data, earlier published and obtained by us, concerning an influence of various factors on physicochemical properties and structural parameters for montmorillonites of different origin are summarized. Some regularities of water vapor ad/desorption by bentonites depending on their origin and activation method as well as the nature of metal cations have been revealed. The data concerning the influence of a hydration degree of bentonites on a value of basal spacing, d(001), in montmorillonite are presented and analyzed. Ad/desorption properties towards water vapor in the case of natural bentonites from three Ukrainian deposits, i.e. Gorbskoe (Bent(G)), Dashukovskoe (Bent(G)), and Kirovogradskoe (Bent(K)), as well as for their modified forms, i.e. H_2O -Bent (obtained by bentonite boiling in distilled water for 1 h), 300-Bent (obtained by bentonite calcination at 300 °C for 1 h), and 1H-Bent-1 (obtained by bentonite boiling in 1 M HNO, for 1 h), have been systematically investigated. It has been found that values of a monolayer capacity, a_m, for natural bentonites decrease in the order N-Bent(D) > N-Bent(G) > N-Bent(K). It is interesting to note that a slightly increases after the acid modification of bentonites and significantly decreases in the case of supporting Pd(II) and Cu(II) complexes on them. Values of a specific surface area for natural bentonites and their modified forms determined as a result of both water vapor adsorption-desorption and thermal argon desorption are presented and they are significantly varied depending on the bentonite origin. Values of an activity of water adsorbed on natural bentonite, $a_{H,0} = P/P_s$, determined from the water vapor isotherms at the same adsorption value increases in the order N-Bent(D) < N-Bent(G) < N-Bent(K). The same orders are observed for the bentonite samples after both their acid treatment and anchoring Pd(II) and Cu(II) ions on their surfaces.

Keywords: natural and modified bentonites, structural-adsorption properties, specific surface, adsorbed water activity.

REFERENCES

- Tarasevich Yu. I., Ovcharenko F. D. Stroenie i himiya poverhnosti sloistyih silikatov [Structure and Chemistry of the Layer Silicate Surface]. - K.: Nauk.dumka, 1988, 248 p. (in Russian)
- Christidis G. E., Scott P. W., Dunham A. C. Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Appl. Clay Sci., 1997, vol. 12, no 4, pp. 329-347. http://dx.doi. org/10.1016/S0169-1317(97)00017-3
- Kumar P., Jasra, R. V., Bhat, T.S. Evolution of Porosity and Surface Acidity in Montmorillonite Clay on Acid Activation. Ind. Eng. Chem. Res., 1995, vol. 34, no 4, pp. 1140-1148. https://doi.org/10.1021/ie00043a053
- Okada K., Arimitsu N., Kameshima Y., Nakajima A., MacKenzie, K. J. Solid acidity of 2:1 type clay minerals activated by selective leaching. Appl. Clay Sci., 2006, vol. 31, no 3, pp. 185–193. http://dx.doi.org/10.1016/j. clay.2005.10.014
- Rodrigues M. G. F., Pereira K. R. O., Valenzuela-Diaz. Obtenção e caracterizacao de materiais argilosos quinicamente ativados para utilização em catálise. Ceramica, 2006, vol. 52, pp. 260-263. https://doi. org/10.1590/s0366-69132006000400008
- Bieseki L., Treichel H., Araujo A. S., Pergher S. B. C. Porous materials obtained by acid treatment processing followed by pillaring of montmorillonite clays. Appl. Clay Sci., 2013, vol. 85, pp. 46–52. <u>http://dx.doi.org/10.1016/j.clay.2013.08.044</u>
- Kozlowski T. Temperature dependence of the solidification enthalpy as experimentally determined between 245 and 203K for montmorillonite-water systems. Thermochim. Acta., 2016, vol. 634, pp. 12–25. <u>http://dx.doi.org/10.1016/j.tca.2016.04.008</u>
- Pálková H., Hronský V., Bizovská V., Madejov, J. Spectroscopic study of water adsorption on Li⁺, TMA⁺ and HDTMA⁺ exchanged montmorillonite. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, vol. 149, pp. 751–761. http://dx.doi.org/10.1016/j.saa.2015.04.065.
- Elmchaouri A., Simonot-Grange M. H., Mahboub R. Water vapour adsorption onto Ca²⁺ Camp-Berteau montmorillonite and comparison with properties of Na⁺ sample. Thermochim. Acta, 2004, vol. 421, no 1, pp. 193–201. http://dx.doi.org/10.1016/j.tca.2004.03.017
- Cancela G. D., Huertas F. J., Taboada E. R., Sánchez-Rasero F., Laguna, A. H. Adsorption of Water Vapor by Homoionic Montmorillonites. Heats of Adsorption and Desorption. J. Colloid Interface Sci., 1997, vol. 185, no 2, pp. 343–354 http://dx.doi.org/10.1006/jcis.1996.4572
- Onal M. Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. Appl. Clay Sci., 2007, vol. 37, no 1, pp. 74–80. <u>http://dx.doi.org/10.1016/j.</u> clay.2006.12.004
- Woumfo D., Kamga R., Figueras F., Njopwouo D. Acid activation and bleaching capacity of some Cameroonian smectite soil clays. Appl. Clay Sci., 2007, vol. 37, no 1, pp. 149–156. http://dx.doi.org/10.1016/j. clay.2006.12.008
- Volzone C., Ortiga J. Influence of the exchangeable cations of montmorillonite on gas adsorptions. Process Saf. Environ. Prot., 2004, vol. 82, no 2, pp. 170–174. http://dx.doi.org/10.1205/095758204322972807
- Kharroubi M., Balme S., Henn F., Giuntini J.C., Belarbi H., Haouzi A. Dehydration enthalpy of alkali-cationsexchanged montmorillonite from thermogravimetric analysis. J. Colloid Interface Sci., 2009, vol. 329, no 2, pp. 339–345. http://dx.doi.org/10.1016/j.jcis.2008.09.058
- Randelovic M. S., Purenovic M. M., Matovic B. Z., Zarubica A.R., Momcilovic M. Z., Purenovic J. M. *Structural, textural and adsorption characteristics of bentonite-based composite.* Microporous Mesoporous Mater., 2014, vol. 195, pp. 67–74. http://dx.doi.org/10.1016/j.micromeso.2014.03.031
- EL-Akkad T., Flex N., Guindy N., EL-Massry S., Nashed S. Nitrogen and water vapour adsorption on monovalent and divalent montmorillonite derivatives and their heats of immersion in polar liquid. Surface Technology, 1982, vol. 17, no 1, pp. 69 – 77. http://dx.doi.org/10.1016/0376-4583(82)90062-0
- Lantenois S., Nedellec Y., Prélot B., Zajac J., Muller F., Douillard J.-M. *Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays during adsorption of water*. J. Colloid Interface Sci., 2007, vol. 316, no 2, pp. 1003–1011. <u>http://dx.doi.org/10.1016/j.jcis.2007.07.024</u>

- Elm'chaour A., Simonot-Grange M. Donrkes experimentales d'adsorption du systeme H₂0(g)/montmorillonite sodique de Camp-Berteau et Modelisation. Thermochim. Acta, 1995, vol. 249, pp. 21–40. http://dx.doi. org/10.1016/0040-6031(95)90668-1
- Hatch C. D., Greenaway A. L., Christie M. J., Baltrusaitis, J. Water adsorption constrained Frenkele-Halseye-Hill adsorption activation theory: Montmorillonite and illite. Atmos. Environ., 2014, vol. 87, pp. 26–33. http:// dx.doi.org/10.1016/j.atmosenv.2013.12.040
- Kadoura A., Nair A. K. N., & Sun S. Adsorption of Carbon Dioxide, Methane, and Their Mixtute by Montmorillonite in the Presence of Water: <u>Microporous and Mesoporous Mater.</u> 2016, vol. 225, pp. 331–341. http://dx.doi.org/10.1016/j.micromeso.2016.01.010
- Chavez-Paez M., Van Workum K., DePablo L., DePablo J. J. Monte Carlo simulations of Wyoming sodium montmorillonite hydrates. J. Chem. Phys., 2016, vol. 114, no 3, pp. 1405–1413. http://dx.doi. org/10.1063/1.1322639
- Chávez-Páez M., DePablo L., DePablo J. J. Monte Carlo simulations of Ca-montmorillonite hydrates. J. Chem. Phys., 2001, vol. 114, no 24, pp. 10948–10953. http://dx.doi.org/10.1063/1.1374536
- Cygan R. T., Liang J. J., Kalinichev A. G. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. J. Phys. Chem., 2004, vol. 108, no 4, pp. 1255–1266. http://dx.doi. org/10.1021/jp0363287
- Schaef H. T., Loring J. S., Glezakou V. A., Mille, Q. R., Chen J., Owen A. T., Thompson C. J. Competitive Sorption of CO₂ and H₂O in 2:1 Layer Phyllosilicates. Geochim. Cosmochim. Acta, 2015, vol. 161, pp. 248– 257. http://dx.doi.org/10.1016/j.gca.2015.03.027
- Fu M. H., Zhang Z. Z., Low P. F. Changes in the properties of a montmorillonite-water system during the adsorption and desorption of water: hysteresis. Clays Clay Miner., 1990, vol. 38, no 5, pp. 485–492. https://doi. org/10.1346/ccmn.1990.0380504
- Tarasevich Yu. I., Ovcharenko F. D. Adsorbtsiya na glinistyih mineralah [Adsorption on Clay Minerals]. K.: Nauk.dumka, 1975, 352 p. (in Russian)
- 27. Ovcharenko F. D. Gidrofilnost glin i glinistyih mineralov [Hydrophily of Clays and Clay Minerals].K.: izd-vo ANUSSR, 1961, 291 p. (in Russian)
- Rakitskaya T.L., Kosheleva N. N., Shkolnikova O. L. Kataliticheskaya aktivnost rastvorennyih i nanesennyih bromidnyih kompleksov medi(II) [Catalytic activity of dissolved and supported bromide complexes of copper(II)]. Koordinats. Himiya, 1981, vol. 7, no 3, pp. 355-358. (in Russian)
- Rakitskaya T. L., Abramova N. N., Krishtofikova L. Ya. Adsorbtsiya parov vodyi oksidnyimi nositelyami s nanesennyimi metallokompleksnyimi soedineniyami [Water vapor adsorption by oxide carriers with metal-complex compounds supported on them]. Zhurn. fiz. himii, 1983, vol. 57, no 8, pp. 2055-2057. (in Russian)
- Rakitskaya T.L., Ennan A.A., Volkova V.Y. Nizkotemperaturnaja kataliticheskaja ochistka vozduha ot monooksida ugleroda [Low-Temperature Air Purification from Carbon Momoxide]. Ekologiya, Odessa, 2005, 191 p. (in Russian)
- Rakitskaya T. L., Dlubovskiy R. M., Kiose T. A., Truba A. S., Oleksenko L. P., Volkova V. Y. Adsorbtsiya parov vodyi prirodnyim i himicheski modifitsirovannyim bazaltovyim tufom [Water vapor adsorption by natural and chemically modified basalt tuff]. Himiya, flzika ta tehnologIya poverhni, 2011, vol. 2, no 1, pp. 76-80. (in Russian)
- Rakitskaya T. L., Ennan A. A, Kiose T. A., Golubchik K. O., Oleksenko L. P., Dlubovskiy R. M., Geraseva V. G. Vliyanie prodolzhitelnosti kislotno-termalnogo modifitsirovaniya na adsorbtsionno-strukturnyie harakteristiki klinoptilolita [Effect of the time of acid -thermal modification of clinopti lolite on its structure -adsorption characteristics]. Vestnik ONU, 2016, vol. 21, no 1(57), pp. 24-35. (in Russian) https://doi.org/10.7868/s0044453716060182
- Rakitskaya T. L., Truba A. S., Ennan A. A, Dlubovskiy R. M. Adsorbtsiya parov vodyi prirodnyimi i modifitsirovannyimi hloridami margantsa (II) i kobalta (II) sorbentami [Water vapor adsorption by sorbents, natural and modified with manganese(II) and cobalt(II) chlorides]. Voprosyi himii i himicheskoy tehnologii, 2014, vol. 1, pp. 131-135. (in Russian)
- Cakicioglu-Ozkan F., Ulku S. The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite. Microporous Mesoporous Mater, 2005, vol. 77, no 1, pp. 47–53. https://doi. org/10.1016/j.micromeso.2004.08.013

UDK 544:667.272/.276

L. M. Soldatkina¹, V. O. Novotna¹, I. Salamon²

¹Odessa I. I. Mechnikov National University, Department of Physical and Colloid Chemistry, Dvoryanskaya Street 2, 65082, Odessa, Ukraine, e-mail: soldatkina@onu.edu.ua ²University of Presov, Department of Ecology, 17th November Street 15, 08001, Presov, Slovakia

DEGRADATION KINETICS OF ANTHOCYANINS IN ACIDIC AQUEOUS EXTRACTS OF BERRIES

The effect of pH, light and temperature on degradation of anthocyanins in acidic aqueous extracts of chokeberries, elderberries and blackberries was studied. The degradation of anthocyanins in berry extracts under influence of pH, light and temperature followed the first-order reaction kinetics. Anthocyanins of chokeberry extracts had the highest values of rate constants of degradation. Anthocyanins of blackberry extracts had the highest values of half-life time. The temperature dependences of the rate of anthocyanin degradation were described by the Arrhenius equation. Activation energies of anthocyanin degradation were 5.7, 10.1 and 15.0 kJ/mol at pH=2, respectively, for chokeberry, elderberry, and blackberry anthocyanins.

Keywords: chokeberry, elderberry, blackberry, anthocyanins, kinetics of degradation

INTRODUCTION

Anthocyanins are synthesized by many plants. They are responsible for pink, red, blue and purple colours of most berries, flowers, fruits, vegetables, leaves, and roots [1, 2]. In recent years there has been an increasing interest in anthocyanins not only as natural food colorants [1] but also as substances with certain therapeutic effects such as anti-inflammatory, anti-cardiovascular, anti-diabetic, and anti-cancer [3, 4]. Also anthocyanins are applied in prevention and treatment eyesight disorders [4].

Among all fruits and vegetables, especially berries of dark red or dark blue colours have a very high content of anthocyanins. For example, total anthocyanin content in the berries: chokeberry -5060-10000 mg/kg, elderberry -2000-15600 mg/kg, and blackberry -1150 mg/kg [5]. This means the berries are suitable raw material for extraction of anthocyanins an industrial scale [4].

According to the chemical nature anthocyanins are substituted glycosides of phenyl-2-benzopyrilium salts [1]. Different berries have also different amounts of various individual anthocyanins. Composition of anthocyanins in chokeberries, elderberries and blackberries is presented in table 1.

The main problem with the application of anthocyanins is their low stability to such important factors as pH [1, 7-12], light [1, 7, 9, 13-16] and temperature [1, 7, 9, 11-15, 17-26].

It was established that majority of anthocyanins are more stable in acidic solutions at low pH values than in alkaline solutions with high pH values [1]. This is due to the fact that anthocyanins are pH-dependent compounds in aqueous solution. Change of pH leads to change of their structures. Anthocyanins may form four major forms that exist in equilibrium: the red flavylium cation, the blue quinoidal base, the colourless carbinol pseudo-base, and the colourless chalcone (fig. 1). At pH below 2, anthocyanins exist primarily in the form of the red flavylium cation. Hydration of the flavylium cation

gives the colourless carbinol pseudo-base at pH values ranging from 3 to 6. Strong acidic conditions favoured the better stability of anthocyanins in red onion extracts during their storage at room temperature [12]. However it was noticed that some anthocyanins showed improved colour stability in region around pH = 5-6 [10] and pH = 8-9 [8], although the colour intensities were modest.

Table 1

Composition of anthocyanins in berries [6]								
Dente	Anthocyanins							
Berries	Major amounts	%	Minor amounts	%				
chokeberry	cyanidin-3-galactoside cyanidin-3-arabinoside	68.9 24.5	cyanidin-3-xyloside cyanidin 3-glucoside	3.8 2.8				
elderberry	cyanidin-3-glucoside cyanidin -3 – sambubioside	83.1	cyanidin 3– sambubioside-5– glucoside cyanidin-3-rutinoside	15.1 1.8				
blackberry	cyanidin-3-glucoside	90.4	cyanidin-3-xyloside cyanidin-3-rutinoside	8.3 1.3				

Anthocyanins are generally unstable under light because it causes their photochemical degradation [13]. In this regard anthocyanins preserve their colour much better when they kept in dark. The difference was seen already after 24 hours when anthocyanins were stored in light and for comparison in dark at room temperature at pH 2.3 [7]. Furtado et al. [13] found that during the photochemical degradation of anthocyanins the formation of the same final products as for thermal degradation was observed, but the kinetic pathway of the photochemical reaction was different involving the excitation of the flavylium cation. Morais et al. [15] reported that presence or absence of light exerted a negligible impact on the decomposition rate of grape anthocyanins.

Fig. 1. The main equilibrium forms of anthocyanin existing in aqueous media [5]

Anthocyanins are easily degraded during thermal processing which can have negative impact on their colour, and may also change their properties. The precise mechanism of thermal anthocyanin degradation is still unclear [20, 23]. However, it has been reported about possible chalcone formation at the first step of the process [17], loss of glycosyl moieties and α -diketone formation [18], formation of end products including coumarin derivatives [26], benzoic acid derivatives [14] and trihydrobenzaldehyde [13].

Thermal stability of anthocyanins in ethanolic, aqueous extracts, juices, and concentrates has been studied using berries: cranberry [11], blackberry [21], elderberry [19, 24], cornelian cherry [25], and blackcurrant [22]. Reported results show that rate constants for anthocyanin degradation with respect to temperature always followed the first-order reaction.

In order to predict the changes in the quality of anthocyanins during their storage and processing, the accurate determination of kinetic parameters of their decomposition is a matter of great concern [11]. However, there are no kinetic data for the degradation of chokeberry, elderberry and blackberry anthocyanins from acidic aqueous extracts. Thus, the aim of this study is to determine the kinetic parameters of degradation for berry anthocyanins from acidified aqueous extracts during storage at different pH, temperatures and lighting. The kinetic parameters, namely, reaction order, rate constant and activation energy provide useful information on the changes of anthocyanins which occur during their storage and heating. Accurate knowledge of the degradation kinetics of berry anthocyanins in acidic aqueous extracts is essential for predicting of changes that may occur during their removal from berries and storage in various conditions.

MATERIALS AND METHODS

Chemicals

Chemical reagents of analytical grade without further purification that were used for preparing solutions for the analysis of anthocyanins (hydrochloric acid (37 %), sodium acetate (trihydrate), potassium chloride) were obtained from the Kyiv Plant "RIAP" and Cherkassy State Chemical Plant (Ukraine).

Plant materials and preparation of extracts

Fully ripe chokeberry, elderberry and blackberry were harvested in Zhmerynka district of Vinnitsa region (Ukraine) in 2015. Berries were immediately frozen and kept at -20 °C until analysed.

Extraction was carried out by insisting of the berries in 0.1M HCl (as 1:2=w:v) for 24 hours at 20 °C in the dark. Then the berry extracts were separated from the berries by filtration through filter paper. Extracts of the berries were stored at 4 °C.

Methods

Degradation studies

Studies of degradation of anthocyanins in extracts with pH 2, 3 and 4 in light and in dark were performed respectively in transparent glass bottles and amber glass bottles. The transparent glass bottles with anthocyanin extracts were stored on the windowsill under influence sunlight, and the amber glass bottles with anthocyanin extracts were stored in a dark box at 20 °C.

The thermal degradation of anthocyanins was studied at 50, 75 and 100 °C. The bottles containing anthocyanin extracts were placed in a thermostatic water bath (WB type 357-Lubawa, Poland) and adjusted to the required temperature.

Anthocyanin analysis

Total monomeric anthocyanin concentration was determined by pH-differential method [27], using two buffer systems: potassium chloride buffer (pH 1 (0.025 M)), and sodium acetate buffer (pH 4.5 (0.4 M)). The absorbance of each extract was measured at 515 nm and 700 nm, using UV-VIS spectrophotometer (SF-56, Spectral, S.-Petersburg, Russia). Total monomeric anthocyanin concentrations were calculated as mg cyanidin-3-glucoside per litre extract according to the following equation:

$$C = l \frac{\left[\left(A_{515} - A_{700} \right)_{pH=1} - \left(A_{515} - A_{700} \right)_{pH=4.5} \right] \cdot M \cdot DF \cdot 1000}{l \cdot \varepsilon}$$

where A_{515} and A_{700} is absorbance of an extract at pH 1 and at pH 4.5; *M* is molecular weight for cyanidin-3-glucoside (449.2 g/mol); *DF* is dilution factor as final volume per initial volume; *l* is path length in *cm*; ε is molar extinction coefficient (26900 *L/(mol·cm)* for cyanidin-3-glucoside); 1000 is conversion factor from *g* to *mg*. All absorbance measurements were made against distilled water.

Calculation of kinetic parameters of anthocyanin degradation

Knowledge of degradation kinetics of anthocyanins, including reaction order, rate constant and activation energy, allows predicting their quality loss during storage and thermal treatments. Therefore, kinetic studies are needed in order to minimize the undesired change and to optimize quality of anthocyanins in extracts, juices or concentrates.

The majority of studies of the degradation kinetics of anthocyanins from various sources is described using the first-order reaction model [23, 28, 29]. The first-order reaction rate constants (k) and half-life time ($t_{1/2}$), i.e. the time needed for 50% degradation of anthocyanins, were calculated by the following equations:

$$\ln \frac{C}{C_o} = -kt,$$

$$t_{\frac{1}{2}} = \frac{\ln 2}{k},$$

where C is the anthocyanin concentration at time t; C_o is the initial anthocyanin concentration; k is the first-order reaction rate constant; t is time.

The dependence of the degradation of anthocyanins on temperature was determined by calculating the activation energy (E_a) and temperature quotient (Q_{10}) values from the following equations:

$$k = k_o \exp\left(-\frac{E}{RT}\right),$$
$$Q_{10} = \left(\frac{k_{T_2}}{k_{T_1}}\right)^{\frac{10}{T_2 - T_1}},$$

where E_a is the activation energy; k_o is the frequency factor; R is the universal gas constant; T is the absolute temperature.

RESULTS AND DISCUSSION

Total anthocyanin concentration

The concentrations of anthocyanins in initial extracts were calculated for chokeberry -154; elderberry -320; blackberry -125 mg/L. In degradation studies the concentration of total anthocyanins in all berry extracts was 100 mg/L.

Absorption anthocyanins in extracts at different pH

Fig. 2 shows anthocyanins absorption in extracts of chokeberry, elderberry and blackberry. The values of absorption at different pH decreases sharply from pH 1 to 4 and are not changed at pH = 4-6. The obtained results are in good agreement with the fact that anthocyanins of berries intensively coloured in a strongly acidic medium.

Fig. 2. Anthocyanins absorption in berry extracts at different pH (C =6 mg/L, t=20 °C, λ =515 nm)

Degradation kinetics of anthocyanins

Important factor which affects the stability of anthocyanins is value of pH. The studies showed that increasing pH had caused greater destruction to anthocyanins in aqueous berry extracts (fig. 3, table 2). Anthocyanins in chokeberry extracts were more stable at pH 2 than at pH 3 and 4. These results are in agreement with our study (fig. 2) and most studies regarding the stability of anthocyanins extracted from different plants [1, 9, 16]. Flavylium salts are stable only in highly acidic solutions and they loose the proton in higher pH and transform into quinoidal base, which is an unstable pigment, and immediately bond to water and form colourless compound called chromenol [9].

Light is another important factor, which can affect the stability of anthocyanins, because it accelerates destruction of anthocyanins. The effect of light at different pH on accelerating the destruction of anthocyanin in the chokeberry extracts has been presented in fig. 3. These results followed the first-order reaction kinetics; the coefficients of determination (R²) values were more than 0.9548 (table 2). In light the degradation constant at pH 2 was $2.2 \cdot 10^{-2} d^{-1}$ with a half-life time 32 days. In dark the degradation constant at pH 2 was $0.8 \cdot 10^{-2} d^{-1}$ with a half-life time 90 days. Storage of chokeberry extracts in the dark at 20 °C allowed to reduce the rate of anthocyanin degradation 2.8 times.

Fig. 3. Degradation kinetics of anthocyanins in chokeberry extracts during their stored: a - in light; b - in dark.

Our studies have been conducted in natural daylight. Increasing of intensity of the light source increases the photochemical degradation of anthocyanins. It was showed [16] the $t_{1/2}$ value of anthocyanins from alcoholic blackberry extract was 224.52 hours in dark (100 µlx) and was only 28.20 hours at high illuminance (3968.30 lx). In the study has also been reported that the degradation of blackberry anthocyanins from alcoholic extract followed second order reaction kinetics with respect to the illuminance of the light source. Our results and results of another studies have showed that storage of chokeberry extracts in dark is efficient to preserve the quality of anthocyanins.

Table 2

Effect of pH on degradation kinetics of chokeberry anthocyanins in light and dark ($C_0 = 100$ mg/L, t = 20 °C)

System	рН	k ·10 ² , d ⁻¹	\mathbb{R}^2	t _½ , d
in light	2	2.2	0.9588	32
	3	2.7	0.9588	29
	4	3.1	0.9580	22
in dark	2	0.8	0.9548	90
	3	1.2	0.9683	51
	4	1.7	0.9808	42

Temperature also is another factor, which has an important role in destruction of anthocyanins. A lot of studies [1, 9, 23] have showed that anthocyanin degradation increases with increase in temperature. The results of our studies as the effect of three different temperatures of 50, 75, and 100 °C on degradation kinetics of berry anthocyanins at fixed pH 2, have presented in fig. 4 and table 3. The results of thermal degradation of berry anthocyanins are in agreement with the previous studies reporting first-order reaction kinetics for thermal degradation of anthocyanins [23, 28]. The coefficients of determination (R^2) values were more than 0.9284 (table 3).

Anthocyanins from chokeberry and elderberry extracts showed significantly lower stabilities than anthosyanins from blackberry extracts at 50 and 75 °C. Anthocyanins of all berry extracts had approximately the same rate of degradation at 100 °C ($k=3.7\cdot10^{-3}$ –3.8·10⁻³ min⁻¹) and values of the half-life time are 3.0–3.1 h. Possibly, the different susceptibilities of anthocyanins to heating might be due to their varying anthocyanin compositions [6]. Thermal destruction of anthocyanins from elderberry concentrates at pH 1 and 95 °C was studied [30] and it was found that the value of half-life time is 3.0 h. The values of $t_{1/2}$ for anthocyanins degradation were 8.8, 4.7 and 2.9 h from blackberry juice at 70, 80 and 90 °C, respectively [21].

It was suggested [9] that the rapid degradation of anthocyanin in higher temperatures could be due to hydrolysis of 3-glycoside structure, which has a protective effect in unstable anthocyanin. Another suggestion [9] is that the hydrolysis of the pyrilium ring takes place that results in production of chalcones.

In this paper, we have received low values of activation energy (5.7 - 15.0 kJ/mol) of anthocyanin degradation process in berry extracts at pH=2 and coefficients of determination (R²) values were high, between 0.9168 and 0.9960 (table 3). Comparing the result obtained from this study with other studies, the values of activation energy anthocyanin degradation process in chokeberry, elderberry and blackberry extracts are much lower than in cranberry aqueous extracts (47,39 kJ/mol [11]), blackberry juice (58,59 kJ/mol [21] and 91,2 kJ/mol [24]), elderberry juice (144,6 kJ/mol [19]), cornelian cherry concentrate (48,38 kJ/mol [25])). The calculated value of activation energy of anthocyanin degradation process in purple corn is 18.3 kJ/mol [31]. According to literature data [32]

low values of activation energy signified a higher rate of degradation for anthocyanins whereas higher values of activation energy indicated a retarded rate of degradation.

Table 3

							Q	10
Extract	t, ⁰C	k·10 ³ , min ⁻¹	R ²	t _{1/2} , h	E _a , kJ/mol	R ²	50-75 °C	75-100 °C
chokeberry	50 75 100	2.8 3.5 3.7	0.9853 0.9672 0.9582	4.1 3.3 3.1	5.7	0.9168	1.1	1.0
elderberry	50 75 100	2.3 3.3 3.8	0.9897 0.9895 0.9284	5.0 3.5 3.0	10.1	0.9581	1.2	1.1
blackberry	50 75 100	1.8 2.8 3.8	0.9753 0.9793 0.9763	6.4 4.1 3.0	15.0	0.9960	1.2	1.1

Effect of temperature on degradation kinetics of berry anthocyanins (C =100 mg/L, pH=2)

The Q₁₀ values were obtained for the degradation of anthocyanins in berry extracts at 50-75 °C and 75-100 °C (Table 3). The low values of temperature coefficient (1.1–1.2 at 50–75 °C and 1.0–1.1 at 75–100 °C) were obtained at pH = 2. The same low temperature coefficient value (1.018 at 2–37 °C) was obtained in aqueous cranberry extracts at pH=3 indicating that low storage temperatures and acidic media are needed to inhibit degradation of anthocyanins [11].

CONCLUSION

Knowledge of factors affecting anthocyanins stability can be used to minimize their degradation by the appropriate selection of storage conditions or production processing. The results show that stability of anthocyanins in aqueous extracts of chokeberries, elderberries and blackberries under influence pH, light and temperature followed first-order reaction kinetics. Activation energies of anthocyanin degradation process had low values (5.7, 10.1 and 15.0 kJ/mol at pH=2, respectively, for chokeberry, elderberry, and blackberry anthocyanins). In order to keep anthocyanins degradation rate as low as possible, aqueous extracts of chokeberries, elderberries and blackberries are recommended to store at low temperatures and pH in the dark.

REFERENCES

- Delgado-Vargas F., Paredes-Lópes O. Natural Colourants for Food and Nutraceutical. Boca Raton: CRC Press LLC, 2003. – 167 p.
- Wu X., Beecher G.R., Holden J.M., Haytowitz D.B., Gebhardt S.E., Prior R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption // J. Agric. Food Chem. – 2006. – Vol. 54. – P. 4069–4075. https://doi.org/10.1021/jf0603001 CCC
- Ghosh D., Konishi T. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function // Asia Pac. J. Clin. Nutr. – 2007. – Vol. 16, N 2. – P. 200-208.

- Denev P., Ciz M., Ambrozova G., Lojek A., Yanakieva I., Kratchanova M. Solid-phase extraction of berries' anthocyanins and evaluation of their antioxidative properties // Food Chem. – 2010. – Vol. 123. – P. 1055– 1061. https://doi.org/10.1016/j.foodchem.2010.05.061
- Clifford M.N. Anthocyanins nature, occurrence and dietary burden // J. Sci. Food Agric. 2000. Vol. 80, N 7 – P. 1063 –1072. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q
- 6. Jakobek L., Šeruga M., Medvidović-Kosanović M., Novak I. Anthocyanin contain and antioxidant activity of various red fruit juices // Deutsch Lebensmittel-Rundschau. 2007. Vol. 103, № 3. P. 58-64.
- Kearsley M.W., Rodriguez N. The stability and use of natural colors in foods: anthocyanin, β-carotene and riboflavin // J. Food Technol. – 1981. – Vol.16. – P. 421-431. https://doi.org/10.1111/j.1365-2621.1981. tb01833.x
- Cabrita L., Fossen T., Andersen É.M. Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions // Food Chem. – 2000. – Vol. 68. – P. 101-107. https://doi.org/10.1016/S0308-8146(99)00170-3
- Laleh G.H., Frydoonfar H., Heidary R., Jameei R., Zare S. The effect of light, temperature, pH and species on stability of anthocyanin pigments in four berberis species // Pakistan J. Nutr. – 2006. – Vol. 5, N 1. – P. 90-92. https://doi.org/10.3923/pjn.2006.90.92
- Ozela E.F., Stringheta P.C., Chauca M.C. Stability of anthocyanin in spinach vine (Basella rubra) fruits // Cienc. Invest. Agraria. – 2007. – Vol. 34, N 2. – P. 115–120. https://doi.org/10.4067/S0718-16202007000200004
- Moldovan B., David L., Chişbora C., Cimpoiu C. Degradation Kinetics of Anthocyanins from European Cranberrybush (Viburnum opulus L.) Fruit extracts: effects of temperature, pH and storage solvent // Molecules. 2012. Vol. 17. P. 11655–11666. https://doi.org/10.3390/molecules171011655
- Oancea S., Drăghici O. pH and thermal stability of anthocyanin-based optimised extracts of Romanian red onion cultivars // Czech J. Food Sci. 2013. Vol. 31, N 3. P. 283–291.
 Furtado P., Figueiredo P., Chaves das Neves H., Pina F. Photochemical and thermal degradation of
- Furtado P., Figueiredo P., Chaves das Neves H., Pina F. Photochemical and thermal degradation of anthocyanidins // J. Photochem. Photobiol. A: Chem. – 1993. – Vol. 75, N 2. – P.113–118. https://doi. org/10.1016/1010-6030(93)80191-b
- Seeram N.P., Bourquin L.D., Nair M.G. Degradation products of cyanidin glycosides from tart cherries and their bioactivities // J. Agric. Food Chem. – 2001. – Vol. 49. – P. 4924–4929. https://doi.org/10.1021/ jf0107508
- Morais H., Ramos C., Forgács E. Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed-phase high-performance liquid chromatography // J. Chromatogr. B. – 2002. – Vol. 770. – P. 297–301. https://doi.org/10.1016/S1570-0232(02)00055-7
- Contreras-Lopez E., Castañeda-Ovando A., González-Olivares L.G. Effect of light on stability of anthocyanins in ethanolic extracts of Rubus fruticosus // Food Nutr. Sci. – 2014. – Vol. 5. – P. 488-494. https://doi. org/10.4236/fns.2014.56058
- Markakis P., Livingston G. E., Fellers R. C. Quantitative aspects of strawberry pigment degradation // Food Res. – 1957. – Vol. 22. – P. 117–130. https://doi.org/10.1111/j.1365-2621.1957.tb16991.x
- Adams J.B. Thermal degradation of anthocyanins with particular reference to the 3-glycosides of cyanidin. I. In acidified aqueous solutions at 100 °C // J. Sci. Food Agric. – 1973. – Vol. 24. – P. 747–762. https://doi. org/10.1002/jsfa.2740240702
- Casati C.B., Baeza R., Sanchez V., Catalano A., López P., Zamora M.C. Thermal degradation kinetics of monomeric anthocyanins, colour changes and storage effect in elderberry juices // J. Berry Res. – 2005. – Vol. 5. – P. 29–39. https://doi.org/10.3233/JBR-150088
- Reyes L.F., Cisneros-Zevallos L. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.) // Food Chem. 2007. Vol. 100. P. 885–894. https://doi.org/10.1016/j.foodchem.2005.11.002
- Wang W.-D., Sh.-Y. Xu. Degradation kinetics of anthocyanins in blackberry juice and concentrate // J. Food Eng. – 2007. – Vol. 82, N 3. – P. 271–275. https://doi.org/10.1016/j.jfoodeng.2007.01.018
- Harbourne N., Jacquier J.Ch., Morgan D.J., Lyng J.G. Determination of the degradation kinetics of anthocyanins in a model juice system using isothermal and non-isothermal methods // Food Chem. – 2008. – Vol. 111. – P. 204–208. https://doi.org/10.1016/j.foodchem.2008.03.023
- Patras A., Brunton N.P., O'Donnell C., Tiwari B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation // Trends Food Sci. Technol. – 2010. – Vol. 21. – P. 3-11. https://doi.org/10.1016/j.tifs.2009.07.004

- Zozio S., Pallet D., Dornier M. Evaluation of anthocyanin stability during storage of a coloured drink made from extracts of the Andean blackberry (Rubus glaucus Benth.), açai (Euterpe oleracea Mart.) and black carrot (Daucus carota L.) // Fruits. – 2011. – Vol. 66. – P. 203–215. https://doi.org/10.1051/fruits/2011030
- Yalçinöz Ş.K., Erçelebi E.A. Anthocyanin degradation and colour kinetics of cornelian cherry concentrate // Br. J. Appl. Sci. Technol. – 2015. – Vol. 10, N 12. – P.1-12. https://doi.org/10.1111/j.1365-2621.2011.02780.x
- Hrazdina G. Reactions of anthocyanidin-3,5-diglucosides: Formation of 3,5-di-(O-β-D-glucosyl)-7-hydroxy coumarin // Phytochem. – 1971. – Vol. 10. – P. 1125–1130. https://doi.org/10.1016/S0031-9422(00)89950-1.
- Lee J., Durst R.W., Wrolstad R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study // J. AOAC Int. - 2005. - Vol. 88, N 5. - P. 1269 –1278.
- Hou Zh., Qin P., Zhang Y., Cui S., Ren G. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics // Food Res. Int. – 2013. – Vol. 50. – P. 691–697. https://doi.org/10.1007/ s10068-010-0055-5
- Kirca A., Özkan M. & Cemeroğlu B. Stability of black carrot anthocyanins in various fruit juices and nectars // Food Chem. – 2006. – Vol. 97. – P. 598–605. https://doi.org/10.1016/j.foodchem.2005.05.036
- Sadilova E., Stintzing F.C., Carle R. Thermal degradation of acylated and nonacylated anthocyanins // J. Food Sci. – 2006. – Vol. 71. – P.504–512. https://doi.org/10.1111/j.1750-3841.2006.00148.x
- Yang Z., Han Y., Gu Z., Fan G., Chen Z. Thermal degradation kinetics of aqueous anthocyanins and visual color of purple corn (Zea mays L.) cob. // Innovative Food Sci. Emerging Technol. – 2008. – Vol. 9. – P. 341–347. https://doi.org/10.1016/j.ifset.2007.09.001
- Ahmed J., Shivhare U. S., Raghavan G.S.V. Rheological characteristics and kinetics of colour degradation of green chilli puree // J. Food Eng. – 2000. –Vol. 44. – P. 239–244. https://doi.org/10.1016/S0260-8774(00)00034-0

Стаття надійшла до редакції 15.12.2016

Л. М. Солдаткіна¹, В. О. Новотна¹, І. Шаламон²

¹Одеський національний університет імені І. І. Мечникова, кафедра фізичної та колоїдної хімії, Дворянська 2, 65082, м. Одеса, Україна, email: soldatkina@onu.edu.ua ²Пряшівський університет, кафедра екології, вулиця 17 листопада 15, 08001,

Пряшів, Словаччина

КІНЕТИКА ДЕСТРУКЦІЇ АНТОЦІАНІВ№У КИСЛИХ ВОДНИХ ЕКСТРАКТАХ ЯГІД

Вивчено вплив pH, світла і температури на деструкцію антоціанів у кислих водних екстрактах ягід аронії, бузини і ожини. Показано, що процес деструкції антоціанів ягід під впливом pH, світла і температури описується рівнянням кінетики першого порядку. Знайдено, що для антоціанів ягід аронії спостерігаються найвищі значення констант швидкості деструкції, а для антоціанів ягід ожини – найвищі значення часу напіврозпаду. Температурні залежності швидкості деструкції антоціанів ягід описані за допомогою рівняння Арреніуса. Розраховані енергії активації процесу деструкції антоціанів при pH=2, які дорівнюють відповідно для антоціанів аронії, бузини і ожини 5,7, 10,1 і 15,0 кДж/моль.

Ключові слова: аронія, бузина, ожина, антоціани, кінетика деструкції.

Л. М. Солдаткина¹, В. А. Новотная¹, И. Шаламон²

¹Одесский национальный университет имени И. И. Мечникова, кафедра физической и коллоидной химии, Дворянская 2, 65082, г. Одесса, Украина, email: soldatkina@onu.edu.ua ²Пряшевский университет, кафедра экологии, улица 17 ноября 15, 08001,

КИНЕТИКА ДЕСТРУКЦИИ АНТОЦИАНОВ В КИСЛЫХ ВОДНЫХ ЭКСТРАКТАХ ЯГОД

Изучено влияние pH, света и температуры на деструкцию антоцианов в кислых водных экстрактах ягод аронии, бузины и ежевики. Показано, что процесс деструкции антоцианов ягод под влиянием pH, света и температуры описывается уравнением кинетики первого порядка. Найдено, что для антоцианов ягод аронии характерны самые высокие значения констант скорости деструкции, а для антоцианов ягод ежевики – самые высокие значения времени полураспада. Температурные зависимости скорости деструкции антоцианов ягод были описаны с помощью уравнения Аррениуса. Рассчитаны энергии активации процесса деструкции антоцианов при pH=2, которые равны соответственно для антоцианов ягод аронии, бузины и ежевики 5.7, 10.1 и 15.0 кДж/моль.

Ключевые слова: арония, бузина, ежевика, антоцианы, кинетика деструкции.

REFERENCES

Пряшев, Словакия

- Delgado-Vargas F., Paredes-Lópes O. Natural Colourants for Food and Nutraceutical. Boca Raton: CRC Press LLC, 2003, 167 p.
- Wu X., Beecher G. R., Holden J. M., Haytowitz D. B., Gebhardt S. E., Prior R. L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem., 2006, vol. 54, pp. 4069–4075. https://doi.org/10.1021/jf0603001 CCC
- Ghosh D., Konishi T. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac. J. Clin. Nutr., 2007, vol.16, no 2, pp. 200-208.
- Denev P., Ciz M., Ambrozova G., Lojek A., Yanakieva I., Kratchanova M. Solid-phase extraction of berries' anthocyanins and evaluation of their antioxidative properties. Food Chem., 2010, vol. 123, pp. 1055–1061. http://doi:10.1016/j.foodchem.2010.05.061
- Clifford M.N. Anthocyanins nature, occurrence and dietary burden. J. Sci. Food Agric., 2000, vol. 80, no 7 pp. 1063-1072. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q
- Jakobek L., Šeruga M., Medvidović-Kosanović M., Novak I. Anthocyanin contain and antioxidant activity of various red fruit juices. Deutsch Lebensmittel-Rundschau, 2007, vol. 103, no. 3, pp. 58-64.
- Kearsley M.W., Rodriguez N. The stability and use of natural colors in foods: anthocyanin, β-carotene and riboflavin. J. Food Technol., 1981, vol.16, pp. 421–431. https://doi.org/10.1111/j.1365-2621.1981.tb01833.x
- Cabrita L., Fossen T., & Andersen É. M. Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chem., 2000, vol. 68, pp. 101-107. https://doi.org/10.1016/S0308-8146(99)00170-3
- Laleh G.H., Frydoonfar H., Heidary R., Jameei R., Zare S. The effect of light, temperature, pH and species on stability of anthocyanin pigments in four berberis species. Pakistan J. Nutr., 2006, vol. 5, no 1, pp. 90–92. https://doi.org/10.3923/pjn.2006.90.92
- Ozela E.F., Stringheta P.C., Chauca M.C. Stability of anthocyanin in spinach vine (Basella rubra) fruits. Cienc. Invest. Agraria, 2007, vol. 34, no 2, pp. 115–120. https://doi.org/10.4067/S0718-16202007000200004
- Moldovan B., David L., Chişbora C., Cimpoiu C. Degradation kinetics of anthocyanins from European cranberrybush (Viburnum opulus L.) fruit extracts. Effects of temperature, pH and storage solvent. Molecules, 2012, vol. 17, pp. 11655–11666. https://doi.org/10.3390/molecules171011655
- 12. Oancea S., Draghici O. pH and thermal stability of anthocyanin-based optimised extracts of Romanian red onion cultivars. Czech J. Food Sci., 2013, vol. 31, no 3, pp. 283–291.
- Furtado P., Figueiredo P., Chaves das Neves H., Pina F. Photochemical and thermal degradation of anthocyanidins. J. Photochem. Photobiol. A: Chem., 1993, vol. 75, no 2, pp. 113–118. https://doi. org/10.1016/1010-6030(93)80191-b

- Seeram N.P., Bourquin L.D., Nair M.G. Degradation products of cyanidin glycosides from tart cherries and their bioactivities. J. Agric. Food Chem., 2001, vol. 49, pp. 4924–4929. https://doi.org/10.1021/jf0107508
- Morais H., Ramos C., Forgács E. Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed-phase high-performance liquid chromatography. J. Chromatogr. B, 2002, vol. 770, pp. 297–301. https://doi.org/10.1016/S1570-0232(02)00055-7
- Contreras-Lopez E., Castañeda-Ovando A., González-Olivares L.G. Effect of light on stability of anthocyanins in ethanolic extracts of Rubus fruticosus. Food Nutr. Sci., 2014, vol. 5, pp. 488-494. https://doi.org/10.4236/ fns.2014.56058
- Markakis P., Livingston G.E., Fellers R.C. Quantitative aspects of strawberry pigment degradation. Food Res., 1957, vol. 22, pp. 117–130. https://doi.org/10.1111/j.1365-2621.1957.tb16991.x
- Adams J.B. Thermal degradation of anthocyanins with particular reference to the 3-glycosides of cyanidin. I. In acidified aqueous solutions at 100 °C. J. Sci. Food Agric., 1973, vol. 24, pp. 747–762. https://doi. org/10.1002/jsfa.2740240702
- Casati C.B., Baeza R., Sanchez V., Catalano A., López P., Zamora M. C. *Thermal degradation kinetics of monomeric anthocyanins, colour changes and storage effect in elderberry juices.* J. Berry Res., 2005, vol. 5, pp. 29–39. https://doi.org/10.3233/JBR-150088.
- Reyes L.F., Cisneros-Zevallos L. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.) // Food Chem., 2007, vol. 100, pp. 885–894. http:// doi: 10.1016/j.foodchem.2005.11.002
- Wang W.-D., Sh.-Y. Xu. Degradation kinetics of anthocyanins in blackberry juice and concentrate. J. Food Eng., 2007, vol. 82, no 3, pp. 271–275. https://doi.org/10.1016/j.jfoodeng.2007.01.018
- Harbourne N., Jacquier J.Ch., Morgan D.J., Lyng J.G. Determination of the degradation kinetics of anthocyanins in a model juice system using isothermal and non-isothermal methods. Food Chem., 2008, vol. 111, pp. 204–208. https://doi.org/10.1016/j.foodchem.2008.03.023
- Patras A., Brunton N.P., O'Donnell C., Tiwari B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Sci. Technol., 2010, vol. 21, pp. 3-11. https:// doi.org/10.1016/j.tifs.2009.07.004
- Zozio S., Pallet D., Dornier M. Evaluation of anthocyanin stability during storage of a coloured drink made from extracts of the Andean blackberry (Rubus glaucus Benth.), açai (Euterpe oleracea Mart.) and black carrot (Daucus carota L.). Fruits, 2011, vol. 66, pp. 203–215. https://doi.org/10.1051/fruits/2011030
- Yalçinöz Ş.K., Erçelebi E.A. Anthocyanin degradation and colour kinetics of cornelian cherry concentrate. Br. J. Appl. Sci. Technol., 2015, vol. 10, no 12, pp. 1-12. https://doi.org/10.1111/j.1365-2621.2011.02780.x
- Hrazdina G. Reactions of anthocyanidin-3,5-diglucosides: Formation of 3,5-di-(O-β-D-glucosyl)-7-hydroxy coumarin. Phytochem., 1971, vol. 10, pp. 1125–1130. https://doi.org/10.1016/S0031-9422(00)89950-1
- Lee J., Durst R.W., Wrolstad R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int., 2005, vol. 88, no 5, pp. 1269–1278.
- Hou Zh., Qin P., Zhang Y., Cui S., Ren G. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Rese. Int., 2013, vol. 50, pp. 691–697. https://doi.org/10.1007/ s10068-010-0055-5
- Kirca A., Özkan M., Cemeroğlu B. Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chem., 2006, vol. 97, pp. 598–605. https://doi.org/10.1016/j.foodchem.2005.05.036
- Sadilova E., Stintzing F. C., Carle, R. *Thermal degradation of acylated and nonacylated anthocyanins*. J. Food Sci., 2006, vol. 71, pp. 504–512. https://doi.org/10.1111/j.1750-3841.2006.00148.x
- Yang Z., Han Y., Gu Z., Fan G., Chen Z. Thermal degradation kinetics of aqueous anthocyanins and visual color of purple corn (Zea mays L.) cob. Innovative Food Sci. Emerging Technol., 2008, vol. 9, pp. 341–347. https://doi.org/10.1016/j.ifset.2007.09.001
- Ahmed J., Shivhare U.S., Raghavan G.S.V. Rheological characteristics and kinetics of colour degradation of green chilli puree. J. Food Eng., 2000, vol. 44, pp. 239–244. https://doi.org/10.1016/S0260-8774(00)00034-0

УДК 543.544.5.068.7:615.07: 543.426

А. В. Егорова¹, А. А. Федосенко², Ю. В. Скрипинец¹, И. И. Леоненко¹, Г. В. Мальцев², В. П. Антонович¹ ¹Физико-химический институт им. А.В. Богатского НАН Украины

Люстдорфская дорога, 86, Одесса, 65080, Украина ²ОДО «ИНТЕРХИМ», Люстдорфская дорога, 86, Одесса, 65080, Украина

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ РИВАСТИГМИНА ГИДРОТАРТРАТА НА ПОВЕРХНОСТЯХ ФАРМОБОРУДОВАНИЯ МЕТОДАМИ ВЭЖХ И ЛЮМИНЕСЦЕНЦИИ

Предложены высокочувствительные методики хроматографического (ВЭЖХ) и люминесцентного (Люм) определения следовых количеств ривастигмина гидротартрата в смывах при очистке фармацевтического оборудования. Разработанные методики валидированы по следующим показателям: специфичность, линейность, точность, предел обнаружения и предел количественного определения. Градуировочные графики представлены в интервалах концентраций 0,5–50,0 мкг/мл (ВЭЖХ) и 0,5–20,0 мкг/мл (Люм), пределы обнаружения равны 0,38 мкг/мл и 0,48 мкг/мл, соответственно. Эффективность метода отбора проб составляет около 83 %.

Установлено, что данные методики позволяют получать сопоставимые результаты. Люминесцентная методика по сравнению с ВЭЖХ обладает рядом преимуществ: меньшая трудоемкость, экспрессность и меньший расход реагентов.

Ключевые слова: высокоэффективная жидкостная хроматография, люминесценция, ривастигмина гидротартрат.

На любом фармацевтическом предприятии с использованием одного и того же технологического оборудования, как правило, выпускают ряд различных лекарственных средств, что грозит загрязнением последующего препарата предыдущим. Для предотвращения подобной контаминации необходимо проведение эффективной очистки оборудования с валидацией применяемых процедур, в том числе методик определения остаточных количеств предыдущего препарата [1-3].

Необходимо также научно обосновать и установить допустимые пределы содержания остатков активных фармацевтических ингредиентов (АФИ) на поверхности оборудования после очистки (критерии приемлемости чистоты) с учетом терапевтической дозы АФИ, токсичности, объема серии, площади поверхности используемого оборудования и др. [4,5].

На основании установленных критериев приемлемости чистоты разрабатывают методики аналитического контроля очистки оборудования и проводят их валидацию. Эти методики позволяют определять содержание действующих веществ на поверхности оборудования и в промывных водах, отличаются специфической пробоподготовкой.

Для определения остаточных количеств АФИ в фармацевтической промышленности необходимы методы, обладающие высокой чувствительностью и селективностью по отношению к аналиту и примесям – продуктам деградации, возникающим в технологическом процессе и при отмывке. К таким методам относятся высокоэффективная жидкостная хроматография (ВЭЖХ) [6-8], люминесценция

© А. В. Егорова, А. А. Федосенко, Ю. В. Скрипинец, И. И. Леоненко, Г. В. Мальцев, В. П. Антонович, 2017

[9-10] и УФ-спектроскопия [11]. Методы анализа проб могут быть и общими, указывающими на наличие загрязнений с количественной оценкой, например, определение общего органического углерода (*Total Organic Carbon – TOC*), которое позволяет обнаруживать органические загрязнения в исключительно малых концентрациях (на уровне *ppt*) [12].

Целью данной статьи была разработка и валидация простых и селективных методик определения остаточных количеств ривастигмина гидротартрата в смывах с поверхностей фармоборудования после производства таблеток, содержащих данный АФИ. В работе использовали люминесценцию и ВЭЖХ.

Ривастигмина гидротартрат (РГ)— 3-[(1S)-1-(диметиламино)этил]фенил-Nэтил-N-метилкарбамат гидро(2R,3R)-2,3-дигидроксибутандиоат, селективный псевдообратимый ингибитор ацетилхолинэстеразы головного мозга карбаматного типа. Препятствует разрушению ацетилхолина, селективно повышает содержание ацетилхолина в коре головного мозга и гиппокампе, облегчает холинергическую передачу, улучшает когнитивные процессы при болезни Альцгеймера.

Для определения РГ в фармацевтических препаратах и биологических образцах используют спектрофотометрию [13,14], ВЭЖХ [15-18]. Некоторые из известных методик обладают высокой чувствительностью, достаточной для определения следовых количеств ривастигмина, однако они не были использованы для определения остаточных количеств РГ при контроле очистки фармоборудования.

Разработанные нами методики определения остаточных количеств ривастигмина гидротартрата валидированы по следующим параметрам: специфичность, линейность, внутрилабораторная прецизионность, предел обнаружения.

МАТЕРИАЛЫ И МЕТОДЫ

Для приготовления подвижных фаз, растворов сравнения исследуемого АФИ и смывов применяли метанол (MERCK), воду для хроматогрфии и бидистиллированную воду.

В качестве рабочего стандартного образца (РСО) использовали фармацевтическую субстанцию ривастигмина гидротартрата, соответствующую требованиям Европейской фармакопеи [19].

Стандартный раствор РГ (1000 мкг/мл) готовили растворением его точной навески в воде с перемешиванием на магнитной мешалке. Разбавлением водой готовили рабочие растворы РГ (10.0 мкг/мл, 100.0 мкг/мл).

Фосфатный буферный раствор. 8,9 г динатрия гидрофосфата дигидрата помещают в мерную колбу вместимостью 1000,0 мл, доводят объём раствора водой для хроматографии до метки и перемешивают. Полученный раствор доводят до рН 7,0 фосфорной кислотой.

Смывы с поверхности фармоборудования отбирали хлопковыми аппликаторами (свабами) Alpha[®] Sampling Swab марки TX 715, смоченными водой.

Анализ проводили на хроматографе Agilent 1200 2D LC System с УФ-детектором в изократическом режиме, используя колонку из нержавеющей стали размером 0,15 м х 4,6 мм, заполненную силикагелем октадецилсилильным для хроматографии типа Zorbax Eclipse XDB-C₁₈ с размером частиц 5 мкм.

Электронные спектры поглощения регистрировали на спектрофотометре UV-2401 PC «Shimadzu» (Япония), а спектры возбуждения люминесценции и люминесценции на спектрофлуориметре Cary Eclipse «Varian» (Австралия) с ксеноновой лампой 150 W. Все спектральные измерения проводили в стандартных 1-см кварцевых кюветах.

В работе использовали весы лабораторные электронные AX 124 (SARTORIUS, Германия), систему очистки воды Direct-Q[®]3 Smart (Millipore, Франция) и магнитную мешалку ARE (VELP Scientifica, Италия).

Все измерения проводили при комнатной температуре (21–23°С).

Результаты и их обсуждение

Хроматографическое определение РГ

Определение следовых количеств РГ основано на изменении площади пика ривастигмина на хроматограммах в зависимости от его концентрации (при необходимости раствор пробы разбавляют до концентрации, лежащей в интервале линейности градуировочного графика). Содержание РГ в смывах (мкг/смыв) определяют по градуировочному графику.

Хроматографирование проводят при таких условиях:

подвижная фаза: фосфатный буферный раствор : метанол (30 : 70);

- скорость подвижной фазы: 1,8 мл/мин;
- температура колонки: 25 °C;
- объём инжекции: 20,0 мкл;
- детектирование при длине волны: 214 нм;
- время хроматографирования: 5 мин.

Раствор для проверки пригодности хроматографической системы. 50,0 мг РСО ривастигмина гидротартрата помещают в мерную колбу вместимостью 50,0 мл, растворяют в 25 мл воды для хроматографии, доводят объем раствора до метки тем же растворителем и перемешивают (1000 мкг/мл).

0,2 мл полученного раствора помещают в мерную колбу вместимостью 20,0 мл, доводят объём раствора до метки водой для хроматографии и перемешивают (10 мкг/мл).

0,5 мл полученного раствора помещают в мерную колбу вместимостью 10,0 мл, доводят объём раствора до метки водой для хроматографии и перемешивают (0,5 мкг/мл).

Хроматографическая система считается пригодной, если соотношение сигнал/ шум, рассчитанное для пика ривастигмина из хроматограммы раствора для проверки пригодности, составляет не менее 2 (при расчете не учитывают системные пики с временем удерживания до 1,8 мин).

Построение градуировочного графика

Раствор РСО ривастигмина гидротартрата. 50,0 мг РСО ривастигмина гидротартрата помещают в мерную колбу вместимостью 50,0 мл, растворяют в 25 мл воды для хроматографии, доводят объем раствора до метки тем же растворителем и перемешивают (1000 мкг/мл) (раствор А).

0,2 мл полученного раствора А помещают в мерную колбу вместимостью 20,0 мл, доводят объём раствора до метки водой для хроматографии и перемешивают (10 мкг/мл) (раствор Б).

В мерные колбы вместимостью 10,0 мл помещают по 0,5; 0,7; 1,0; 2,0; 3,0; 5,0 мл раствора Б и 0,1; 0,3 и 0,5 мл раствора А РСО ривастигмина гидротартрата и доводят до метки водой для хроматографии, получая растворы с содержанием РГ 0,5; 0,7; 1,0; 2,0; 3,0; 5,0; 10,0; 30,0 и 50,0 мкг/мл, соответственно.

Хроматографируют полученные растворы при условиях, указанных выше. По полученным результатам строят градуировочный график (рис. 1), откладывая на оси абсцисс значения концентрации РГ (С_{рг}, мкг/мл), а по оси ординат – значения соответствующих площадей пиков ривастигмина (S_{рг}), который описывается уравнением S_{рг} = 2,38502 + 15,85915 · С_{рг} (R = 0.99988) и линеен в интервале концентраций РГ 0.5–50.0 мкг/мл. Коэффициенты линейной зависимости в исследуемом диапазоне содержаний соответствуют допустимым значениям [20] для методик определения веществ, концентрация которых в пробе выше предела количественного определения. Предел обнаружения (ПО) составляет:

 $\Pi O = 3,3 \cdot \sigma/S = 3,3 \cdot 1,8149/15,85915 = 0,38$ мкг/мл;

где:

S – тангенс угла наклона градуировочного графика.

Рис. 1. Градуировочный график для определения РГ

Специфичность метода основана на возможности избирательного разделения хроматографической зоны основного вещества (РГ) от других возможных зон на хроматограмме и устойчивости положения хроматографической зоны РГ на хроматограмме испытуемого раствора в сравнении с хроматограммой внешнего стандарта (РСО ривастигмина гидротартрата).

Для проверки специфичности методики были получены хроматограммы промывного раствора с чистого аппликатора (рис. 2, а) и модельных растворов РСО ривастигмина гидротартрата (рис. 2, б). На хроматограмме промывного раствора с чистого аппликатора отсутствуют пики, мешающие определению ривастигмина гидротартрата.

Рис. 2. Хроматограммы: промывного раствора с чистого аппликатора (а); модельных растворов РСО ривастигмина гидротартрата для градуировочного графика (б) (0,5 – 50,0 мкг/мл).

Люминесцентное определение РГ

Определение следовых количеств ривастигмина гидротартрата основано на изменении интенсивности люминесценции его водных растворов в зависимости от концентрации РГ (при необходимости раствор пробы разбавляют до концентрации, лежащей в интервале линейности градуировочного графика).

Спектр поглощения РГ характеризуется наличием полосы в УФ-области спектра с максимумом поглощения при $\lambda = 263$ нм ($\epsilon = 2,6 \cdot 10^3 \, \text{л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$). Спектр возбуждения люминесценции РГ подобен спектру его поглощения ($\lambda_{\text{возб}} = 262$ нм). Изучено влияние на интенсивность люминесценции ($I_{\text{мом}}$) РГ метанола, этанола,

Изучено влияние на интенсивность люминесценции (I_{люм}) РГ метанола, этанола, ацетонитрила, диметилформамида, диметилсульфоксида, пропанола. Установлено, что максимальная люминесценция РГ наблюдается в водной среде.

Обнаружено, что с увеличением концентрации водного раствора РГ наблюдается увеличение его собственной люминесценции (рис. 3, а).

Градуировочный график

Для построения градуировочного графика в ряд мерных колб объемом 10.0 мл вносят по 0,5; 1,0 мл рабочего раствора РГ (10 мкг/мл), 0,3; 0,4; 0,5; 0,7; 1,0; 2,0 мл рабочего раствора РГ (100 мкг/мл). Растворы доводят до 10,0 мл водой. Через 5 минут измеряют I_{люм} при $\lambda_{_{3мне}} = 293$ нм ($\lambda_{_{8036}} = 262$ нм) (рис. 3, б). По полученным данным строят градуировочный график, который описывается уравнением I_{люм} = 9,1937 + 26,8073 · С_{РГ} (R = 0.99956) в интервале концентраций РГ 0.5–20.0 мкг/мл.

Предел обнаружения составляет:

$$\Pi O = 3,3 \cdot \sigma/S = 3,3 \cdot 3,9046/26,8073 = 0,48$$
 мкг/мл;

где: σ – стандартное отклонение свободного члена; S – тангенс угла наклона градуировочного графика.

Рис. 3. Спектры собственной люминесценции РГ (а); градуировочный график для люминесцентного определения РГ (б) ($\lambda_{ROAD} = 262$ нм; щели 10-10; усиление 560).

Методики определения РГ

Исследуемый раствор. Аппликатор со смывом с поверхности фармоборудования (площадь смыва – 100 см²) помещают в химический стакан вместимостью 25 мл, прибавляют 5,0 мл раствора для пробоподготовки (ВЭЖХ) или 5,0 мл воды (Люм) и проводят десорбцию в течение 10 мин. Полученный раствор фильтруют через мембранный фильтр (0,20 мкм; Minisart RC 15, «Sartorius», Германия).

Содержание ривастигмина гидротартрата (X), в микрограммах в смыве, рассчитывают по формуле:

$$X = C \cdot 5,$$

где: *С* – концентрация РГ, полученная по соответствующему градуировочному графику, в мкг/мл.

Определение степени извлечения. В модельных опытах в ходе валидации методик делали смывы свабом, смоченным водой, с поверхности (100,0 см²), на которую искусственно наносили 25,0 мкг АФИ ривастигмина гидротартрата (0,25 мл раствора РСО ривастигмина гидротартрата с концентрацией 100,0 мкг/мл наносили и высушивали), далее проводили извлечение 5,0 мл раствора для пробоподго-
товки (ВЭЖХ) или 5,0 мл воды (Люм) в течение 10 мин (концентрация ривастигмина гидротартрата 5,0 мкг/мл).

Далее концентрацию РГ определяли по условиям, указанным в соответствующих методиках.

Было установлено, что количественное извлечение ривастигмина гидротартрата в конечный раствор составляет около 83 % (табл. 1)

Значения	степеней извлече	ения ривастигмин	а гидротартрата	с модельной повер	эхности

	Степень извлечения ривастигмина гидротартрата, %								
№ пробы		ВЭЖХ		Люминесценция					
	Найдено	X _{cp} ±ΔX	S _r , %	Найдено	X _{cp} ±ΔX	S _r , %			
1	82.57			82.57	82,55±1.89	1,84			
2	83.14			81.94					
3	84.32	83.99±1.35	1.29	80.32					
4	84.89			83.89					
5	85.01			84.01					

Результаты анализа двумя методами сравнили с помощью статистического критерия *F*-распределения для величин выборочных дисперсий и *t*-критерия Стьюдента для проверки сходимости средних значений. При сравнении рассчитанного по экспериментальным данным значения *F*-критерия $F_{sec} = \frac{S_{max}^2}{S_{min}^2} = 1.98$ с табличным значением $F_{raбn} = 6.39$ можно сделать вывод, что расхождение между дисперсиями для двух наборов данных статистически незначимо с вероятностью P=0.95. Значение *t*-критерия Стьюдента рассчитывали по формуле: $t_{sec} = \frac{|\overline{X}_1 - \overline{X}_2|}{S_0} \cdot \sqrt{\frac{n}{2}}$, где $S_0 = \sqrt{\frac{S_1^2 + S_2^2}{2}}$. Сравнивая рассчитанный по экспериментальным данным *t*-критерий ($t_{sec} = 1.72$) с табличным значением $t_{raбn} = 2.37$ (*f*=8, *P*=0.95) можно сделать вывод, что расхождение между средними двух выборок статистически незначимо. Таким образом, обе выборки принадлежат одной и той же генеральной совокупности. Преимуществом люминесцентного метода является простота выполнения анализа и небольшой расход реагентов.

Расчет предельно допустимой массы остатков предшествующего продукта

При расчете предела содержания АФИ на оборудовании после производства и очистки использовался подход, который основан на принципе «наихудшего случая» по активности и на допущении переноса определенной дозы первого АФИ в последующее АФИ с учетом суточных доз. В качестве «наихудшего случая» фактического расчёта x_{crit} для ривастигмина гидротартара был выбран последующий

Таблица 1

препарат с наибольшей максимальной суточной дозой, производимый на производственном участке ОДО «Интерхим» – а именно ТРАНКВІЛАР[®] IC, таблетки по 0.5 г АФИ, максимальное число дозированных форм в суточной дозе которого составляет $N_2 = 20$ шт, а наименьшая загрузка таблетмассы серии – $N_1 = 0.150$ кг, номинальная масса одной одной таблетки $m_0 = 0.550$ г.

Предельно допустимая масса предшествующего продукта ривастигмина гидротартара в максимальной суточной дозе последующего, *D* (мг) составит:

$$D = \frac{TD \cdot SF}{100},$$

где: *TD* – терапевтическа доза предшествующего продукта, мг;

SF – фактор безопасности предшествующего АФИ: допустимая доля предшествующего продукта от его терапевтической дозы в максимальной суточной дозе последующего, %.

Теоретическое предельно допустимое значение остатков предыдущего продукта на всем оборудовании после очистки, E_{τ} (мг):

$$E_T = \frac{\dot{D} \cdot \dot{N}_1}{m_0 \cdot N_2} \cdot 10^3,$$

С учетом того, что на всей площади, контактируемой с продуктом $-S_{,,}$ должно находиться E_T мг предшествующего продукта, в пробе, взятой с участка оборудования с поверхностью пробоотбора площадью S_I , должно находиться теоретическое предельно допустимое значение массы остатков предыдущего продукта (в смыве с площади S_I) – x_{crit} (мкг):

$$F_{crit} = \frac{E_T \cdot S_1}{S_2} \cdot 10^3.$$

Терапевтическая доза предшествующего препарата составляет, согласно инструкции по применению, 2 таблетки. Содержание ривастигмина в 1 таблетке составляет 6,0 мг, что соответствует 9,6 мг ривастигмина гидротартрата. Таким образом, терапевтическая доза ривастигмина гидротартрата составит 19,2 мг.

Общая площадь рабочего оборудования, контактируемого с продуктом на участке, составляет $S_2 = 8165 \text{ см}^2$. При факторе безопасности SF = 0,1 %, предельно допустимое значение массы остатков ривастигмина гидротартара в смыве с площади $S_1 = 100 \text{ см}^2$ составит $F_{crit} = 3,21 \text{ мкг/сваб}.$

Предел обнаружения ривастигмина гидротартрата 1,9 мкг/сваб (методом ВЭЖХ) и 2,4 мкг/сваб (люминесцентным методом).

 F_{crit} превосходит ПКО в смыве, таким образом данные методики позволяют обнаруживать и достоверно определять остаточные количества предшествующего продукта с учетом требований к очистке оборудования.

Результаты анализа свабов

С использованием разработанных методик проведено определение остаточных количеств ривастигмина гидротартрата на поверхностях фармоборудования (с поверхности таблетпресса) при производстве таблеток, содержащих данный АФИ, методом мазков (с помощью свабов).

Результаты определения остаточных количеств РГ с поверхности таблетпресса в 3 точках пробоотбора (по 2 параллельных определения) двумя методами представлены в таблице 2. Расхождение результатов, полученных при анализе производственных образцов, обусловлено неравномерным распределением АФИ на поверхности фармоборудования.

Таблица 2

Результаты определения остаточных количеств ривастигмина гидротартрата на
поверхности таблетпресса

No zouvu ozfono	Найдено ривастигмина гидротартрата, мкг					
ј№ 104ки отоора	ВЭЖХ		Люмин	есценция		
Nº1	2,45	2,51	2,49	2,50		
Nº2	2,75	2,83	2,79	2,91		
№3	3,14	3,02	3,05	3,17		

Как видно из таблицы, все результаты определения остаточных количеств ривастигмина гидротартрата на поверхности таблетпресса в 3 точках пробоотбора не превосходят практическое предельно допустимое значение остатков ривастигмина гидротартрата в смыве ($F_{crit} = 3,21$ мкг), что свидетельствует об удовлетворительном качестве очистки данного оборудования.

выводы

Разработаны методики ВЭЖХ и люминесцентного определения ривастигмина гидротартрата. Предложенные методики экспрессны, обладают удовлетворительными метрологическими характеристиками и могут быть использованы для определения остаточных количеств ривастигмина гидротартрата в смывах с поверхностей фармоборудования при контроле качества его очистки. Степень извлечения ривастигмина гидротартрата с поверхностей фармоборудования составляет около 83 %.

СПИСОК ЛИТЕРАТУРЫ

- 1. PIC/S document PI006-2. Recommendations on Validation Master Plan, Installation und Operational Qualification. Non Sterile Process Validation, Cleaning Validation; July 2004.
- Гармонов С.Ю., Нурисламова Г.Р., Фатхуллин Р.Р., Горюнова С.М. Проблемы перекрестного загрязнения в химико-фармацевтическом производстве: стандартизация и унификация требований // Вестник Казанского технол. универ. – 2006. – Т. 6. – С. 294-305.
- 3. Nassani M. Cleaning validation in the pharmaceutical industry // J. Validation Technol. 2005. P. 11 -14.
- Fourman G.L., Mullen M.V. Determining cleaning validation acceptance limits for pharmaceutical manufacturing operations // Pharm. Technol. – 1993. – Vol. 17. – P. 54-60.
- 5. Егорова А.В., Федосенко А.А., Мальцев Г.В., Антонович В.П. Валидация методик контроля качества очистки фармацевтического оборудования // Аналитика и контроль 2015. Т. 19, № 4. С. 387–395. http://dx.doi.org/10.15826/analitika.2015.19.4.002
- Shabir G.A. Equipment Cleaning Valiation: Developing an HPLC Method to Determine Contamination Residues on Equipment Surfaces // Am. Pharm. Rev. – 2008. – Vol. 11. – P. 16–22.
- Schmidt A. H., Stanic M. UPLC-MS/MS in support of cleaning validation studies in an cephalosporin antibiotics production facility // G.I.T. Laboratory J. Europe. – 2012. – Vol. 5-6. – P. 28.
- Георгиевский В.П., Георгиевский Г.В., Зинченко А.А., Куликов А.Ю., Назарова Е.С., Колиснык А.В. Хроматографические методы в аналитическом обеспечении создания и контроля качества лекарственных средств в Украине. Под ред. В.П. Георгиевского. Харьков: изд. «НТМТ». 2016. – 288 с.
- Peles D.N., Ely K.J., Crowder T.M., Ponstingl M. Rapid at-line pharmaceutical cleaning verification using a novel light induced fluorescence (LIF) sensor // J. Pharm. Biomed. Anal. – 2013 – Vol. 72. – P. 1-7. http:// dx.doi.org/10.1016/j.jpba.2012.09.018

- Fakutsu N., Konse T., Kawasaki T., Saito K., Nakazawa H. Determination of cefmetazole residue at pharmaceutical manufacturing facilities by chemiluminescence flow injection analysis // J. Pharm. Biomed. Anal. – 2006 – Vol. 41. – P. 599–602. http://dx.doi.org/10.1016/j.jpba.2005.11.038
- Кондратьева М.Л., Наприенко Е.Н., Шкуратова О.В. Разработка аналитических методик для валидации очистки оборудования, используемого в производстве лекарственных средств // Сибирский медицинский журнал – 2011. – Т. 26, № 2-2. – С. 84–97.
- Glover C. Validation of the total organic carbon (TOC) swab sampling and test method. // J. Pharm. Sci. Technol. 2006. – Vol. 60, N 5. – P. 284–290.
- Sharmila Sk., Srilakshmi. M, Renukadevi. G, Rahaman S.A., Shanthakumari K. Development and validation of UV-spectrophotometric method for the estimation of rivastigmine tartrate in bulk and pharmaceutical dosage form // IAJPR. – 2013. – Vol. 3, N 10. – P. 8394-8399.
- Sharmila S., Bhargavi K., Abdul Rahaman S.K. Method development and validation of rivastigmine by visible spectrophotometry // J. Pharm. Mol. Biol. – 2014. – Vol. 2, N 2. – P. 5-5.
- Amini H., Ahmadiani Ab. High-Performance liquid chromatographic determination of rivastigmine in human plasma for application in pharmacokinetic studies // Iran J. Pharm. Res. – 2010. – Vol. 9, N 2. – P. 115-121.
- Arumugam K., Chamallamudi M., Mallayasamy S., Mullangi R., Ganesan S., Jamadar L., Ranjithkumar A., Udupa N. High performance liquid chromatographic fluorescence detection method for the quantification of rivastigmine in rat plasma and brain: application to preclinical pharmacokinetic studies in rats // J. Young Pharm. – 2011. – Vol. 3, N 4. – P. 315-321. http://dx.doi.org/10.4103/0975-1483.90244
- Choudhury A., Pai K.V., Dey S., Mandade R.J. RP-HPLC method for the estimation of rivastigmine in bulk and in dosage forms // J. Pharm. Res. – 2011. – Vol. 4, N 4. – P. 1007-1009.
- Reddy T.V., Gowri K. A novel RP-HPLC and visible spectrophotometric methods for the quantification of rivastigmine in bulk and pharmaceutical formulations // Int. J. Pharm. Chem. Sci. – 2013. – Vol. 2, N 2. – P. 851-857.
- 19. European Pharmacopoeia. 7th edition. EP 8.6. Rivastigmine hydrogen tartrate. 2013. (monograph 2630).
- Державна Фармакопея України/Державне підприємство "Науково-експертний фармакопейний центр". 1-е вид. – Харків: РІРЕГ. – Доповнення 2 –2008. – С. 97-100.

Стаття надійшла до редакції 18.01.2017

А. В. Єгорова¹, Г. А. Федосенко², Ю. В. Скрипинець¹, І. І. Леоненко¹, Г. В. Мальцев², В. П. Антонович¹

¹Фізико-хімічний інститут ім. О.В.Богатського НАН України,

Люстдорфська дорога, 86, Одеса, 65080, Україна

²ТДВ «ІНТЕРХІМ», Люстдорфська дорога, 86, Одеса, 65080, Україна

ВИЗНАЧЕННЯ ЗАЛИШКОВИХ КІЛЬКОСТЕЙ РИВАСТИГМІНУ ГІДРОТАРТРАТУ НА ПОВЕРХНЯХ ФАРМОБЛАДНАННЯ МЕТОДАМИ ВЕРХ ТА ЛЮМІНЕСЦЕНЦІЇ

Запропоновано високочутливі методики хроматографічного (ВЕРХ) та люмінесцентного (Люм) визначення слідових кількостей ривастигміну гідротартрату в змивах при очищенні фармацевтичного обладнання. Розроблені методики валідовані за наступними показниками: специфічність, лінійність, точність, межа виявлення та межа кількісного визначення. Градуювальні графіки представлені в інтервалах концентрацій 0,5-50,0 мкг/мл (ВЕРХ) та 0,5-20,0 мкг/мл (Люм), межи виявлення дорівнюють 0,38 мкг/мл та 0,48 мкг/мл, відповідно. Ефективність методу відбору проб складає біля 83%.

Встановлено, що дані методики дозволяють отримувати порівняні результати. Люмінесцентна методика в порівнянні з ВЕРХ має наступні переваги: менша трудомісткість, експресність та менша витрата реагентів.

Ключові слова: високоефективна рідинна хроматографія, люмінесценція, ривастигміну гідротартрат.

Определение остаточных количеств ривастигмина гидротартрата

A. V. Yegorova¹, G. A. Fedosenko², Yu. V. Scrypynets¹, I. I. Leonenko¹, G. V. Maltsev², V. P. Antonovich ¹

 ¹A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Lustdorfskaya doroga, 86, Odessa, 65080, Ukraine
²"INTERCHEM", Lustdorfskaya doroga, 86, Odessa, 65080, Ukraine

DETERMINATION OF RIVASTIGMINE HYDROTARTRATE RESIDUES ON PHARMACEUTICAL MANUFACTURING EQUIPMENT SURFACES BY HPLC AND LUMINESCENCE METHODS

Highly sensitive HPLC methods of determination of rivastigmine hydrotartrate trace amounts for cleaning of the pharmaceutical equipment have been proposed. The developed methods have been validated on the following parameters: specificity, linearity, precision, limit of detection and limit of quantification. The calibration curves were linear over the concentration range of 0,5-50,0 μ g / ml (HPLC) and 0,5-20,0 μ g / ml (Lum), the detection limits are 0,38 μ g / ml and 0,48 μ g / ml respectively. The effectiveness of the method of sampling is 83%. It is found that these methods allow to obtain comparable results. Luminecsent method in comparison with the HPLC has the following advantages: less labor intensity, rapidity and lower reagent consumption.

Keywords: high performance liquid chromatography, luminescence, rivastigmine hydrotartrate.

REFERENCES

- 1. PIC/S document PI006-2. Recommendations on Validation Master Plan, Installation und Operational Qualification. Non Sterile Process Validation, Cleaning Validation, July 2004.
- 2. Garmonov S.Ju., Nurislamova G.R., Fathullin P.P., Gorjunova S.M. Problemy perekrestnogo zagrjaznenija v himiko-farmacevticheskom proizvodstve: standartizacija i unifikacija trebovanij Vestnik Kazanskogo tehnologicheskogo universiteta, 2006, vol. 6, pp. 294-305. (in Russian)
- 3. Nassani M. Cleaning validation in the pharmaceutical industry J. Validation Technol., 2005, pp. 11-14.
- 4. Fourman G.L., Mullen M.V. Determining cleaning validation acceptance limits for pharmaceutical manufacturing operations Pharm. Technol., 1993, vol. 17, pp. 54-60.
- Egorova A.V., Fedosenko A.A., Mal'cev G.V., Antonovich V.P. Validacija metodik kontrolja kachestva ochistki farmacevticheskogo oborudovanija Analitika i kontrol', 2015, vol. 19, no 4, pp. 387–395. http://dx.doi. org/10.15826/analitika.2015.19.4.002 (in Russian)
- 6. Shabir G.A. Equipment Cleaning Valiation: Developing an HPLC Method to Determine Contamination Residues on Equipment Surfaces Am. Pharm. Rev., 2008, vol. 11, pp. 16–22.
- Schmidt A.H., Stanic M. UPLC-MS/MS in support of cleaning validation studies in an cephalosporin antibiotics production facility G.I.T. Laboratory J. Europe, 2012, vol. 5-6, pp. 28.
- Georgievskij V.P., Georgievskij G.V., Zinchenko A.A., Kulikov A.Ju., Nazarova E.S., Kolisnyk A.V. *Hromatograficheskie metody v analiticheskom obespechenii sozdanija i kontrolja kachestva lekarstvennyh* sredstv v Ukraine. Pod red. V.P. Georgievskogo. Har'kov: izd. «NTMT»., 2016, 288 p. (in Russian)
- Peles D.N., Ely K.J., Crowder T.M., Ponstingl M. Rapid at-line pharmaceutical cleaning verification using a novel light induced fluorescence (LIF) sensor/ J. Pharm. Biomed. Anal., 2013, vol. 72, pp. 1-7. http://dx.doi. org/10.1016/j.jpba.2012.09.018
- Fakutsu N., Konse T., Kawasaki T., Saito K., Nakazawa H. Determination of cefinetazole residue at pharmaceutical manufacturing facilities by chemiluminescence flow injection analysis J. Pharm. Biomed. Anal., 2006, vol. 41, pp. 599–602. http://dx.doi.org/10.1016/j.jpba.2005.11.038
- Kondrat'eva M.L., Naprienko E.N., Shkuratova O.V. Razrabotka analiticheskih metodik dlja validacii ochistki oborudovanija, ispol'zuemogo v proizvodstve lekarstvennyh sredstv Sibirskij medicinskij zhurnal, 2011, vol. 26, no 2-2, pp. 84–97. (in Russian)

- 12. Glover C. Validation of the total organic carbon (TOC) swab sampling and test method. J. Pharm. Sci. Technol., 2006, vol. 60, no 5, pp. 284–290.
- Sharmila Sk., Srilakshmi M., Renukadevi G., Rahaman S.A., Shanthakumari K. Development and validation of UV-spectrophotometric method for the estimation of rivastigmine tartrate in bulk and pharmaceutical dosage form IAJPR, 2013, vol. 3, no 10, pp. 8394-8399.
- Sharmila S., Bhargavi K., Abdul Rahaman S.K. Method development and validation of rivastigmine by visible spectrophotometry J. Pharm. Mol. Biol., 2014, vol. 2, no 2, pp. 5-5.
- 15. Amini H., Ahmadiani Ab. High-Performance liquid chromatographic determination of rivastigmine in human plasma for application in pharmacokinetic studies Iran J. Pharm. Res., 2010, vol. 9, no 2, pp. 115-121.
- 16. Arumugam K., Chamallamudi M., Mallayasamy S., Mullangi R., Ganesan S., Jamadar L., Ranjithkumar A., Udupa N. High performance liquid chromatographic fluorescence detection method for the quantification of rivastigmine in rat plasma and brain: application to preclinical pharmacokinetic studies in rats J. Young Pharm., 2011, vol. 3, no 4, pp. 315-321. http://dx.doi.org/10.4103/0975-1483.90244
- 17. Choudhury A., Pai K.V., Dey S., Mandade R.J. *RP-HPLC method for the estimation of rivastigmine in bulk and in dosage forms* // J. Pharm. Research., 2011, vol. 4, no 4, pp. 1007-1009.
- Reddy T.V., Gowri K. A novel RP-HPLC and visible spectrophotometric methods for the quantification of rivastigmine in bulk and pharmaceutical formulations Int. J. Pharm. Chem. Sci., 2013, vol. 2, no 2, pp. 851-857.
- 19. European Pharmacopoeia. 7th edition. EP 8.6. Rivastigmine hydrogen tartrate., 2013, (monograph 2630).
- Derzhavna Farmakopeja Ukraïni Derzhavne pidpriemstvo "Naukovo-ekspertnij farmakopejnij centr". 1-e vid. Harkiv, RIREG, Dopovnennja 2, 2008, pp. 97-100. (*in Ukranian*)

УДК 54-386:547.234

Т. В. Кокшарова, Т. В. Мандзий, Т. С. Скакун, Ю. А. Анисимов Одесский национальный университет,

кафедра неорганической химии и химической экологии, ул. Дворянская, 2, Одесса, 65082, Украина e-mail: *tanya.koksharova@gmail.com*

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ПЕРЕХОДНЫХ МЕТАЛЛОВ С БЕНЗГИДРАЗИДОМ

Обзор. Дана характеристика бензгидразида в качестве лиганда в координационных соединениях. Указаны потенциальные области применения бензгидразида и его комплексов. Приведена общая характеристика его способности к комплексообразованию: донорные центры, таутомерные формы, теоретически возможные способы координации к металлу.

Рассмотрены состав и строение бензгидразидных комплексов d-металлов с различными анионами. Для различных комплексообразователей охарактеризованы комплексы галогенидов, сульфатов, нитратов, тиоцианатов, перхлоратов, нитритов, ацетатов. Приведены примеры комплексов с кетонной и енольной формами бензгидразида. Рассмотрены комплексы с сольватными молекулами воды и метанола. Для некоторых соединений приведены общие характеристики структур по данным PCA.

Указано на особенности взаимодействия с бензгидразидом солей меди(II) с различными анионами. Приведены данные по комплексам ванадия, включающим бензгидразид с разными ступенями депротонирования. Показано изменение способа связывания бензгидразида со ртутью в зависимости от аниона. Приведены примеры биметаллических и смешаннолигандных комплексов.

Описана структура комплексов [Co(HL)(Mal)(H₂O)₂]H₂O (H₂Mal – малоновая кислота) и [Co(HL)₂](OH)Cl(H₂Ssal) · H₂O (H₂Ssal – 5-сульфосалициловая кислота).

Рассмотрены аспекты биологической активности некоторых комплексов: бактерицидная, фунгицидная, цитотоксическая.

Ключевые слова: координационные соединения, переходные металлы, бензгидразид

ОБЩАЯ ХАРАКТЕРИСТИКА БЕНЗГИДРАЗИДА КАК ЛИГАНДА

Гидразиды являются перспективными азотсодержащими лигандами для синтеза координационных соединений с уникальными свойствами, которые могут найти широкое применение на практике [1].

Бензгидразид (HL) – гидразид бензойной кислоты:

Гидразиды ароматических кислот и их производные показывают разнообразную биологическую активность, включая противоопухолевую, антибактериальную и противогрибковую, противогельминтную, противосудорожную [2-4]. Гидразиды кислот проявляют антитуберкулезную активность, которую приписывают их способности образовывать хелаты с двухзарядными ионами некоторых мета-

DOI: http://dx.doi.org/10.18524/2304-0947.2017.1(61).94714

© Т. В. Кокшарова, Т. В. Мандзий, Т. С. Скакун, Ю. А. Анисимов, 2017

ллов [5]. Многие замещенные гидразиды кислот используются для лечения психотических и психоневротических состояний, при которых главным симптомом является депрессия. Механизм подобного действия связан с ингибированием многих реакций, катализируемых пиридоксаль-5-фосфатом в качестве коэнзима. Для каталитической активности энзима аминооксилазы требуются ион Cu²⁺ и такой коэнзим. Ингибирование моноаминоксидазы приводит к возрастанию уровня катехоламинов и серотонина в определенных участках центральной нервной системы. Причинами подобного действия могут быть реакции гидразидов кислот с металлическим центром энзима аминооксидазы, в том числе с участием пиридоксальной группировки [6]. Гидразиды карбоновых кислот, их производные и комплексы металлов на их основе используются в решении проблем окружающей среды, для очистки сточных вод от металлов методом экстракции, для сорбции и в ионообмене, для стабилизации полимеров, для аналитических целей [3]. Они являются исходными материалами для широкого круга фармацевтической продукции и поверхностно-активных веществ [4]. Бензгидразид и его производные имеют сильную инсектицидную активность и исключительно эффективны против насекомых, чувствительных к фосфорорганическим реагентам [7].

Бензгидразид содержит два активных центра: карбонильный атом кислорода и атом азота первичной аминогруппы [8]. Терминальная NH₂-группа более основная по сравнению с NH-группой, но в твердом состоянии является H-связанной [9]. Авторы [10, 11] на основании данных по константам образования и ИК спектроскопии комплексов меди(II) и кадмия(II) предположили два возможных варианта координации бензгидразида: 1) через атомы карбонильного кислорода и азота аминогруппы, 2) только через карбонильный атом кислорода.

В водных растворах бензгидразида находятся в равновесии две таутомерные формы:

В нейтральной и слабокислой среде доминирует кето-форма (1), а при подщелачивании равновесие сдвигается в сторону енольной формы (2), способной к отщеплению протона [12]. Поэтому возможно образование двух видов комплексов в зависимости от среды и условий выделения. В нейтральной и слабокислой среде он выступает как нейтральный моно– или бидентатный лиганд с образованием катионных комплексов, тогда как в щелочной среде он выступает как одноосновный бидентатный лиганд с образованием нейтральных комплексов [5].

Вследствие этого возможно образование комплексов, содержащих остатки L⁻ депротонированной молекулы бензгидразида. Авторы [12] получили Co^{III}L₃, Co^{III}L₂NO₂·2H₂O, Ni^{II}L₂(HL). В депротонированной форме бензгидразид входит и в состав растворимого в ДМФА и ДМСО комплекса на основе диэтилдитиокарбоната никеля [Ni(C₂H₂COS₂)L] [13].

В работе [14] описаны комплексы рения(V), в которых бензгидразид выступает как трехосновный бидентатный лиганд:

Синтез и структура бензгидразидных комплексов d-металлов

Особый интерес в связи как с биологическими, так и с химическими аспектами представляют бензгидразидные комплексы меди. При взаимодействии с бензгидразидом солей меди(II) возможно образование комплексов Cu^{2+} , Cu^+ , а также соединений, которые одновременно содержат медь в неодинаковых степенях окисления. Авторы [15] получили комплекс $[Cu(HL)_2(H_2O)_2]SO_4$ голубого цвета взаимодействием спиртового раствора бензгидразида с водным раствором сульфата меди(II). Очевидно, это был первый комплекс с бензгидразидом в качестве лиганда. Позже было предположено, что координация меди(II) с бензгидразидом в зотом соединении осуществляется через карбонильный кислород и терминальный атом азота аминогруппы с образованием пятичленного хелатного кольца с плоской конфигурацией иона меди [6]. Комплекс $[Cu(HL)_2(H_2O)_2](NO_3)_2$ аналогичного строения темно-синего цвета с искаженной октаэдрической геометрией, подтвержденной методами магнетохимии, ЭС и ЭПР, описан также для нитрата меди(II) [16]. Он не растворяется в воде, этаноле, хлороформе, ацетоне, эфире и бензоле, но растворяется в ДМФА и ДМСО.

Был получен также несольватированный комплекс [Cu(HL)₂](NO₃)₂, для которого в работах [3] и [17,18] из практически идентичных данных РСА сделаны неодинаковые выводы о структуре комплекса. Авторы [3] считают, что структура построена из дискретных плоско-квадратных катионов, в которых ион меди связан с двумя молекулами бензгидразида через карбонильный кислород амида и азот аминогруппы с образованием хромофора CuN₂O₂. Два нитрат-аниона не координированы, но взаимодействуют с комплексным катионом посредством водородной связи с использованием атомов кислорода нитрат-аниона и водородов аминогруппы гидразидного фрагмента. А в работах [17, 18] утверждается, что два атома кислорода нитрат-ионов в этом комплексе находятся в апикальных позициях вытянутого сильно аксиально искаженного октаэдра CuN₂O₄. Противоречие, очевидно, может быть связано с тем, что расстояние Cu-O(нитрат) велико (2.568 Å), поэтому авторы [18] считают, что кислород нитрат-аниона можно рассматривать как полукоординированный. Довольно близкую структуру имеет и аналогичный комплекс никеля $[Ni(HL)_2(NO_3)_2]$ [7]. В нем, как и в комплексе меди, нитрат-ионы находятся в апикальных положениях слегка искаженного октаэдра.

В случае хлорида меди выделяется несколько комплексов с бензгидразидом [19]: Cu(HL)₂Cl₂, Cu(HL)Cl₂, Cu₄(HL)₂Cl₅. Строение последнего комплекса объяснено в работе [6], где показано, что при взаимодействии ледяных растворов хлорида меди(II) с бензгидразидом образуется обычный комплекс Cu(HL)₂Cl₂, а при взаимодействии горячих растворов и при избытке меди(II) выделяется комплекс, содержащий медь одновременно в двух степенях окисления: [(HL)₂Cu]²⁺2C1⁻ ЗCuC1, с переносом заряда между ними, установлена его структура методом PCA. Растворимые в метаноле и этаноле комплексы бензгидразида с различными солями меди $Cu(HL)_2X_2$ (X = Cl, NO₃, $\frac{1}{2}$ SO₄, CH₃COO) описаны также в работе [3].

Авторы [10] методом pH-метрического титрования установили, что диссоциации протона от амидного азота способствует ассоциация иона меди к терминальному азоту, что зависит от электронной структуры гидразида. Исходя из этого, процесс хелатообразования некоторых гидразидов, в том числе изоникотингидразида и бензгидразида, можно рассматривать как состоящий из двух стадий:

$$Ar \xrightarrow{O}_{HN-NH_2} + Cu^{2+} \xrightarrow{K_{M1}} Ar \xrightarrow{O}_{HN-NH_2} Cu^{2+} \xrightarrow{k_1} Ar \xrightarrow{O-Cu^{2+}}_{N-NH_2}$$

Первая стадия зависит от основности терминального азота, а вторая – от кислотности амидного азота. Эти же авторы выделили комплексы хлоридов меди(II) (голубого цвета) и кадмия(II) (бесцветный) с бензгидразидом состава MLX, [11].

Получен смешаннолигандный комплекс [Cu(HL)(bipy)](ClO₄)₂(H₂O)₂ и определена его структура [18]. В нем геометрия меди лучше всего описывается как очень слабо искаженный плоский квадрат. Медь связана с двумя пиридиловыми атомами азота, карбонильным кислородом и азотом гидразина, т.е. хромофор CuN₃O. Довольно похожий комплекс, содержащий кроме бензгидразида также аминный лиганд, описан также для никеля: [Ni(HL)(Tren)](ClO₄)₂ (Tren – трис(аминоэтил) амин) [7].

В результате взаимодействия галогенидных солей с бензгидразидом были получены комплексы состава $M(HL)_3X_2nH_2O$, где X = Cl, n = 2, $M = Mn^{2+}$, Fe^{2+} , Co^{2+} , Ni^{2+} ; X = Br, n = 0, X = I, n = 1, $M = Fe^{2+}$, Co^{2+} , Ni^{2+} [20]. Установлено, что имеются закономерности в изменении растворимости в воде: она монотонно падает в ряду хлоридов с увеличением порядкового номера металла-комплексообразователя от марганца к никелю. Комплексы аналогичного состава $M(HL)_3SO_4$ эти же авторы получили и с сульфат-анионом [12].

В работе [21] описаны высокоспиновые комплексы $M(HL)Cl_2$ (M = Mn, Cu, Cd), Fe(HL)SO₄6H₂O, Zn(HL)₂Cl₂, Pd(HL)₂Cl₂2H₂O, Cu(HL)₂SO₄H₂O, Cr(HL)₃Cl₃, Ni(HL)₃Cl₂, Co(HL)₃Cl₂3H₂O, Cd(HL)₃(NO₃)₂6H₂O. Стехиометрия выделяющихся продуктов определяется анионом взятой соли и соотношением металл : лиганд при синтезе. Так, для цинка и кадмия авторы [22] получили [M(HL)₂(NO₃)] NO₃(H₂O) (M = Zn, Cd), [Zn(HL)₂Cl₂]H₂O, [Cd(HL)₂Cl₂]. Авторы [21] считают, что в полученных ними комплексах бензгидразид связан в имидольной форме монодентатно через азот:

С ними не согласны авторы [6], которые выделили ряд комплексов бензгидразида с различными солями кобальта и никеля: $M(HL)_3X_2$ (M = Ni, X = Cl, I; M = Co, X = Cl, I, NO₃, ½ SO₄), $M(HL)_2(SCN)_2(M = Ni, Co)$, Ni(HL)₃SO₄:2H₂O. Они считают, что бензгидразид бидентатен с координацией через карбонильный кислород и азот аминогруппы. Авторы [23] синтезировали комплексы с кетонной формой бензгидразида: $Cu(HL)_2X_2$ (X = Cl, ClO₄, NO₃, ½ SO₄), Cu(HL)₂X₂nH₂O (X = Cl, ½ SO₄), M(HL)₃X₂ nH₂O (M = Ni, X = Cl, NO₃; M = Co, X = Cl, NO₃, ½ SO₄), а для меди(II) и кобальта (III) также и с депротонированным лигандом – CuL₂ и CoL₃.

Получены комплексы кобальта(II) $[Co(HL)_2(H_2O)_2]X_2$ (X = Cl, NO₃, ½ SO₄) $[Co(HL)_3]X_2nH_2O$ (X = Cl, n = 3, X = NO₃, n = 0) красного либо розового цвета, растворимые в воде, этаноле, ДМФА, ДМСО и пиридине и нерастворимые в хлороформе, ацетоне, эфире и бензоле [24].

Описаны комплексы $[M(HL)_2]X_2^{-2}H_2O$ (M = Mn, Co, Ni, Cu, Zn; X = $1/2SO_4^{-2-}$, CH₃COO⁻), в состав которых бензгидразид входит в кетонной форме [8].

Для цинка известны бензгидразидные комплексы с нитрит-анионом [Zn(HL)₂(NO₂)₂], а также содержащие одновременно различные анионы – [Zn(HL)₃](ClO₄)BrH₂O [25]. Комплексы с различными анионами получены и для никеля – [Ni(HL)₃](H₂O)(NO₃)(ClO₄) [7].

Авторы [26] определили структуру сольвата с метанолом $[Ni(HL)_3]Cl_23CH_3OH$. Геометрия этого комплекса весьма близка к изученной нами [27] структуре гидратированного комплекса $[Ni(HL)_3]Cl_22H_2O$. В комплексном катионе лиганды координированы к центральному иону бидентатно, хелатируя ион металла через кислород и гидразиновый азот. Структурные единицы кристалла связаны катионанион электростатическим взаимодействием и водородными связями, включающими обе молекулы воды, оба аниона хлора и атомы азота хелатных колец комплексного катиона (рис. 1).

Рис. 1. Структура комплекса [Ni(HL)₃]Cl₂2H₂O

Описаны также и не содержащие сольватных молекул хорошо растворимые в этаноле и метаноле комплексы никеля(II) состава 1:3 $[Ni(HL)_3]X_2$ (X = NO₃, ½ SO₄, CH₃COO) с искаженно-октаэдрическим окружением никеля [26]. Для нитрата никеля получен также комплекс $[Ni(HL)_2(NO_3)_2]$ [7]. В этом соединении, как и в двух других, описанных в работе [7], бензгидразид для связывания с металлом исполь-

зует кислород и аминный азот. При этом октаэдры в комплексах $[Ni(HL)_3](H_2O)$ (NO₃)(ClO₄) и $[Ni(HL)(Tren)](ClO_4)$, сильно искажены.

В работе [28] синтезированы и охарактеризованы растворимые в воде и нерастворимые в органических растворителях комплексы солей ванадила с бензгидразидом [VO(HL)X₂]2H₂O (X = Cl, $\frac{1}{2}$ SO₄), [VO(HL)(H₂O)₂]SO₄2H₂O, а также очень хорошо растворимый в органических растворителях и нерастворимый в воде VOL₂, все они парамагнитны и соответствуют мономерному строению. Им приписано строение:

Авторы [29] при реакции дипиколината ванадила с бензгидразидом получили комплекс [V(dipic)(NH₂NHCOPh)(H₂O)₂][VO(dipic)(NHNCOPh)]•2H₂O, образующийся в растворе в результате диспропорционирования. Его катион (рис. 2) содержит семикоординационный ванадий(III) с двумя молекулами воды в апикальном положении пентагональной бипирамиды

Рис. 2. Структура комплексного катиона [V(dipic)(NH,NHCOPh)(H,O),]²⁺

Анион содержит дважды депротонированный гидразидо(2-) лиганд NHNCOPh²⁻, образующий N,O-хелат (рис. 3).

При использовании в качестве прекурсора аква-оксо-салициальдегид-Lаланинато-ванадия(IV) был получен комплекс [VO('ONO')(NHNHCOPh)]·H₂O (рис. 4).

Рис. 3. Структура комплексного аниона [VO(dipic)(NHNCOPh)]2-

Работа [29] представляет особый интерес с той точки зрения, что в ней структурно охарактеризованы молекулярная форма бензгидразида NH₂NHCOPh, монодепротонированная NHNHCOPh и дважды депротонированная NHNCOPh.

Рис. 4. Структура комплекса [VO('ONO')(NHNHCOPh)]·H₂O

Авторы [5] выделили комплекс $Hg(HL)_2Cl_2$ и предположили в нем монодентатную координацию бензгидразида через азот аминогруппы. Был также выделен комплекс HgLCl[5, 9]. Комплексу HgLCl авторы [9] приписали строение:

Описаны также комплексы с дважды депротонированным бензгидразидом $Hg_{2}(L-H)X_{2}$ (X = NO₂, SCN) [5], которым приписано строение [9]:

Авторы [30] синтезировали диамагнитный при комнатной температуре и растворимый только в дихлорметане комплекс [Ru^{II}C1₂(PPh₃)₂(HL)] желтого цвета, чувствительный к действию воздуха, в связи с чем его цвет постепенно изменяется. Были получены комплексы [Pt(HL)₂X₂] (X = Cl, Br, I) и [Pt(NH₃)(HL)Cl₂]0.5H₂O

[2]. Комплексы [Pt(HL), Cl 2] и [Pt(NH₃)(HL) Cl₂]0.5H₂O ранее были описаны в работе [31].

Представляют большой интерес биметаллические комплексы, в состав которых входит бензгидразид. В работе [32] описаны растворимые только в ДМФА и ДМСО комплексы меди, цинка, кобальта и никеля с тетрацианомеркурат-анионом состава MHg(HL)₂(SCN)₄, которым авторы приписали следующее строение:

Были получены также комплексы и с тетрацианоаргентатами никеля Ni[Ag(SCN)₂]₂ HL [33] и кобальта $Co[Ag(SCN)_2]_2$ HL [34]. Они также имеют полимерное строение за счет мостиковых групп SCN, например:

Отмечено, что комплекс Co[Ag(SCN)₂]₂HL не растворяется в неполярных растворителях (бензол, гексан, CCl₄, CHCl₃) и разлагается в полярных (вода, этанол, ацетон, ДМФА, ДМСО). На основании величины сопротивления при комнатной температуре авторы [34] отнесли его к полупроводникам. Аналогичные соединения бензгидразида для никеля и кобальта получены также и с тетрацианокупратами(I) [35].

Гораздо меньше по сравнению с солями неорганических кислот изучено взаимодействие бензгидразида с карбоксилатами. Вместе с тем продукты такого взаимодействия могут иметь весьма интересное строение.

Нами синтезировано соединение [Co(HL)(Mal)(H₂O)₂]H₂O (H₂Mal – малоновая кислота), имеющее молекулярную структуру с искаженно-октаэдрической координацией кобальта [36]. Бензгидразид образует пятичленный, а малонат-анион – шестичленный хелатный цикл. Октаэдр дополняется двумя молекулами воды (рис. 5).

Рис. 5. Структура комплекса [Co(HL)(Mal)(H,O),]H,O (H,Mal – малоновая кислота)

Получено также соединение $[Co(HL)_3](OH)Cl(H_3Ssal) \cdot H_2O(H_3Ssal - 5-сульфосалициловая кислота) [37]. Его структурные единицы – комплексные катионы <math>[Co(HL)_3]^{2+}$, хлорид– и гидроксид– анионы, молекулы сульфосалициловой кислоты и воды, объединенные между собой водородными связями. В комплексном катионе центральный ион кобальта находится в октаэдрическом окружении из трех молекул бидентатного бензгидразида, хромофор CoN_3O_3 . Фенильные циклы участвуют в π - π -стэкинг-взаимодействии с формированием центросимметричных димеров. Внешнесферные молекулы сульфосалициловой кислоты представляют собой димер, в котором все атомы двух молекул H_3 Ssal находятся попарно в заслоненном состоянии, что весьма редко встречается при π - π -стэкинг-взаимодействиях.

Биологическая активность бензгидразидных комплексов d-металлов

Некоторые комплексы переходных металлов с гидразидами проявляют эффект ингибирования роста бактерий и грибов [2]. Комплексы хлоридов и нитратов цинка и кадмия с бензгидразидом проявляют бактерицидные свойства по отношению к микроорганизмам Pseudomonas aerug., Streptococcus pn., Bacil. Subtilis, а к Acinetobacter bauman, Sarcina flava, Proteus m. проявляют только бактериостатическое, т.е. временно угнетающее действие [22].

Было показано [32], что комплексы $MHg(HL)_2(SCN)_4$ (M = Cu, Zn, Co, Ni) оказывают действие на бактерии *E. Coli* и *K. Pneumoniae*, а комплексы Cu и Co также полностью ингибируют грибы *Aspergillus flavus* и *Penicillium sp*. Комплекс HgLCl более эффективно препятствует росту этих же грибов по сравнению со свободным лигандом [9]. Активность Ni[Ag(SCN)₂]₂HL по отношению к *E. Coli* и *B. subtilis*, напротив, несколько снижена по сравнению с исходными компонентами, что авторы [33] объясняют прочным связыванием компонентов в полимерном комплексе.

Комплексы кобальта с бензгидразидом [24] проявляют противогрибковую активность по отношению к Alternaria tenuissima, A. alternate, A. triticina, A. brassicae, A. sesami, Curvularia lunata, Pseudocercospora sp, Colletotrichum capsici, Fusarium oxysporum udam, F. oxysporum lini и Helminthosporum sativum большую по сравнению и с исходным лигандом, и с исходными солями кобальта. Противогрибковая активность зависит от природы аниона и уменьшается в ряду $NO_3^{-} > Cl^- > SO_4^{-2}$.

Комплекс [Ni(C₂H₅COS₂)L] показал активность против бактерий *B. cereus* (Ġ +). Возможно, это обусловлено комбинированным эффектом токсичности металла и дитиокарбонат-аниона, который взаимодействует со следами металлов, присутствующих в бактериях. Авторы [13] полагают, что нейтральный смешаннолигандный комплекс проникает через стенки клеток и диссоциирует:

$$[Ni(C_2H_5COS_2)L] \rightarrow [Ni(C_2H_5COS_2)]^+ + L^-.$$

Установлено [2], что комплексы платины с бензгидразидом имеют цитотоксический эффект по отношению к лейкемии Френда, соизмеримый с действием цисплатина. Они также проявляют активность против дрожжевых грибов, большую по сравнению с исходным бензгидразидом [38].

Комплексы Cu(HL)₂(NO₃)₂ и [Cu(BH)(bipy)](ClO₄)₂(H₂O)₂ проявляют антибактериальную активность против *Escherichia coli*, а также супероксиддисмутазную активность, т.е. способны удалять супероксидный ион O₂⁻ путем диспропорционирования его на молекулярный кислород и пероксид водорода [18, 7]. Их супероксиддисмутазная активность близка к таковой у наиболее активных модельных соединений, но несколько меньше, чем у природного энзима [18]. Значительную каталитическую активность по отношению к дисмутации супероксид-анионов проявляет комплекс [Ni(HL)₂](H₂O)(NO₃)(ClO₄) [7].

Комплекс [Ru^{II}C1₂(PPh₃)₂(HL)] может быть эффективным катализатором окисления спиртов в альдегиды [30].

Таким образом, гидразид бензойной кислоты представляет большой интерес для координационной химии. Он образует разнообразные комплексы с d-металлами. Во всех структурно исследованных комплексах он бидентатен и образует пятичленные циклы с участием кислорода и азота. Ряд координационных соединений d-металлов с бензгидразидом способны проявлять биологическую активность, превышающую активность свободного лиганда.

ЛИТЕРАТУРА

- Болдашевский А.В., Нухулы А., Фазылов С.Д., Мулдахметов З.М. Изучение реакции синтеза гидразидов бензойной кислоты при микроволновой активации // Изв. НАН Респ. Казахстан. Сер. хим. – 2010. – Т. 6 (384). – С. 11-13.
- Dodoff N., Grancharov K., Gugova R., Spassovska N. Platinum (II) Complexes of Benzoic– and 3-Methoxybenzoic Acid Hydrazides. Synthesis, Characterization, and Cytotoxic Effect // J. Inorg. Biochem. – 1994. – Vol. 54, N 3. – P. 221-233. http://dx.doi.org/10.1016/0162-0134(94)80015-4.
- Odunola O.A., Adeoye I.O., Woods J.A.O. Synthesis and structural features of copper(II) complexes of benzoic acid and methyl substituted benzoic acid hydrazides and X-ray structure of Cu[C₀H₅CONHNH₂]₂(NO₃)₂ // Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. – 2002. – Vol. 32, N 4. – P. 801-817. http://dx.doi.10.1081/SIM-120004447.
- Arjunan V., Rani T., Mythili C.V., Mohan S. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide // Spectrochim. Acta. Part A. 2011. Vol. 79, N 3. P. 486–496. http://dx.doi.org/10.1016/j.saa.2011.03.018.
- Sallomi I.J., Al-Daher A.M. Benzoyl– and Salicyloylhydrazine complexes of mercury(II) chloride. J. Inorg. Nucl. Chem. – 1979. – Vol. 41, N 11. – P. 1608-1609. http://dx.doi.org/10.1016/0022-1902(79)80189-x.
- Iskander M.F., Zayan S.E., Khalifa M.A., El-Sayed L. Coordination compounds of hydrazine derivatives with transition metals. VI. The reaction of aroylhydrazines with nickel(II), cobalt(II) and copper(II) salts // J. Inorg. Nucl. Chem. – 1974. – Vol. 36, N 3. – P. 551-556. http://dx.doi.org/10.1016/0022-1902(74)80112-0.
- Patel R.N., Singh A., Shukla K.K., Patel D.K., Sondhiya V.P. Synthesis, characterization and biological activity studies of octahedral nickel(II) complexes // Transition Met. Chem. 2011. Vol. 36, N 2. P.179–187. http://dx.doi.10.1007/s11243-010-9451-1.
- Issa R.M., El-Shazly M.F., Iskander M.F. Coordination Compounds of Hydrazine Derivatives with Transition Metals. I. Metal Chelates with Benzhydrazide and Salicylhydrazide // Z. anorg. allg. Chemie. – 1967. – Vol. 354, N 1-2. – P. 90-97. http://dx.doi.10.1002/zaac.19673540118.
- Narang K.K., Singh M.K. Synthesis, Characterization, IR Spectra and Other Studies of Some Mercury (II) Chloride, Nitrate and Thiocyanate Complexes of Organic Acid Hydrazides and Hydrazones // Synth. and React. in Inorg. and Metal-Org. Chem. – 1987. – Vol. 17, N 1. – P. 57-78. http://dx.doi.10.1080/00945718708059414.
- Nagano K., Kinoshita H., Tamura Z. Metal Complexes of Isonicotinoylhydrazine and Related Compounds. III. Consecutive Formation Constants for Various Metal Ions by the pH Titration Method // Chem. Pharm. Bull. – 1963. – Vol. 11, N 8. – P. 999-1013. http://dx.doi.org/10.1248/cpb.11.999.
- Nagano K., Kinoshita H., Hirakawa A. Metal Complexes of Isonicotinoylhydrazine and Related Compounds. IV. Composition Formulae and Infrared Absorption Spectra of Metal Complex Crystals Isonicotinoylhydrazine and Related Compounds // Chem. Pharm. Bull. – 1964. – Vol. 12, No 10. – P. 1198-1206. http://dx.doi. org/10.1248/cpb.12.1198.
- 12. Гогоришвили П.В., Харитонов Ю.Я., Каркарашвили М.В., Мачхошвили Р.И. Комплексные соединения металлов с бензоилгидразином. Журн. неорган. химии. 1969. Т. 14, № 10. С. 2891-2893.
- Zidan A.S.A. Synthesis and Investigation of Mixed-Ligand Transition Metal Complexes of Alkyl Dithiocarbonate and Benzoylhydrazine or Benzoylhydrazone Derivatives // Synth. and React. Inorg. and Metal-org. Chem. – 2004 – Vol. 34, N. 4. – P. 743–762. http://dx.doi.10.1081/SIM-120035954.
- Chatt J., Dilworth J.R., Leigh G.J., Gupta V.D. Some Benzoylazo-complexes of Rhenium Halides with Tertiary Phosphines, and Related Compounds // J. Chem. Soc. (A) – 1971. – P. 2631-2639. http://dx.doi.10.1039/ J19710002631.
- Aggarwal J.S., Darbari N.L., Jnanendra N.R. CCLIV. Phthalazines. Part I. // J. Chem. Soc. 1929. P. 1941-1945. http://dx.doi.10.1039/JR9290001941.
- Singh V.P. Synthesis, electronic and ESR spectral studies on copper(II) nitrate complexes with some acylhydrazines and hydrazones // Spectrochim. Acta Part A. – 2008. – Vol. 71, N 1. – P. 17–22. http://dx.doi.10.1016/j. saa.2007.11.004.
- Thiam E.I., Barry A.H., Navaza A., Retailleau P., Mohamed Gaye M.,Sall A.S. Bis(benzohydrazide-κ²O,N') bis(nitrato-κO)copper(II) // Acta Cryst. Sec. E. Structure Reports Online. – 2009. – Vol. 65, N 8. – P. m1014. http://dx.doi.10.1107/S1600536809029936.
- Patel R.N., Singh A., Shukla K.K., Patel D.K., Sondhiya V.P. Synthesis, characterization, and superoxide dismutase activity of copper(II) complexes with bidentate ligands // J. Coord. Chem. 2010. Vol. 63, N. 19. P. 3483–3497. http://dx.doi.10.1080/00958972.2010.511203.
- Baker R.J., Nuburg S.C., Szymański J.T. The Crystal and Molecular Structure of Bis(N-benzoylhydrazine) copper(II) Pentachlorotricuprate(I), a New Complex Containing Copper in Mixed Oxidation States // Inorg. Chem. – 1971. – Vol. 10, N.1. – P. 138-146. http://dx.doi.10.1021/ic50095a028.

- 20. Гогоришвили П.В., Каркарашвили М.В., Каландаришвили Д.З. Бензоилгидразиновые комплексные соединения галогенидов переходных металлов // Журн. неорган. химии. 1969. Т. 14, № 6. С. 1516-1520.
- Dutta A.A., Chaudhuri N.R. Acid hydrazides as ligands III. Metal Complexes of Acetylhydrazide and Benzoylhydrazide // J. Inorg. Nucl. Chem. 1971. Vol. 33, N 1. P. 189-201. http://dx.doi.org/10.1016/0022-1902(71)80021-0.
- Роман Л.Ю., Чундак С.Ю. Синтез, структура та біологічна активність координаційних сполук Zn(II) та Cd(II) з гідразидом бензенової кислоти. Наук. вісник Ужгород. ун-ту (Сер. Хімія). – 2014. – № 1 (31). – С. 31-39.
- Alcock J.F., Baker R.J., Diamantis A.A. The N-acylhydrazine grouping as a ligand. I. Coordination compounds of keto-and enol– N-acylhydrazines with cobalt(II), nickel(II), and copper(II) // Aust. J. Chem. – 1972. – Vol. 25, N 2. – P. 289-302. http://dx.doi.org/10.1071/ch9720289.
- Narang K.K., Singh V.P., Singh S.K., Mishra G.D. Synthesis, Characterization, X-Ray Diffraction Studies and Antifungal Activity of Cobalt(II) Complexes with Some aroylhydrazines // Synth. and React. Inorg. and Metal-Org. Chem. – 1996. – Vol. 26, N 2. – P. 191-209. http://dx.doi.10.1080/00945719608004258.
- Миминошвили Э.Б., Гидразидокомплексы металлов // Журн. структ. химии. 2009. Т. 50. С. 174-181. http://dx.doi.org/10.1007/s10947-009-0205-х.
- Odunola O.A., Adeoye I.O., Woods J.A.O., Gelebe A.C. Synthesis and Characterization of Nickel(II) Complexes of Benzoic Acid and Methyl Substituted Benzoic Acid Hydrazides and X-Ray Structure of Ni[C₆H₃CONHNH₃]₃Cl₂·3CH₃OH // Synth. and React. Inorg and Metal-Org. Chem. – 2003. – Vol. 33, N 2. – P. 205-221. http://dx.doi.10.1081/SIM-120017781.
- Анцышкина А.С., Кокшарова Т.В., Сергиенко В.С., Мандзий Т.В., Садиков Г.Г. Синтез, ИКспектроскопическое исследование и кристаллическая структура трис(бензгидразид)никель(II) дихлорид дигидрата [Ni(L)₃]Cl₂·2H₂O // Журн. неорган. химии. – 2016. – Т. 61, № 1. – С. 36-40. http:// dx.doi.10.1134/S0036023616010046.
- Martinez J., Martinez A., Cuenca M. L., Doadrio López A. Synthesis, Thermal and Spectral Study of Oxovanadium(IV) Complexes with Benzoic Acid Hydrazine and p-Hydroxybenzoic Acid Hydrazide // Synth. and React. Inorg. and Metal-Org. Chem. – 1988. – Vol. 18, N 9. – P. 881-901. http://dx.d oi.10.1080/00945718808060829.
- Sundheim A., Theers C., Mattes R. Derivate des Hydrazins als Liganden in Vanadium(III)-, -(IV)- und -(V)-Komplexen. Darstellung und Charakterisierung von [V(dipic)(NH₂NHCOPh)(H₂O)₂][VO(dipic) (NHNCOPh)]2H₂O, [VO(dipic)(NHNHCO₂Me)], [VO (dipic) (NH₂NHCO₂Me)], [VO(dipic)(NHNHCSPh)] und [VO('ONO')(NHNHCOPh)]2H₂O. Substituted Hydrazines as Ligands in Vanadium(III), -(IV) and -(V) Complexes. Synthesis and Characterization of [V(dipic)(NH₂NHCOPh)(H₂O)₂][VO(dipic)(NHNCOPh)]•2H₂O, [VO(dipic)(NHNHCO₂Me)], [VO(dipic)(NH₂NHCO₂Me)], [VO(dipic)(NHNHCOPh)]•2H₂O, [VO(dipic)(NHNHCO₂Me)], [VO(dipic)(NH₂NHCO₂Me)], [VO(dipic)(NHNHCSPh)] and [VO('ONO') (NHNHCOPh)]2H₂O // Z. Naturforsch. – 1994. – Vol. 49b, N 2. – P. 176-185. http://dx.doi.org/10.1515/znb-1994-0204.
- El-Hendawy A.M. Complexes of ruthenium(II) and (III) derived from O,N-donor ligands, and their efficiency as catalytic oxidants for alcohols // Polyhedron. – 1991. – Vol. 10, N 18. – P. 2137-2143. http://dx.doi. org/10.1016/s0277-5387(00)86133-1.
- 31. *Харитонов Ю.Я., Мачхошвили Р.И.* Комплексные соединения платины(II) с бензоилгидразином // Журн. неорган. химии. 1971. Т. 16, № 7. С. 1139-1140. http://dx.doi.org/10.1002/chin.197127139.
- Narang K.K., Singh M. Complexes of Zn(II), Cu(II), Ni(II) and Co(II) Tetrathiocyanato Mercurates(II) with Hydrazides and Their Biological Activity // Synth. React. Inorg. Metal-Org. Chem. – 1985. – Vol. 15, N 6. – P. 821-837. http://dx.doi.10.1080/00945718508060598.
- Narang K.K., Pandey J.P., Singh K.P., Rai P.K. Synthesis, Characterization, IR and Electronic Spectra, Magnetic Moments and Biological Activity of Trinuclear Nickel(II) Tetrathiocyanato Bis Argentate(I) Complexes with Hydrazides and Hydrazones // Synth. React. Inorg. Metal-Org. Chem. – 1990. – Vol. 20, N 10. – P. 1301-1316. http://dx.doi.org/10.1080/00945719008048635.
- Narang K.K., Pandey J.P. Synthesis, Characterization, Solid State Conductance and Thermal Studies of Trinuclear Cobalt(II) Tetrathiocyanatodiargentate(I) Complexes with Hydrazides and Hydrazones // Synth. React. Inorg. Metal-Org. Chem. – 1992. – Vol. 22, N 1. – P. 65-81. http://dx.doi.10.1080/15533179208020640.
- Narang K.K., Pandey J.P. Synthesis, Characterization, Solid State Conductance and Thermal Studies of Some Bivalent Transition Metal Tetrathiocyanato Biscuprate(I) Complexes with Hydrazides and Hydrazones // Synth. React. Inorg. Metal-Org. Chem. – 1994. – Vol. 24, N 4. – P. 589-611. http://dx.d oi.10.1080/00945719408000136.

- 36. Анцышкина А.С., Кокшарова Т.В., Садиков Г.Г., Сергиенко В.С., Мандзий Т.В. Синтез, кристаллическая и молекулярная структура гидрата малонатобензгидразиддиаквакобальта(II) // Журн. неорган. химии. 2016. Т. 61, № 4. С. 455-462. http://dx.doi.10.1134/S0036023616040045.
- 37. Анцышкина А.С., Кокшарова Т.В., Сергиенко В.С., Мандзий Т.В., Садиков Г.Г. Синтез, кристаллическая и молекулярная структура координационного соединения [Co(L)₃](OH)Cl·H₃Ssal·H₂O, где L – бензгидразид, H₃Ssal – 5-сульфосалициловая кислота // Журн. неорган. химии. – 2014. – Т. 59, № 12. – С. 1665–1670. http://dx.doi.10.1134/S0036023614120031
- Tabakova S., Dodoff N. Effect of Platinum(II) Complexes of Benzoic and 3-Methoxybenzoic Acid Hydrazides on Saccharomyces cerevisiae // Z. Naturforsch. – 1995. – Vol. 50c. – P. 732-734.

Стаття надійшла до редакції 05.01.2017

Т. В. Кокшарова, Т. В. Мандзій, Т. С. Скакун, Ю. А. Анісімов

Одеський національний університет імені І.І. Мечникова, кафедра неорганічної хімії та хімічної екології, вул. Дворянська, 2, Одеса, 65082, Україна; tanya.koksharova@gmail.com

КООРДИНАЦІЙНІ СПОЛУКИ ПЕРЕХІДНИХ МЕТАЛІВ З БЕНЗГІДРАЗІДОМ

Огляд. Дана характеристика бензгідразіду як ліганду в координаційних сполуках. Вказані потенційні області застосування бензгідразіду та його комплексів. Наведено загальну характеристику його здатності до комплексоутворення: донорні центри, таутомерні форми, теоретично можливі способи координації до металу.

Розглянуто склад і будову бензгідразідних комплексів d-металів з різними аніонами. Для різних комплексоутворювачів охарактеризовані комплекси галогенідів, сульфатів, нітратів, тіоціанатів, перхлоратів, нітритів, ацетатів. Наведені приклади комплексів з кетонною та фенольною формами бензгідразіду. Розглянуто комплекси з сольватними молекулами води та метанолу. Для деяких сполук наведені загальні характеристики структур за даними PCA.

Зазначено на особливості взаємодії з бензгідразідом солей міді(II) з різними аніонами. Наведено дані по комплексах ванадію, що включає бензгідразід з різними ступенями депротонування. Показано зміну способу зв'язування бензгідразіду зі ртуттю залежно від аніону. Наведені приклади біметалевих та змішанолігандних комплексів.

Описано структуру комплексів [Co(HL)(Mal)(H₂O)₂]H₂O (H₂Mal – малонова кислота) і [Co(HL),](OH)Cl(H,Ssal) H₂O (H,Ssal – 5-сульфосаліцилова кислота).

Розглянуто аспекти біологічної активності деяких комплексів: бактерицидна, фунгіцидна, цитотоксична.

Ключові слова: координаційні сполуки, перехідні метали, бензгідразід.

T. V. Koksharova, T. V. Mandzii, T. S. Skakun, Yu. A. Anisimov

I.I. Mechnikov Odessa National University, Department of Inorganic Chemistry and Chemical Ecology, Dvoryanskaya St., 2, Odessa, 65082, Ukraine; *tanya.koksharova@gmail.com*

TRANSITION METALS COORDANATION COMPOUNDS WITH BENZOHYDRAZID

Review. Benzohydrazid as a ligand in coordination compounds has been characterized. Benzohydrazid and its complexes potential applications have been shown. A general description of its ability to complex (a donor centers, tautomeric forms, theoretically possible ways to coordinate to the metal) has been done.

The composition and structure of d-metals benzohydrazid complexes with different anions have been discussed. Halide, sulfate, nitrate, thiocyanate, perchlorate, nitrite, acetate complexes have been characterized for various central ions. Examples of complexes with benzohydrazid ketone and enol forms have been given. Complexes with solvate molecules of water and methanol have been considered. The general characteristics of the structures according to X-ray structural analysis are presented for some compounds.

The peculiarities of benzohydrazid interaction with copper (II) salts with various anions have been denoted. The data on the vanadium complexes including benzohydrazid different degree of deprotonation are presented. The change of the way of benzohydrazid binding with mercury depending on the anion has been shown. Examples of bimetallic and mixed-ligand complexes have been given.

The structure of the complexes $[Co(HL)(Mal)(H_2O)_2]H_2O$ (H_Mal – malonic acid), and $[Co(HL)_3](OH)Cl(H_3Sal) H_2O$ (H_Sal – 5-sulfosalicylic acid) is described.

The aspects of the biological activity of some complexes (bactericidal, fungicidal, cytotoxic) have been considered.

Keywords: coordination compounds, transition metals, benzohydrazid

REFERENCES

- Boldachevski A.V., Huchuly A., Fazylov S.D., Muldachmetov Z.M. The study of the reaction of synthesis of benzoic acid hydrazide under microwave activation. News of NAS RK. Ser. Chem., 2010, vol. 6 (384), pp. 11-13.
- Dodoff N., Grancharov K., Gugova R., Spassovska N. Platinum (II) Complexes of Benzoic- and 3-Methoxybenzoic Acid Hydrazides. Synthesis, Characterization, and Cytotoxic Effect. J. Inorg. Biochem. 1994, vol. 54, no 3, pp. 221-233. http://dx.doi.org/10.1016/0162-0134(94)80015-4.
- Odunola O.A., Adeoye I.O., Woods J.A.O. Synthesis and structural features of copper(II) complexes of benzoic acid and methyl substituted benzoic acid hydrazides and X-ray structure of Cu[C₆H₅CONHNH₃]₂(NO₃)₂. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 2002, vol. 32, no 4, pp. 801-817. http://dx.doi.10.1081/SIM-120004447.
- Arjunan V., Rani T., Mythili C.V., Mohan S. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide. Spectrochim. Acta. Part A., 2011, vol. 79, no 3, pp. 486–496. http://dx.doi.org/10.1016/j. saa.2011.03.018.
- Sallomi I.J., Al-Daher A.M. Benzoyl- and Salicyloylhydrazine complexes of mercury(II) chloride. J. Inorg. Nucl. Chem., 1979, vol. 41, no 11, pp. 1608-1609. http://dx.doi.org/10.1016/0022-1902(79)80189-x.
- Iskander M.F., Zayan S.E., Khalifa M.A., El-Sayed L. Coordination compounds of hydrazine derivatives with transition metals. VI. The reaction of aroylhydrazines with nickel(II), cobalt(II) and copper(II) salts. J. Inorg. Nucl. Chem., 1974, vol. 36, no 3, pp. 551-556. http://dx.doi.org/10.1016/0022-1902(74)80112-0.
- Patel R.N., Singh A., Shukla K.K., Patel D.K., Sondhiya V.P. Synthesis, characterization and biological activity studies of octahedral nickel(II) complexes Transition Met. Chem., 2011, vol. 36, no 2, pp. 179–187. http:// dx.doi.10.1007/s11243-010-9451-1.
- Issa R.M., El-Shazly M.F., Iskander M.F. Coordination Compounds of Hydrazine Derivatives with Transition Metals. I. Metal Chelates with Benzhydrazide and Salicylhydrazide. Z. anorg. allg. Chemie. 1967, vol. 354, no 1-2, pp. 90-97. http://dx.doi.10.1002/zaac.19673540118.
- Narang K.K., Singh M.K. Synthesis, Characterization, IR Spectra and Other Studies of Some Mercury (II) Chloride, Nitrate and Thiocyanate Complexes of Organic Acid Hydrazides and Hydrazones. Synth. React. Inorg. Metal-Org. Chem., 1987, vol. 17, no 1, pp. 57-78. http://dx.doi.10.1080/00945718708059414.
- Nagano K., Kinoshita H., Tamura Z. Metal Complexes of Isonicotinoylhydrazine and Related Compounds. III. Consecutive Formation Constants for Various Metal Ions by the pH Titration Method. Chem. Pharm. Bull., 1963, vol. 11, no 8, pp. 999-1013. http://dx.doi.org/10.1248/cpb.11.999.
- Nagano K., Kinoshita H., Hirakawa A. Metal Complexes of Isonicotinoylhydrazine and Related Compounds. IV. Composition Formulae and Infrared Absorption Spectra of Metal Complex Crystals Isonicotinoylhydrazine and Related Compounds. Chem. Pharm. Bull., 1964, vol. 12, no 10, pp. 1198-1206. http://dx.doi.org/10.1248/ cpb.12.1198.

- Gogorishvili P.V., Haritonov Ju.Ja., Karkarashvili M.V., Machhoshvili R.I. Kompleksnye soedinenija metallov s benzoilgidrazinom. Zhurn. neorgan. himii., 1969, vol. 14, no 10, pp. 2891-2893.
- Zidan A.S.A. Synthesis and Investigation of Mixed-Ligand Transition Metal Complexes of Alkyl Dithiocarbonate and Benzoylhydrazine or Benzoylhydrazone Derivatives. Synth. and React. Inorg. and Metal-org. Chem., 2004, vol. 34, no. 4, pp. 743–762. http://dx.doi.10.1081/SIM-120035954.
- Chatt J., Dilworth J. R., Leigh G. J., Gupta V. D. Some Benzoylazo-complexes of Rhenium Halides with Tertiary Phosphines, and Related Compounds J. Chem. Soc. (A), 1971, pp. 2631-2639. http://dx.doi.10.1039/ J19710002631.
- Aggarwal J.S., Darbari N.L., Jnanendra N.R. CCLIV. Phthalazines. Part I. J. Chem. Soc., 1929, pp. 1941-1945. http://dx.doi.10.1039/JR9290001941.
- Singh V.P. Synthesis, electronic and ESR spectral studies on copper(II) nitrate complexes with some acylhydrazines and hydrazones. Spectrochim. Acta Part A., 2008, vol. 71, no 1, pp. 17–22. http://dx.doi.10.1016/j. saa.2007.11.004.
- Thiam E.I., Barry A.H., Navaza A., Retailleau P., Mohamed Gaye M., Sall A.S. *Bis(benzohydrazide-κ²O,N') bis(nitrato-κO)copper(II)*. Acta Cryst. Sec. E. Structure Reports Online., 2009, vol. 65, no 8, p. m1014. http:// dx.doi.10.1107/S1600536809029936.
- Patel R.N., Singh A., Shukla K.K., Patel D.K., Sondhiya V.P. Synthesis, characterization, and superoxide dismutase activity of copper(II) complexes with bidentate ligands. J. Coord. Chem., 2010, vol. 63, no. 19, pp. 3483–3497. http://dx.doi.10.1080/00958972.2010.511203.
- Baker R.J., Nuburg S.C., Szymański J.T. The Crystal and Molecular Structure of Bis(N-benzoylhydrazine) copper(II) Pentachlorotricuprate(I), a New Complex Containing Copper in Mixed Oxidation States. Inorg. Chem., 1971, vol. 10, no 1, pp. 138-146. http://dx.doi.10.1021/ic50095a028.
- Gogorishvili P.V., Karkarashvili M.V., Kalandarishvili D.Z. Benzoilgidrazinovye kompleksnye soedinenija galogenidov perehodnyh metallov. Zhurn. neorgan. himii., 1969, vol. 14, no 6, pp. 1516-1520.
- Dutta A.A., Chaudhuri N.R. Acid hydrazides as ligands III. Metal Complexes of Acetylhydrazide and Benzoylhydrazide. J. Inorg. Nucl. Chem., 1971, vol. 33, no 1, pp. 189-201. http://dx.doi.org/10.1016/0022-1902(71)80021-0.
- Roman L.Yu., Chundak S.Yu. Synthesis, structure, properties and biological activity coordination compounds of Zn(II) and Cd(II) with hydrazide of benzen acid. Sci. Bull. Uzhgorod Univ. Ser. Chem., 2014, no 1 (31), pp. 31-39.
- Alcock J.F., Baker R.J., Diamantis A.A. *The N-acylhydrazine grouping as a ligand. I. Coordination compounds of keto-and enol–N-acylhydrazines with cobalt(II), nickel(II), and copper(II)*. Aust. J. Chem., 1972, vol. 25, no 2, pp. 289-302. http://dx.doi.org/10.1071/ch9720289.
- Narang K. K., Singh V. P., Singh S. K., Mishra G. D. Synthesis, Characterization, X-Ray Diffraction Studies and Antifungal Activity of Cobalt(II) Complexes with Some aroylhydrazines. Synth. React. Inorg. Metal-Org. Chem., 1996, vol. 26, no 2, pp. 191-209. http://dx.doi.10.1080/00945719608004258.
- Miminoshvili È.B. Metal hydrazide complexes. J. Struct. Chem., 2009, vol. 50, no S1, pp. 168-175. http:// dx.doi.org/10.1007/s10947-009-0205-x.
- Odunola O.A., Adeoye I.O., Woods J.A.O., Gelebe A.C. Synthesis and Characterization of Nickel(II) Complexes of Benzoic Acid and Methyl Substituted Benzoic Acid Hydrazides and X-Ray Structure of Ni[C₆H₅CONHNH₂]₃Cl₂·3CH₃OH. Synth. React. Inorg Metal-Org. Chem., 2003, vol. 33, no 2, pp. 205-221. http://dx.doi.10.1081/SIM-120017781.
- Antsyshkina A.S., Koksharova T.V., Sergienko V.S., Mandzii T.V., Sadikov G.G. Synthesis, IR-Spectroscopic Study and Crystal Structure of Tris(benzohydrazide)nickel(II) Dichloride Dihydrate [Ni(L)₃]Cl₂·2H₂O. Russ. J. Inorg. Chem., 2016, vol. 61, no 1, pp. 33–37. http://dx.doi.10.1134/S0036023616010046.
- Martinez J., Martinez A., Cuenca M. L., Doadrio López A. Synthesis, Thermal and Spectral Study of Oxovanadium(IV) Complexes with Benzoic Acid Hydrazine and p-Hydroxybenzoic Acid Hydrazide. Synth. React. Inorg. Metal-Org. Chem., 1988, vol. 18, no 9, pp. 881-901. http://dx.doi.10.1080/00945718808060829.
- Sundheim A., Theers C., Mattes R. Derivate des Hydrazins als Liganden in Vanadium(III)-, -(IV)- und -(V)-Komplexen. Darstellung und Charakterisierung von [V(dipic)(NH₂NHCOPh)(H₂O),][VO(dipic) (NHNCOPh)] 2H₂O, [VO(dipic)(NHNHCO₂Me)], [VO (dipic) (NHNHCOPh)] 2H₂O, [VO(dipic)(NHNHCO₂Me)], [VO(dipic)(NHNHCOPh)] und [VO('ONO')(NHNHCOPh)]²H₂O. Substituted Hydrazines as Ligands in Vanadium(III), -(IV) and -(V) Complexes. Synthesis and Characterization of [V(dipic)(NH₂NHCOPh)(H₂O),][VO(dipic)(NHNCOPh)]⁻2H₂O, [VO(dipic)(NH₂NHCO₂Me)], [VO(dipic)(NHNHCOPh)]⁻2H₂O, [VO(dipic)(NH₂NHCO₂Me)], [VO(dipic)(NHNHCOPh)]⁻2H₂O, [VO(dipic)(NHNHCOPh)]⁻2H₂O. Z. Naturforsch., 1994, vol. 49b, no 2, pp. 176-185. http://dx.doi.org/10.1515/znb-1994-0204.

- El-Hendawy A.M. Complexes of ruthenium(II) and (III) derived from O,N-donor ligands, and their efficiency as catalytic oxidants for alcohols. Polyhedron., 1991, vol. 10, no 18, pp. 2137-2143. http://dx.doi.org/10.1016/ s0277-5387(00)86133-1.
- Haritonov Ju.Ja., Machhoshvili R.I. Kompleksnye soedinenija platiny(II) s benzoilgidrazinom. Zhurn. neorgan. himii., 1971, vol. 16, no 7, pp. 1139-1140. http://dx.doi.org/10.1002/chin.197127139.
- Narang K.K., Singh M. Complexes of Zn(II), Cu(II), Ni(II) and Co(II) Tetrathiocyanato Mercurates(II) with Hydrazides and Their Biological Activity. Synth. React. Inorg. Metal-Org. Chem., 1985, vol. 15, no 6, pp. 821-837. http://dx.doi.10.1080/00945718508060598.
- Narang K.K., Pandey J.P., Singh K.P., Rai P.K. Synthesis, Characterization, IR and Electronic Spectra, Magnetic Moments and Biological Activity of Trinuclear Nickel(II) Tetrathiocyanato Bis Argentate(I) Complexes with Hydrazides and Hydrazones. Synth. React. Inorg. Metal-Org. Chem., 1990, vol. 20, no 10, pp. 1301-1316. http://dx.doi.org/10.1080/00945719008048635.
- Narang K.K., Pandey J.P. Synthesis, Characterization, Solid State Conductance and Thermal Studies of Trinuclear Cobalt(II) Tetrathiocyanatodiargentate(I) Complexes with Hydrazides and Hydrazones. Synth. React. Inorg. Metal-Org. Chem., 1992, vol. 22, no 1, pp. 65-81. http://dx.doi.10.1080/15533179208020640.
- Narang K.K., Pandey J.P. Synthesis, Characterization, Solid State Conductance and Thermal Studies of Some Bivalent Transition Metal Tetrathiocyanato Biscuprate(I) Complexes with Hydrazides and Hydrazones. Synth. React. Inorg. Metal-Org. Chem., 1994, vol. 24, no 4, pp. 589-611. http://dx.doi.10.1080/00945719408000136.
- Antsyshkina A.S., Koksharova T.V., Sadikov G.G., Sergienko V.S., Mandzii T.V. Malonatobenzhydrazidediaqu acobalt(II) hydrate: Synthesis, crystal and molecular structures. Russ. J. Inorg. Chem., 2016, vol. 61, no 4, pp. 434–441. http://dx.doi.10.1134/S0036023616040045.
- Antsyshkina A.S., Koksharova T.V., Sergienko V.S., Mandzii T.V., Sadikov G.G. Synthesis, crystal and molecular structure of [Co(L)₃](OH)Cl · H₃Ssal) · H₂O, where L is benzhydrazide and H₃Ssal is 5-sulfosalycilic acid. Russ. J. Inorg. Chem., 2014, vol. 59, no 12, pp. 1417-1423. http://dx.doi.10.1134/S0036023614120031
- Tabakova S., Dodoff N. Effect of Platinum(II) Complexes of Benzoic and 3-Methoxybenzoic Acid Hydrazides on Saccharomyces cerevisiae. Z. Naturforsch., 1995, vol. 50c, pp. 732-734.

УДК 546.732:549.67

Т. Л. Ракитская¹, Л. А. Раскола¹, А. С. Труба¹, К. О. Голубчик¹, И. В. Стоянова²

¹Одесский национальный университет имени И.И. Мечникова, кафедра неорганической химии и химической экологии, ул. Дворянская, 2, Одесса, 65082. E-mail: tlr@onu.edu.ua

² Физико-химический институт им. А.В. Богатского НАН Украины, Люстдорфская дорога, 86, Одесса, 65080, Украина

ГЕОМЕТРИЯ КОМПЛЕКСОВ КОБАЛЬТА(II), НАНЕСЕННЫХ НА СИНТЕТИЧЕСКИЕ НОСИТЕЛИ

Методом УФ-видимой спектроскопии установлена геометрия комплексов кобальта(II), закрепленных на синтетических носителях (S=NaA, NaX, KA, Al₂O₃, SiO₂(КСМГ)). По-казано, что в системе CoCl₂-KCl/S происходит формирование преимущественно комплексов кобальта(II) октаэдрической симметрии. На носителях NaA и SiO₂ (КСМГ) кобальт(II) находится в виде октаэдрических и тетраэдрических смешанно-лигандных комплексов. Для октаэдрических комплексов кобальта(II) в зависимости от природы носителя наблюдается смещение в длинноволновую область полосы поглощения близкой к 500 нм в следующем порядке Co²⁺/NaA (496 нм) < Co²⁺/NaX (508 нм) < Co²⁺/SiO₂(КСМГ) (516 нм) > Co²⁺/Al₂O₃ (547 нм) ≈ Co²⁺/KA (550 нм).

Ключевые слова: спектроскопия диффузного отражения, синтетические цеолиты, силикагель, алюмогель, кобальт(II)

Известно, что состав и геометрия поверхностных соединений кобальта(II) (комплексы, оксиды) определяют их каталитическую активность во многих редокс-реакциях. В работе проанализированы литературные данные о влиянии условий получения поверхностных соединений кобальта(II) на их геометрию, а также представлены собственные результаты по влиянию некоторых синтетических носителей на симметрию комплексов кобальта(II), полученных в идентичных условиях методом импрегнирования.

1. Влияние условий получения на геометрию поверхностных соединений Co(II)

Спектральные характеристики комплексов кобальта(II), закрепленных на носителях различного происхождения отражены в табл. 1. В качестве носителей использовали цеолиты – феррит (FER), морденит (MOR), кислотно-модифицированная форма морденита (H-MOR), клиноптилолит (CLI), мезопористый материал, синтезированный в Техническом университете (Technische Universiteit Delft) (TUD-1), γ-Al₂O₂ и SiO₂.

Спектры образцов, полученных ионным обменом из раствора $Co(NO_3)_2$ ферритом (FER), представляют суперпозицию полос в области d-d-перехода иона Co^{2+} в октаэдрической и тетраэдрической симметрии [1, 2].

Авторы [3] детально изучали спектры образцов Co²⁺/H-MOR, полученных при разных соотношениях Co/Al. В табл. 1 в качестве приме-

Таблица 1

Спектральные характеристики и конфигурация комплексов кобальта(II), закрепленных на носителях разной природы

Носитель	Соль Co(II)	Способ получения	ν (λ) d-d, см ⁻¹ (нм)	Сим- метрия	Лит- ра	
H_FER	$CoCl_2$	Ионный обмен. Сушка при комнатной температуре.	15000 (666) 17000 (588) 18000 (555)	T _d	[1]	
	$\operatorname{Co(Ac)}_{2}^{3/2}$	Прокаливание при 480 °C. Co/Al = 0,05; 0,09; 0,22; 0,25 Si/Al = 8,6	20000 (500) 22000 (454)	O_h		
FER	Co(NO ₃) ₂	Ионный обмен. Сушка при 340 °С и прокаливание при 770 °С.	15000 (666)	T _d	[2]	
H-FER	Co(NO ₃) ₂	Ионный обмен. Сушка при 340 °С и прокаливание при 770 °С.	20300 (492) 22000 (454)	O_h	[2]	
H-MOR Co(NO ₃)		Ионный обмен. Прокаливание при 500 °С (12 часов). Со/Al = 0,30	14500 (690) 16800 (595) 20500 (488)	T _d	[3]	
CLI	CoCl ₂	Импрегнирование. Сушка при 110 °С С _{СоСL} =2,4·10 ⁻⁴ моль/г	16666 (600) - 14285 (700)	T _d	[4]	
CLI	CoCl ₂ -KCl	Импрегнирование. Сушка при 110 °С $C_{cocl} = 2,4 \cdot 10^{-4}$ моль/г $C_{KCl}^{-2} = 1,2 \cdot 10^{-3}$ моль/г	14620 (684) 15128 (661) 15873 (630)	T _d	[4]	
TUD-1	СоSO ₄ СоSO ₄ СоSO ₄ . Сушка при 110 °С (24 часа) и прокаливали при 600 °С (10 часов)		15385 (650) 19230 (520)	T _d	[5]	
TUD-1	UD-1 СоSO ₄ Синтез TUD-1 с добавлением CoSO ₄ . УUD-1 СоSO ₄ Сушка при 110 °С (24 часа) и прокаливали при 600 °С (10 часов). Si/Al от 100 до 10 Si/Al от 100 до 10		15290 (654) 19048 (525)	T _d	[6]	
γ-Al ₂ O ₂	Co(NO ₃) ₂	Импрегнирование. Сушка при 110 °С (2 часа).	23529 (425) 13333 (750) пл.	O_h	[7]	
		Прокаливание при 300 °С (3 часа). Со/g-Al ₂ O ₃ 9,04 мас. % Со	триплет 16666 (600)	Τ _d		
SiO ₂ (KCK-18)	Co(NO ₃) ₂	Импрегнирование. Сушка в воздушной среде при 70- 80 °C Термовакуумная сушка при 20 °C	19000 (526) 18000 (555)	O _h	[8]	
Сосl2 Импрегнирование. 1 Сосl2 Сосl2		19600 (510) 21500 (460) пл.	O _h	[9]		

ра показаны спектральные характеристики для образца с соотношением Co/Al = 0,30. В видимой области наблюдается три полосы поглощения d-d-перехода в ионе Co²⁺, занимающего определенную позицию в структуре H-MOR. Положение максимумов зависит от содержания кобальта(II). Так при низкой концентрации кобальта(II) (Co/Al \leq 0,07) спектр состоит из асимметричной полосы с максимумом при 16500 см⁻¹ (606 нм) и полосы с центром при 21000 см⁻¹ (476 нм). При Co/Al \geq 0,3 появляется дополнительная полоса при 20000 см⁻¹ (500 нм).

В спектре образца CoCl₂/CLI [4] в области 600-700 нм обнаружена широкая полоса, а при введении дополнительно хлорид-ионов в этой же области появляются полосы, приписанные переходу ${}^{4}A_{2}(F) \rightarrow {}^{4}T_{1}(P)$ для псевдотетраэдрического окружения центрального атома.

Спектры образцов Co²⁺/TUD-1 [5,6] свидетельствуют о нахождении кобальта(II) в тетраэдрическом окружении (табл.1), а полосы поглощения могут быть приписаны переходу ${}^{4}A_{2}(F) \rightarrow {}^{4}T_{1}(P)$. В спектре не обнаружены полосы поглощения при 20833 см⁻¹ (480 нм) и 19763 см⁻¹ (506 нм), а также при 24390 см⁻¹ (410 нм), что указывает на отсутствие Co²⁺ в октаэдрическом окружении и решеточного Co³⁺, соответственно.

При закреплении Co(II) на γ -Al₂O₃ методом импрегнирования с последующей сушкой (110 °C) и прокаливанием (300 °C) на поверхности формируется оксидная форма CoO/ γ -Al₂O₃, в которой Co²⁺ находится в октаэдрической симметрии. Кроме того, четко выраженный триплет свидетельствует о нахождении кобальта(II) также в тетраэдрическом окружении [7].

По данным [8] кобальт(II) на SiO₂ (КСК-18) в зависимости от условий сушки может находиться в разной координации (табл.1). Так при сушке на воздухе при 70-80 °C и при термовакуумной сушке при 20 °C кобальт(II) находится в октаэдрическом окружении; при 200 °C присутствуют две формы Co(II) в O_h и T_d-симметрии; при 700 °C – кобальт(II) только в тетраэдрическом окружении. При нанесении CoCl₂ на SiO₂ (КСМГ) методом импрегнирования с последующей сушкой на воздухе при 110 °C на поверхности формируются комплексы, в которых кобальт(II) находится в октаэдрической симметрии [9].

Таким образом, анализ спектральных данных показал, что кобальт(II) в зависимости от его содержания, температуры сушки и способа нанесения может находиться в октаэдрическом либо тетраэдрическом окружении, либо в спектрах обнаруживаются полосы поглощения от обеих конфигураций.

Цель работы – установить геометрию комплексов кобальта(II), закрепленных на поверхности некоторых синтетических носителей методом импрегнирования.

2. Влияние природы носителя на геометрию поверхностных комплексов Co(II)

Для установления влияния природы носителя на состав поверхностных комплексов Co(II) в композиции CoCl₂-KCl/S, S=NaX, NaA, KA, Al₂O₃, SiO₂ (КСМГ) использовались образцы, полученные методом импрегнирования по влагоемкости синтетических носителей (табл. 2) раствором CoCl₂ и KCl с последующей сушкой при 110 °C. Содержание компонентов в образцах было одинаковое и составляло $C_{\text{co(II)}}$ =5,8·10⁻⁴ моль/г (2,73 масс.%) и C_{KCI} =2,4·10⁻³ моль/г (14,26 масс.%). Методика получения спектров диффузного отражения образцов CoCl₂-KCl/S описана в [4].

Таблица 2

	······································								
Образец	ТУ/ГОСТ	SiO ₂ /Al ₂ O ₃	pHs	S _{уд} , м²/г					
NaA	ТУ 38.10281-88	2,0	10,37	750					
NaX	ТУ 2163-077-05766575-99	2,4-2,7	9,85	1030					
ΧA	ТУ 38.10281-88	-	10,08	-					
A12O3	ТУ 2163-004-04610600-2003	-	5,43	195					
SiO2 (KCMΓ)	ГОСТ 3956-76	-	4,09	360					

Характеристика синтетических сорбентов

На рисунке представлены спектры отражения в видимой области образцов $CoCl_2$ -KCl/S (S – NaX, NaA, KA, Al_2O_3 , SiO₂ (КСМГ)). Обобщенные спектральные характеристики носителей и закрепленных на них композиций, содержащих ионы Co(II), представлены в табл. 3. В УФ-области полоса переноса заряда $O_{\text{цеол}} \rightarrow Co^{2+}$ при 220 нм является примерно такой же интенсивности, что и для носителя NaX. В видимой области отмечается полоса поглощения при 508 нм (19685 см⁻¹), которая соответствует d-d-переходу в ионе Co^{2+} в смешанном аквахлоридном поле лигандов октаэдрической симметрии. В длинноволновой области спектра слабая полоса при 673 нм (14858 см⁻¹) характеризует d-d-переход в ионе Co^{2+} , находящегося в тетраэдрическом (T_d) поле лигандов, что не противоречит данным [1, 2, 7]. В спектре образца $CoCl_2$ -KCl/NaA выявлены только перегибы на кривой поглощения при 496 нм (20161 см⁻¹) и 567 нм (17636 см⁻¹). Первый характеризует d-d-переход в ионе кобальта(II) в тетраэдрической симметрии.

Рис. Спектры отражения в видимой области образцов CoCl₂/S; S: 1 - NaX, 2 - KA, 3 - NaA, $4 - Al_2O_3$, $5 - SiO_2$

В спектре образца CoCl₂-KCl/KA идентифицированы полоса поглощения при 480 нм (20833 см⁻¹) и изгиб при 550 нм (18181 см⁻¹), которые характеризуют d-d-переход в ионах кобальта(II), находящихся в октаэдрическом окружении лигандов.

В том случае, когда в качестве носителя используется Al₂O₃, в области от 400 до 700 нм наблюдается широкая полоса с максимумом при 547 нм (18281 см⁻¹), которая может быть приписана d-d-переходу в ионе кобальта(II) в октаэдрическом окружении [8].

В спектре образца CoCl₂-KCl/SiO₂ (КСМГ) проявляется сравнительно интенсивная полоса при 516 нм (19380 см⁻¹) и триплет с четко разделенными максимумами при 619 нм (16155 см⁻¹), 653 нм (15314 см⁻¹) и 682 нм (14662 см⁻¹). Первая полоса характеризует d-d-переход в ионе Co²⁺, который находится в смешанном аквахлоридном октаэдрическом окружении. Полосы поглощения триплета относятся к d-d-переходам иона кобальта(II) в тетраэдрической симметрии.

Таблица 3

Спектральные характеристики и конфигурация ионов кобальта(II), закрепленных на синтетических носителях

	Полоса поглощения v, см ⁻¹ (λ, нм)						
Образец	УФ-область	Видимая область, d-d переход	Симметрия				
NaX	43478 (230)	-					
CoCl ₂ -KCl/NaX	45454 (220)	19685 (508)	O _h				
		14858 (673)	T _d				
NaA	43103 (232)	-					
CoCl ₂ -KCl/NaA	43478 (230)	20161 (496)	O _h				
		17636 (567)	T _d				
KA	43668 (229)	-					
CoCl ₂ -KCl/KA	47846 (209)	20833 (480)	O _h				
	43668 (229)	18181 (550)					
Al ₂ O ₃	37037 (270)	-					
	28090 (356)						
CoCl ₂ -KCl/Al ₂ O ₃	45454 (220)	18281 (547)	O _h				
SiO ₂ (КСМГ)	45871 (218)	-					
CoČl ₂ -KCl/SiO ₂	46296 (216)	19380 (516)	O _h				
	44052 (227)	16155 (619)	T _d				
		15314 (653)	u u				
		14662 (682)					

Таким образом, природа носителя влияет на процессы образования поверхностных смешанно-лигандных комплексов кобальта(II). В системе CoCl₂-KCl/S происходит формирование преимущественно комплексов кобальта(II) октаэдрической симметрии. На носителях NaA и SiO₂ (КСМГ) кобальт(II) находится в виде октаэдрических и тетраэдрических смешанно-лигандных комплексов. Для октаэдрических комплексов кобальта(II) в зависимости от природы носителя наблюдается смещение в длинноволновую область полосы поглощения в области близкой к 500 нм в следующем порядке Co²⁺/NaA (496 нм) < Co²⁺/NaX (508 нм) < Co²⁺/SiO₂(КСМГ) (516 нм) > Co²⁺/Al₂O₃ (547 нм) \approx Co²⁺/KA (550 нм).

СПИСОК ЛИТЕРАТУРЫ

- Sobalik Z., Dědeček J., Ikonnikov I., Wichterlova B. State and coordination of metal ions in high silica zeolites Incorporation, development and rearrangement during preparation and catalysis // Micropor. Mater. – 1998. – Vol. 21, N 4-6. – P.525-532. https://doi.org/10.1016/s1387-1811(97)00062-0
- 2 Kaucky D., Dědeček J., Wichterlova B. Co²⁺ion siting in pentasil-containing zeolites II. Co²⁺ion sites and their occupation in ferrierite. A VIS diffuse reflectance spectroscopy study // Micropor. Mesopor. Mater. 1999. Vol. 31, N 1-2. P. 75-87. https://doi.org/10.1016/s1387-1811(99)00058-x
- 3 Dědeček J., Wichterlova B. Co²⁺ Ion Siting in Pentasil-Containing Zeolites. I. Co²⁺ Ion Sites and Their Occupation in Mordenite. A Vis-NIR Diffuse Reflectance Spectroscopy Study // J. Phys. Chem. B. – 1999. – Vol. 103, N 9. – P. 1462-1476. https://doi.org/10.1021/jp9818941
- 4 Ракитская Т.Л., Труба А.С., Раскола Л.А., Стоянова И.В. Изучение модифицированного галогенидами 3d-металлов клиноптилолита методами ИК-спектроскопии и спектроскопии диффузного отражения // Вестник ОНУ. Химия. – 2015. – Т. 20, Вып. 2(54). – С. 6-15. http://dx.doi.org/10.18524/2304-0947.2015.2(54).50624
- 5 Anand R., Hamdy M. S., Hanefeld U., Maschmeyer T. Liquid-phase oxidation of cyclohexane over Co-TUD-1 // Catal. Lett. - 2004. - Vol. 95, N 3-4. - P.113-117. https://doi.org/10.1023/b:catl.0000027283.70453.1a
- 6 Hamdy M.S., Mul G., Jansen J.C., Ebaid A., Shan Z., Overweg A.R., Maschmeyer Th. Synthesis, characterization, and unique catalytic performance of the mesoporous material Fe-TUD-1 in Friedel–Crafts benzylation of benzene // Catalysis Today. – 2005. – Vol. 100, N 3-4. – P. 255-260. https://doi.org/10.1016/j. cattod.2004.10.018
- 7 Vakros J. Kordulis C., Lycourghiotis A. Cobalt Oxide Supportedç-Alumina Catalyst with Very High Active Surface Area Prepared by Equilibrium Deposition Filtration // Langmuir. 2002. Vol. 18. P. 417-422. https:// doi.org/10.1021/la010040w
- 8 Бротиковский О.И., Швец В.А., Казанский В.Б. Исследование координационного состояния ионов Со²⁺, нанесенных на поверхность силикагеля // Кинетика и катализ. – 1972. – Т. 13, № 5. – С.1342-1344.
- 9 Раскола Л.А. Реакции разложения озона закрепленными на пористых носителях комплексами Co(II), Cu(II), Mn(II): Дис. ... канд.хим.наук: 02.00.01. – Одесса, 2005. – 221 с.

Стаття надійшла до редакції 15.01.2017

Т. Л. Ракитська¹, Л. А. Раскола¹, А. С. Труба¹, Х. О. Голубчик¹, І. В. Стоянова²

¹Одеський національний університет імені І.І. Мечникова, кафедра неорганічної хімії та хімічної екології, вул. Дворянська, 2, Одеса, 65082, Україна.

E-mail: tlr@onu.edu.ua

²Фізико-хімічний інститут імені О.В. Богатського НАН України, Люстдорфська дорога, 86, Одеса, 65080, Україна

ГЕОМЕТРІЯ КОМПЛЕКСІВ КОБАЛЬТУ(II), НАНЕСЕННИХ НА СИНТЕТИЧНІ НОСІЇ

Методом УФ-видимої спектроскопії встановлена геометрія комплексів кобальту (II), закріплених на синтетичних носіях (S = NaA, NaX, KA, Al₂O₃, SiO₂ (КСМГ)). Показано, що в системі CoCl₂-KCl / S відбувається формування переважно комплексів кобальту (II) октаедричної симетрії. На носіях NaA і SiO₂ (КСМГ) кобальт (II) знаходиться у вигляді октаедричних і тетраедричних змішано-лігандних комплексів. Для октаедричних комплексів кобальту (II) в залежності від природи носія спостерігається зміщення в довгохвильову область смуги поглинання близької до 500 нм в наступному ряді Co²⁺/NaA (496 нм) < Co²⁺/NaX (508 нм) < Co²⁺/SiO₂(КСМГ) (516 нм) > Co²⁺/Al₂O₃ (547 нм) \approx Co²⁺/KA (550 нм).

Ключові слова: спектроскопія дифузного відбиття, синтетичні цеоліти, силікагель, алюмогель, кобальт(II).

T. L. Rakitskaya¹, L. A. Raskola¹, A. S. Truba¹, K. O. Golubchik¹, I. V. Stoyanova²

¹I. I. Mechnikov Odessa National University, Department of Inorganic Chemistry and Chemical Ecology, 2, Dvoryanskaya St., Odessa, 65082. Ukraine E-mail: tlr@onu.edu.ua

²A.V. Bogatsky Physico-Chemical Institute of NAS of Ukraine, Lustdorskaya Doroga, 86, Odessa, 65080, Ukraine

THE GEOMETRY OF CO(II) COMPLEXES SUPPORTED ON SYNTHETIC CARRIERS

The geometry of cobalt(II) complexes anchored on the synthetic supports S (S = NaA, NaX, KA, Al₂O₂, and SiO₂ (KSMG)) has been identified by UV-vis spectroscopy. In the UV region, the intensity of the band at 220 nm characteristic of a $O_{zeol} \rightarrow Co^{2+}$ charge transfer in the case of CoCl₂-KCl/NaX is quite similar to that for the support itself. In visible region, an absorption band observed at 508 nm (19685 cm⁻¹) corresponds to d-d transition in the Co²⁺ ion being in the mixed aqua-chloride ligand field with octahedral symmetry. In the long-wave spectral region, a weak band at 673 nm (14858 cm⁻¹) is characteristic of a d-d transition in the Co²⁺ ion being in the tetrahedral ligand field. The spectrum of CoCl,-KCl/NaA demonstrates only two bends of the absorption curve at 496 nm (20161 cm⁻¹) and 567 nm (17636 cm⁻¹) characteristic of d-d transitions in the Co^{2+} ion in the octahedral ligand field and in the Co^{2+} ion with the tetrahedral symmetry, respectively. A band at 480 nm (20833 cm⁻¹) and a bend at 550 nm (18181 cm⁻¹) observed for CoCl₂-KCl/KA can be attributed to a d-d transition in the Co²⁺ ion being in the octahedral ligand surrounding. If Al₂O₃ finds its use as a support, a wide band extending from 400 to 700 nm with its maximum at 547 nm (18281 cm⁻¹) also may be assigned to a d-d transition in the Co^{2+} ion being in the octahedral surrounding. Besides a comparatively intense band at 516 nm (19380 cm⁻¹), the spectrum of CoCl₂-KCl/ SiO₂ (KSMG) shows a triplet with well-separated maximums at 619 nm (16155 cm⁻¹), 653 nm (15314 cm⁻¹), and 682 nm (14662 cm⁻¹). The first band is characteristic of a d-d transition in the Co^{2+} ion being in the mixed aqua-chloride surrounding with octahedral symmetry. The triplet's constituent bands may be assigned to d-d transitions in the Co²⁺ ion characterized by the tetrahedral symmetry. For the octahedral cobalt(II) complexes, depending on the nature of a support, positions of the band situated at ca. 500 nm shift to the long-wave region in the following order: $Co^{2+}/NaA(496 \text{ nm}) < Co^{2+}/NaX(508 \text{ nm}) < Co^{2+}/SiO_{2}(KSMG)(516 \text{ nm}) >$ Co^{2+}/Al_2O_2 (547 nm) $\approx Co^{2+}/KA$ (550 nm).

Keywords: DR UV-vis spectroscopy, synthetic zeolites, silica gel, aluminogel, cobalt(II)

REFERENCES

- Sobalik Z., Dědeček J., Ikonnikov I., Wichterlova B. State and coordination of metal ions in high silica zeolites Incorporation, development and rearrangement during preparation and catalysis. Micropor. Mesopor. Mater., 1998, vol. 21, no 4-6, pp. 525-532. https://doi.org/10.1016/s1387-1811(97)00062-0
- 2 Kaucky D., Dědeček J., Wichterlova B. Co²⁺ion siting in pentasil-containing zeolites II. Co²⁺ion sites and their occupation in ferrierite. A VIS diffuse reflectance spectroscopy study. Micropor. Mesopor. Mater., 1999, vol. 31, no 1-2, pp. 75-87. https://doi.org/10.1016/s1387-1811(99)00058-x
- 3 Dědeček J., Wichterlova B. Co²⁺ Ion Siting in Pentasil-Containing Zeolites. I. Co²⁺ Ion Sites and Their Occupation in Mordenite. A Vis-NIR Diffuse Reflectance Spectroscopy Study. J. Phys. Chem. B., 1999, vol. 103, no 9, pp. 1462-1476. https://doi.org/10.1021/jp9818941
- 4 Rakitskaya T.L., Truba A.S., Raskola L.A., Stoyanova I.V. Izuchenie modificirovannogo galogenidami 3d-metallov klinoptilolita metodami IK-spektroskopii i spektroscopii diffuznogo otrazhenija [The study of clinoptilolite modified with 3d-metals halides by IR- and diffuse reflectance spectroscopy]. Visn. Odes. nac. univ., Him., 2015, vol. 20, no 2, pp. 6-15. (in Russian) http://dx.doi.org/10.18524/2304-0947.2015.2(54).50624

- 5 Anand R., Hamdy M.S., Hanefeld U., Maschmeyer T. *Liquid-phase oxidation of cyclohexane over Co-TUD-1*. Catal. Lett., 2004, vol. 95, no 3-4, pp. 113-117. https://doi.org/10.1023/b;catl.0000027283.70453.1a
- 6 Hamdy M.S., Mul G., Jansen J.C., Ebaid A., Shan Z., Overweg A.R., Maschmeyer Th. Synthesis, characterization, and unique catalytic performance of the mesoporous material Fe-TUD-1 in Friedel–Crafts benzylation of benzene. Catal. Today, 2005, vol. 100, no 3-4, pp. 255-260. https://doi.org/10.1016/j.cattod.2004.10.018
- 7 Vakros J., Kordulis C., Lycourghiotis A. Cobalt Oxide Supportedç-Alumina Catalyst with Very High Active Surface Area Prepared by Equilibrium Deposition Filtration. Langmuir, 2002, vol. 18, pp. 417-422. https://doi. org/10.1021/la010040w
- 8 Bortikovskij O.I., Shvetc V.A. Kazanskij V.B. Issledovanie koordinacionnogo sostojanija ionov Co²⁺ nanesennyh na poverhnost'silikagelja [Investigation of the coordination state of Co²⁺ ions supported on the silica gel surface]. Kinetika i kataliz, 1972, vol.13, no 5, pp.1342-1344. (*in Russian*).
- 9 Raskola L.A. Reakcii razlozhenija ozona zakreplennymi na poristyh nositeljah kompleksami Co(II), Cu(II), Mn(II) [The reaction of ozone decomposition by Co(II), Cu(II) and Mn(II)complexes anchored on some porous supports]: Dis. ... kand.κhim.nauk: 02.00.01. – Odessa, 2005. – 221 p. (in Russian)

УДК 547.567.5

С. А. Коновалова, А. П. Авдеенко, Е. Н. Лысенко

Донбасская государственная машиностроительная академия, кафедра химии и ОТ, ул. Академическая, 72, Краматорск-13, 84313, Украина, e-mail: chimist@dgma.donetsk.ua

СИНТЕЗ ГАЛОГЕНСОДЕРЖАЩИХ ПРОИЗВОДНЫХ N-АРИЛАМИНОКАРБОНИЛ-1,4-БЕНЗОХИНОНМОНОИМИНОВ

Гидрогалогенирование N-ариламинокарбонил-1,4-бензохинонмоноиминов является наиболее подходящим методом синтеза производных на их основе с атомом галогена в аминофенольном ядре. При бромировании N-ариламинокарбонил-1,4-бензохинонмоноиминов и их восстановленных форм выявлено бромирование как аминофенольного ядра, так и арильного фрагмента. Найдены оптимальные условия получения индивидуальных бромсодержащих продуктов с различным количеством атомов брома в молекуле.

Ключевые слова: N-ариламинокарбонил-1,4-бензохинонмоноимины, бромирование, гидрогалогенирование, окисление.

введение

Галогенирование N-замещённых 1,4-бензохинониминов и их восстановленных форм существенным образом зависит от условий проведения реакции и строения исходных хинонмоноиминов и может протекать в различных направлениях [1–3]. В большинстве случаев наблюдается галогенирование хиноидного/аминофенольного ядра с образованием соответствующих галогенсодержащих аминофенолов, хинониминов, циклогексеновых структур. При галогенировании N-ароил-1,4-бензохинонмоноиминов выявлено галогенирование метильных групп хиноидного ядра [2], N-метилимидоилпроизводных – галогенирование метильной группы имидоильного фрагмента [3]. При действии брома на галогенсодержащие N-ацил-1,4-бензохинонмоноимины с одним свободным орто-положением по отношению к иминному атому углерода хиноидного ядра были получены производные бензоксазола [4], что является простым удобным методом синтеза гетероциклических производных на основе N-замещённых 1,4-бензохинониминов.

Ранее синтезированы N-ариламинокарбонил-1,4-бензохинонмоноимины [5], которые с одной стороны являются производными 1,4-бензохинонмоноимина, а с другой – производными мочевины. Последние являются достаточно удобными синтонами для получения на их основе различных гетероциклических производных [6, 7], проявляющих широкий спектр биологической активности [8, 9].

Целью настоящей работы является расширение спектра производных N-ариламинокарбонил-1,4-бензохинонмоноиминов за счет получения новых галогенсодержащих соединений на их основе и подбор оптимальных условий их синтеза.

DOI: http://dx.doi.org/10.18524/2304-0947.2017.1(61).94716 © С. А. Коновалова, А. П. Авдеенко, Е. Н. Лысенко, 2017

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Галогенпроизводные N-замещенных хинониминов могут быть получены при галогенировании хинониминов или их восстановленных форм [1–5, 10, 11], а также в результате их гидрогалогенирования [12, 13].

Хлорирование N-ариламинокарбонил-1,4-бензохинонмоноиминов и их восстановленных форм проводили газообразным хлором в хлороформе и уксусной кислоте до полного насыщения реакционной массы, бромирование – в хлороформе, уксусной кислоте или ДМФА раствором брома в соответствующем растворителе с соотношением реагентов 1:2, 1:5. Гидрохлорирование хинонмоноиминов проводили газообразным хлороводородом до полного насыщения раствора, а гидробромирование – 40% водным раствором бромоводорода.

Во всех случаях хлорирования образовывались некристаллизующиеся маслянистые осадки или многокомпонентные кристаллические смеси, строение и состав которых установить не удалось. В связи с этим хлорсодержащие производные были получены только при гидрохлорировании N-ариламинокарбонил-1,4-бензохинонмоноиминов.

В результате гидрохлорирования хинонмоноимина (I) получена 1-(4-гидрокси-3-хлорофенил)-3-(4-толил)мочевина (IV) (схема 1).

Схема 1

Для спектра ЯМР ¹Н мочевины (IV) характерно наличие дублета протона H^6 при δ 6,89 м.д. с орто-константой спин-спинового взаимодействия 9 Гц и дублета протона H^3 при δ 7,57 м.д. с мета-константой спин-спинового взаимодействия 2,4 Гц, а также дублет дублета протона H^5 при δ 7,07 м.д., что свидетельствует о вхождении атома хлора в положение 2 хиноидного ядра исходного хинонмоноимина, то есть по схеме 1,4-присоединения.

Следует отметить, что при гидрохлорировании N-замещенных 1,4-бензохинонмоноиминов возможно также 6,3-присоединение хлороводорода [12]. Поэтому с целью окончательного подтверждения строения мочевины (IV) выполнен ее встречный синтез на основе 4-толилизоцианата (II) и 2-хлор-4-аминофенола (III) (схема 1).

В результате гидрогалогенирования 3-метил-1,4-бензохинонмоноимина (V) получены смеси изомерных продуктов с вхождением атома галогена в положение 2 (1-(4-гидрокси-2-метил-3-хлорофенил)-3-фенилмочевина (VIIa), 1-(3-бромо-4-гидрокси-2-метилфенил)-3-фенилмочевина (VIIb)) или 6 (1-(4-гидрокси-2-метил-5-хлорофенил)-3-фенилмочевина (VIIb)) или 6 (1-(4-гидрокси-2-метил-5-хлорофенил)-3-фенилмочевина (VIIIa), 1-(5-бромо-4-гидрокси-2-метилфенил)-3-фенилчевина (VIIIb)) хиноидного ядра. Смеси соединений (VIIa, 38%) и (VIIIa, 62%), (VIIb, 37%) и (VIIIb, 63%) разделить не удалось (схема 2). При бромировании соединения (VI) в уксусной кислоте с соотношением реагентов 1:5 получена смесь мочевин (VIIc, VIIIc, IX) с содержанием 14, 30 и 56%, соответствен-

но. В индивидуальном виде в результате нескольких перекристаллизаций удалось выделить только мочевину (IX), окисление которой тетраацетатом свинца привело к образованию соответствующего 1,4-бензохинонмоноимина (X). Следует отметить, что продукты бромирования (VIIc, VIIIc, IX, X) содержали атом брома в параположении арильного фрагмента, что обусловлено увеличением его активности по отношению к галогенам за счет наличия NH группы.

VII, VIII: X=H, Hlg=Cl (a); X=H, Hlg=Br (b); X=Hlg=Br (c).

Схема 2

Строение продуктов реакций установлено на основании данных элементного анализа индивидуально выделенных соединений (табл. 1) и спектров ЯМР ¹Н (табл. 2). В спектрах ЯМР ¹Н соединений (VIIa–c) присутствуют дублеты протонов Н⁶ (δ 6,80–6,94 м.д.) и H⁵ (7,23–7,27 м.д.) аминофенольного ядра с орто-константой спин-спинового взаимодействия 8,7–9,0 Гц, что свидетельствует о нахождении атома галогена в положении 2 аминофенольного фрагмента мочевины. Для соединений (VIIIa–c) характерно наличие синглетов протонов H⁶ и H³ в области δ 6,78–6,79 и 7,67–7,77 м.д., соответственно, что подтверждает строение данных продуктов. В спектре ЯМР ¹Н арилмочевины (IX) присутствует синглет протона H⁵ при δ 7,69 м.д., хинонимина (X) – при δ 7,49 м.д. (см. табл. 2).

Таблица 1

Выходы, температуры плавления, данные элементного анализа соединений (IV, IX, X, XIIIa, c, XIV–XVI, XXI, XXIVa, XXV–XXIX, XXXI, XXXII, XXXIV–XXXVI, XLb–XLIII, XLVI)

Havan	Выход, %	Т пл., °С	Найдено, %			Вычислено, %	
соединения			Ν	Cl и/или Br	Формула	Ν	Cl и/или Br
IV	85	222–223	10,04; 10,26	12,69; 12,93	C ₁₄ H ₁₃ ClN ₂ O ₂	10,12	12,81
IX	55	257–259	5,68; 5,80	49,79; 49,96	C ₁₅ H ₁₁ Br ₃ N ₂ O ₂	5,85	50,05
X	76	131–133	5,72; 5,96	50,17; 50,35	C ₁₄ H ₉ Br ₃ N ₂ O ₂	5,87	50,26
XIIIa	80	309-310	6,84; 6,99	38,72; 38,85	$C_{15}H_{14}Br_2N_2O_2$	6,77	38,59
XIIIc	77	264–266	6,43; 6,67	37,12; 37,50	$C_{16}H_{16}Br_2N_2O_2$	6,54	37,33

Продолжение таблицы 1

Howen	Выход	выход Тил	Найдено, %			Вычислено, %	
соединения	^{выход,}	°C	Ν	Cl и/или Br	Формула	Ν	Cl и/или Br
XIVa	91	154–156	9,47; 9,83	11,92; 12,30	$\mathrm{C_{15}H_{15}ClN_2O_2}$	9,64	12,19
XIVb	71	246–247	8,89; 9,12	11,47; 11,53	C ₁₆ H ₁₇ ClN ₂ O ₂	9,19	11,63
XV	65	147–149	6,29; 6,41	37,28; 37,42	$C_{16}H_{14}Br_2N_2O_2$	6,57	37,50
XVIa	68	154–156	9,83; 9,91	12,30; 12,54	C ₁₅ H ₁₃ ClN ₂ O ₂	9,70	12,28
XVIb	74	148–149	9,06; 9,36	11,57; 11,89	C ₁₆ H ₁₅ ClN ₂ O ₂	9,25	11,71
XXI	69	263–264	6,48; 6,65	38,26; 38,41	C ₁₅ H ₁₄ Br ₂ N ₂ O ₂	6,77	38,59
XXIVa	66	220–222	6,22; 6,37	35,14; 35,32	C ₁₈ H ₂₀ Br ₂ N ₂ O ₂	6,14	35,03
XXVa	59	142–143	6,03; 6,25	35,02; 35,28	C ₁₈ H ₁₈ Br ₂ N ₂ O ₂	6,17	35,19
XXVb	61	120-122	5,21; 5,34	45,98; 46,01	C ₁₇ H ₁₅ Br ₃ N ₂ O ₂	5,40	46,19
XXVIa	95	224–226	9,47; 9,82	11,98; 12,30	C ₁₅ H ₁₅ ClN ₂ O ₂	9,64	12,19
XXVIb	92	253–255	8,19; 8,36	22,97; 23,05	C ₁₆ H ₁₇ BrN ₂ O ₂	8,02	22,88
XXVII	85	226–228	7,51; 7,64	21,78; 21,86	C ₁₇ H ₁₉ BrN ₂ O ₂	7,71	22,00
XXVIIIa	78	151–153	9,68; 9,92	12,17; 12,44	C ₁₅ H ₁₃ ClN ₂ O ₂	9,70	12,28
XXVIIIb	73	226–228	7,83; 8,15	22,89;23,20	C ₁₆ H ₁₅ BrN ₂ O ₂	8,07	23,01
XXIX	76	147–148	7,84; 7,96	22,36; 22,51	C ₁₇ H ₁₇ BrN ₂ O ₂	7,75	22,12
XXXI	65	204–205	6,83; 6,97	38,65; 38,72	C ₁₅ H ₁₄ Br ₂ N ₂ O ₂	6,77	38,59
XXXII	58	172–174	6,65; 6,76	38,50; 38,64	$C_{15}H_{12}Br_2N_2O_2$	6,80	38,78
XXXIV	77	266–268	5,49; 5,76	48,54; 48,73	C ₁₅ H ₁₃ Br ₃ N ₂ O ₂	5,68	48,62
XXXVa	89	217–219	9,52; 9,91	11,86; 12,29	C ₁₅ H ₁₅ ClN ₂ O ₂	9,64	12,19
XXXVb	91	275–277	8,13; 8,27	23,47; 23,65	C ₁₅ H ₁₅ BrN ₂ O ₂	8,36	23,84
XXXVI	36	146–148	8,56; 8,69	24,12; 24,39	C ₁₅ H ₁₃ BrN ₂ O ₂	8,41	23,98
XLb	97	262–264	5,68; 5,74	47,36; 47,49	C ₁₆ H ₁₅ Br ₃ N ₂ O ₂	5,53	47,28
XLIa	72	157–159	6,36; 6,72	37,28; 37,60	C ₁₆ H ₁₄ Br ₂ N ₂ O ₂	6,57	37,50
XLIb	75	191–192	5,40; 5,53	47,23; 47,31	C ₁₆ H ₁₃ Br ₃ N ₂ O ₂	5,55	47,47
XLIIa	92	230–232	9,38; 9,51	11,87; 12,06	C ₁₅ H ₁₅ ClN ₂ O ₂	9,64	12,19
XLIIb	93	302-304	8,52; 8,71	23,93; 24,02	C ₁₅ H ₁₅ BrN ₂ O ₂	8,36	23,84
XLIII	68	117–118	9,56; 9,83	12,16; 12,37	C ₁₅ H ₁₃ ClN ₂ O ₂	9,70	12,28
XLVI	87	225–227	9,37; 9,49	54,16; 54,27	C ₇ H ₆ Br ₂ N ₂ O	9,53	54,37

При гидрохлорировании 2,3-диметил-1,4-бензохинонмоноиминов (XIa, b) получены только продукты 1,4-присоединения – хлорсодержащие арилмочевины (XIVa, b), окисление которых тетраацетатом свинца приводит к образованию хинонмоноиминов (XVIa, b) (схема 3).

В результате бромирования 1-(4-гидрокси-2,3-диметилфенил)-3-арилмочевины (XIIa) в уксусной кислоте с соотношением реагентов 1:5 получена смесь монобромзамещенных в аминофенольном ядре продуктов (XIIIa, 21%), (XIIIb, 79%), содержащих атомы брома также и в арильном фрагменте: в пара-положении арильного фрагмента соединения (XIIIa) и в орто– и пара-положениях арильного фрагмента соединения (XIIIb). В ДМФА была выделена чистая арилмочевина (XIIIa) (схема 3). В случае толилпроизводного (XIIb) выделена только монобромзамещенная в аминофенольном ядре арилмочевина (XIIIc) с атомом брома в ортоположении ароматического цикла, в результате окисления которой тетраацетатом свинца был получен хинонмоноимин (XV).

XI, XII: X=H (a); X=Me (b); XIII: Y=H, X=Hlg=Br (a); X=Y=Hlg=Br (b); X=Me, Y=Hlg=Br (c); XIV, XVI: X=Y=H, Hlg=Cl (a); X=Me, Y=H, Hlg=Cl (b); XV: X=Me, Y=Hlg=Br.

Схема 3

В спектрах ЯМР ¹Н аминофенолов (XIIIa–c, XIVa, b) присутствует синглет протона H^5 при δ 6,71–7,22 м.д., хинониминов (XV, XVIa, b) – при δ 7,17–7,19 м.д. (см. табл. 2).

В результате гидрогалогенирования 2,5-диалкилзамещенных хинониминов (XVIIa, b, XVIII) были выделены индивидуальные соединения (XXVIa, b, XXVII) (схема 4).

При окислении моногалогензамещенных продуктов (XXVIa, b, XXVII) получены соответствующие хинонимины (XXVIIIa, b, XXIX) (схема 4).

При бромировании 6-изопропил-3-метил-1,4-бензохинонмоноимина (XVIII) в хлороформе с соотношением реагентов 1:3 получена смесь монобромзамещенных в аминофенольном ядре продуктов (XXII, 30%) и (XXIVb, 70%) с одним атомом брома в пара– (XXII) и двумя атомами брома в орто– и пара-положениях (XXIVb) арильного фрагмента.

XVII: R=Me, X=H (a), R=X=Me (b); XVIII: R= i-Pr, X=H; XIX: R=Me, X=H; XX: R= i-Pr, X=Me; XXI: R=Me; XXII: R=i-Pr; XXIII: R=Me, X=Br; XXIV, XXV: R=i-Pr, X=Me (a); R=i-Pr, X=Br (b); XXVI, XXVIII: R=Me, X=H, Hlg=Cl (a), R=X=Me, Hlg=Br (b); XXVII, XXIX: R=i-Pr, X=H, Hlg=Br.

Схема 4

Взаимодействие аминофенола (XIX) с бромом в уксусной кислоте с соотношением реагентов 1:5 привело к образованию смеси монобромзамещенных в аминофенольном ядре соединений (XXI, 48%) и (XXIII, 52%) со вхождением одного атома брома в пара– (XXI) и двух атомов брома в орто-, пара-положения (XXIII) арильного фрамента. При бромировани аминофенола (XX) получен продукт (XXIVa), содержащий один атом брома в аминофенольном ядре и два атома брома в орто-, пара-положениях арильного фрагмента. В результате окисления аминофенолов (XXIVa, b) получены монобромзамещенные в хиноидном ядре продукты (XXVa, b) с двумя атомами брома в орто-, пара-положениях арильного фрагмента (схема 4).

В спектрах ЯМР ¹Н аминофенолов (XXI–XXIV, XXVI–XXVII) и хинониминов (XXVa, b, XXVIII–XXIX) присутствует синглет протона H^5 в области δ 7,06– 7,25 м.д. и 6,51–7,12 м.д., соответственно, что подтверждает предложенное строение продуктов (см. табл. 2).

При бромировании 2,6-диметил-N-фениламинокарбонил-1,4-аминофенола (XXX) в уксусной кислоте с соотношением реагентов 1:3 выделена монобромзамещенная в аминофенольном ядре мочевина с атомом брома в пара-положении арильного цикла (XXXI) (схема 5).

При бромировании хинонимина (XXXIII) в хлороформе с соотношением реагентов 1:5 получен дибромзамещенный в аминофенольном ядре продукт (XXXIV) с атомом брома в пара-положении арильного фрагмента, а при гидрогалогенировании – моногалогензамещенные продукты (XXXVa, b). В результате окисления аминофенолов (XXXI, XXXVb) получены хинонмоноимины (XXXII, XXXVI), что является дополнительным доказательством их строения.
Спектры Я	МР ¹ Н соединений (IV, VII–X, XIII–XVI	, XXI–XXIX, XXXI, XXXII, XXXIV–XXXV Химический сдвиг, 8, м.д.	Таблица 2 VI, XXXIX-XLIII, XLVI)	
(растворитель)	Протонов аминофенольного ядра	Протонов ароматического ядра	Протонов групп NH, ОН	
1	2	m	4	
IV (DMCO-d ₆)	$\begin{array}{c} 6,89\pi(1\mathrm{H},\mathrm{H}^6,\mathrm{J}9\Gamma\mathrm{n}),7,07\pi\pi(1\mathrm{H},\mathrm{H}^5,\mathrm{J}^{33}2,4\Gamma\mathrm{n},\mathrm{J}^{36}9\Gamma\mathrm{n}),7,57\pi(1\mathrm{H},\mathrm{H}3,\mathrm{J}^{32},\mathrm{H}\mathrm{T}\mathrm{n})\\ \mathrm{J}^{35}2,4\Gamma\mathrm{n},\mathrm{J}^{24}1\mathrm{H}1)\end{array}$	2,23 c (3H, Me, 4-Tol), 7,07 μ (2H, H ³⁵ , J 8,7 Γu), 7,32 μ (2H, H ²⁶ , J 8,7 Γu)	8,45 c (1H, NH), 8,49 ym.c (1H, NH), 9,72 ym.c (1H, OH)	r
VIIa (DMCO-d ^c)	2,24 c (3H, 3-Me), 6,81 μ (1H, H ⁶ , J 9 Γ u), 7,23 μ (1H, H ⁵ , J 9 Γ u)	6,93–7,45 м (5Н, Ph)	7,88 c (1H, NH), 8,76 ym.c (1H, NH), 9,80 c (1H, OH)	
VIIb (DMCO-d,)	2,28 c (3H, 3-Me), 6,94 μ (1H, H ⁶ , J 9 Γ u), 7,27 μ (1H, H ⁵ , J 9 Γ u)	7,24–7,46 м (5Н, Рh)	7,82 c (1H, NH), 7,97 c (1H, NH), 8,95 c (1H, OH)	·
VIIc (DMCO-d,)	2,26 c (3H, 3-Me), 6,80 π (1H, H ⁶ , J 8,7 Γ u), 7,24 π (1H, H ⁵ , J 8,7 Γ u)	7,43 ym.c (4H, 4-Br- C_6H_4)	8,08 c (1H, NH), 9,06 c (1H, NH), 9,97 ym.c (1H, OH)	
VIIIa (DMCO-d ^c)	2,15 c (3H, 5-Me), 6,78 c (1H, H ⁶), 7,67 c (1H, H ³)	6,93–7,45 м (5Н, Ph)	7,80 c (1H, NH), 8,88 ym.c (1H, NH), 9,69 c (1H, OH)	
VIIIb (DMCO-d,)	2,14 c (3H, 5-Me), 6,79 c (1H, H ⁶), 7,76 c (1H, H ³)	7,24–7,46 м (5Н, Рһ)	7,88 c (1H, NH), 9,07 c (1H, NH), 9,84 ym.c (1H, OH)	
VIIIc (DMCO-d,)	2,13 c (3H, 5-Me), 6,79 c (1H, H ⁶), 7,77 c (1H, H ³)	7,43 ym.c (4H, 4-Br- C_6H_4)	7,98 c (1H, NH), 9,18 c (1H, NH), 9,97 ym.c (1H, OH)	r
IX (DMCO-d ₆)	2,28 c (3H, 3-Me), 7,69 c (1H, H ⁵)	7,43 ym.c (4H, 4-Br- C_6H_4)	8,20 c (1H, NH), 9,19 c (1H, NH), 9,97 ym.c (1H, OH)	
X (CDCl ₁)	2,40 c (3H, 3-Me), 7,49 c (1H, H ⁵)	7,49 ym.c (4H, 4-Br- C_6H_4)	7,87 c (1H, NH)	
XIIIa (DMCO-d ₆)	2,19 c (3H, 2-Me), 2,25 c (3H, 3-Me), 7,21 c (1H, H ⁵)	7,42 ym.c (4H, 4-Br- C_6H_4)	7,92 c (1H, NH), 8,90 ym.c (1H, NH), 9,51 c (1H, OH)	
XIIIb (DMCO-d ₆)	2,20 c (3H, 2-Me), 2,28 c (3H, 3-Me), 7,20 c (1H, H ⁵)	$\begin{array}{c} 7,50\ _{\rm A,II}\ (1H,\ H^{5},\ H^{3'},\ J\ 2,1\ \Gamma_{\rm H},\ H^{5'},\ J\ 9\\ \Gamma_{\rm H}\),\ 7,82\ _{\rm A}\ (1H,\ H^{3'},\ J\ 2,1\ \Gamma_{\rm H}),\ 8,04\ _{\rm A}\ (1H,\ H^{5'},\ J\ 9\ \Gamma_{\rm H}\)\\ H^{6'},\ J\ 9\ \Gamma_{\rm H}\)\end{array}$	8,26 c (1H, NH), 8,72 c (1H, NH), 9,26 c (1H, OH)	
XIIIc (DMCO-d ₆)	2,20 c (3H, 2-Me), 2,29 c (3H, 3-Me), 7,22 c (1H, H ⁵)	2,24 с (3H, Me, 2-Br-4-Me-C ₆ H ₄), 7,15 д.д (1H, H ⁵ , H ⁵³ J0,9 Гц, H ⁵⁶ J 8,4 Гц), 7,46 д (1H H ³⁷ J0 9 Гл) 7 90 л (1H H ⁶⁷ J 8 4 Гл)	8,12 c (1H, NH), 8,73 ym.c (1H, NH), 8,98 c (1H, OH)	

Синтез галогенпроизводных N-ариламинокарбонил-1,4-бензохинонмоноиминов

1												
The survey of the second	4	7,63 c (1H, NH), 8,74 c (1H, NH), 9,88 c (1H, OH)	7,78 c (1H, NH), 8,61 c (1H, NH), 8,71 c (1H, OH)	8,59 c (1H, NH)	7,52 c (1H, NH)	7,26 c (1H, NH)	7,94 c (1H, NH), 8,75 ym.c (1H, NH), 8,92 c (1H, OH)	7,98 c (1H, NH), 8,62 c (1H, NH), 8,94 c (1H, OH)	8,27 ym.c (1H, NH), 8,71 ym.c (1H, NH), 8,79 ym.c (1H, OH)	8,11 c (1H, NH), 8,63 ym.c (1H, NH), 8,63 ym.c (1H, OH)	8,29 c (1H, NH), 8,67 c (1H, NH), 8,79 c (1H, OH)	7,40 c (1H, NH)
	3	6,91-7,42 м (5Н, Ph)	2,23 с (3H, Me, 2-Br-4-Me-C ₆ H ₄), 7,06 д (2H, H ^{3/5} , J 9 Гц), 7,32 д (2H, H ^{2/6} , J 9 Гц)	2,25 c (3H, Me, 2-Br-4-Me-C ₆ H ₄), 7,12 μ, (1H, H ³ , H ³ ³ , J2,1 Γu, H ⁵ ⁶ , J9 Γu), 7,43 μ (1H, H ³ , J2,1 Γu), 7,87 μ (1H, H ⁶ , J9 Γu)	7,14–7,58 м (5Н, Рһ)	2,34 c (3H, Me, 4-Tol), 7,13 μ (2H, H ³⁵ , J 8,1 Γu), 7,44 μ (2H, H ^{26'} , J 8,1 Γu)	7,42 ym.c (4H, 4-Br- C_6H_4)	7,42 ym.c (4H, 4-Br- C_6H_4)	$\begin{array}{c} 7,50\ {\rm A},{\rm A}\ (1{\rm H},{\rm H}^{s},{\rm H}^{3{\rm '}},J2,1\ {\rm \Gamma}{\rm u},{\rm H}^{5{\rm '}},J9\\ {\rm \Gamma}{\rm u}),7,83\ {\rm A}\ (1{\rm H},{\rm H}^{3},J2,1\ {\rm \Gamma}{\rm u}),8,02\ {\rm A}\ (1{\rm H},{\rm H}^{3},J9\ {\rm \Gamma}{\rm u})\\ {\rm H}^{s},J9\ {\rm \Gamma}{\rm u})\end{array}$	2,25 с (3H, Me, 2-Br-4-Me-C ₆ H ₄), 7,12 д.д (1H, H ⁵ , H ³⁵ J 0,9 Гц, H ⁵⁶ J 8,4 Гц), 7,43 д (1H, H ^{3'} , J 0,9 Гц), 7,88 д (1H, H ^{6'} , J 8,4 Гц)	$\begin{array}{c} 7,51\ {\rm J}_{\rm L}_{\rm L}(1{\rm H},{\rm H}^5,{\rm H}^{3'5},J1,8\ {\rm \Gamma}_{\rm H},{\rm H}^{5'6},J9,0\\ {\rm \Gamma}_{\rm H}),7,84\ {\rm J}_{\rm L}(1{\rm H},{\rm H}^{3'},J1,8\ {\rm \Gamma}_{\rm H}),8,04\ {\rm J}_{\rm L}(1{\rm H},{\rm H},{\rm H}^{3'},J9,0\ {\rm T}_{\rm H})\\ {\rm H}^{6'},J9,0\ {\rm \Gamma}_{\rm H})\end{array}$	2,34 c (3H, Me, 2-Br-4-Me-C ₆ H ₄), 7,19 μπ (1H, H ⁵ , H ^{3'5} J 1,8 Γu, H ^{5'6} J 8,4 Γu), 7,34 μ (1H. H ^{3'} J 1.8 Γu), 8.15 π (1H. H ^{6'} J 8.4 Γu)
	2	2,11 c (3H, 2-Me), 2,20 c (3H, 3-Me), 6,71 c (1H, H ⁵)	2,17 c (3H, 2-Me), 2,20 c (3H, 3-Me), 7,21 c (1H, H ⁵)	2,19 c (3H, 2-Me), 2,26 c (3H, 3-Me), 7,19 c (1H, H ⁵)	2,12 c (3H, 2-Me), 2,20 c (3H, 3-Me), 7,19 c (1H, H ⁵)	2,04 c (3H, 2-Me), 2,32 c (3H, 3-Me), 7,17 c (1H, H ⁵)	2,19 c (3H, 6-Me), 2,25 c (3H, 3-Me), 7,21 c (1H, H ³)	1,13 c (Me, <i>i</i> -Pr), 1,15 c (Me, <i>i</i> -Pr), 2,24 c (3H, 3-Me), 3,26 m (1H, CH, <i>i</i> -Pr), 7,24 c (1H, H ³)	2,19 c (3H, 6-Me), 2,27 c (3H, 3-Me), 7,19 c (1H, H ⁵)	1,13 c (3H, Me, <i>i</i> -Pr), 1,15 c (3H, Me, <i>i</i> -Pr), 2,27 c (3H, 3-Me), 3,26 m (1H, CH, <i>i</i> -Pr), 7,24 c (1H, H ³)	1,13 c (Me, <i>i</i> -Pr), 1,15 c (Me, <i>i</i> -Pr), 2,26 c (3H, 3-Me), 3,26 m (1H, CH, <i>i</i> -Pr), 7,25 c (1H, H ³)	1,10 c (Me, <i>i</i> -Pr), 1,13 c (Me, <i>i</i> -Pr), 2,41 c (3H, 3-Me), 3,10 m (1H, CH, <i>i</i> -Pr), 7,04 c (1H, H ⁵)
	1	XIVa (DMCO-d ₆)	XIVb (DMCO-d ₆)	XV (CDCl ₃)	XVIa (CDCl ₃)	XVIb (CDCl ₃)	XXI (DMCO-d _k)	XXII (DMCO-d ₆)	XXIII (DMCO-d ₆)	XXIVa (DMCO-d ₆)	XXIVb (DMCO-d ₆)	XXVa (CDCl ₃)

Продолжение таблицы 2

110

С. А. Коновалова, А. П. Авдеенко, Е. Н. Лысенко

\sim				1									
Продолжение таблицы 2	4	7,48 c (1H, NH)	7,86 c (1H, NH), 8,76 c (1H, NH), 8,79 c (1H, OH)	7,83 c (1H, NH), 8,61 c (1H, NH), 8,66 c (1H, OH)	7,65 c (1H, NH), 8,81 c (1H, NH), 9,04 c (1H, OH)	7,29 ym.c (1H, NH)	7,51 c (1H, NH)	7,07 уш.с (1Н, NH)	7,87 ym.c (1H, NH), 8,51 ym.c (1H, NH), 9,29 c (1H, OH)	7,47 c (1H, NH)	7,52 c (1H, NH), 7,96 ym.c (1H, NH), 9,02 ym.c (1H, OH)	7.51 yur.c (1H, NH), 7,69 c (1H, OH), 8,76 yur.c (1H, NH)	7,63 ym.c (1H, NH), 8,75 ym.c (1H, NH), 9,98 c (1H, OH)
	3	7,49 д.д. (1Н, Н ⁵ ', Н ^{3'5'} J 2,1 Гц, Н ^{5'6'} J 7,8 Гц), 7,73 д (1Н, Н ^{3'} , J 2,1 Гц), 8,25 д (1Н, Н ^{6'} , J 7,8 Гц)	6,91–7,44 m (5H, Ph)	2,25 c (3H, Me, 4-Tol), 7,06 μ (2H, H ^{3.5'} , J 8,4 Γu), 7,32 μ (2H, H ^{2.6'} , J 8,4 Γu)	7,39 уш.с (5Н, Рһ)	7,16–7,58 м (5H, Ph)	2,25 c (3H, Me, 4-Tol), 7,18 д (2H, H ^{3.5} , J 8,7 Γu), 7,44 д (2H, H ^{2.6°} , J 8,7 Γu)	7,48 уш.с (5Н, Рһ)	7,43 c (4H, 4-Br- C_6H_4)	7,47 c (4H, 4-Br- C_6H_4)	7,42 c (4H, 4-Br- C_6H_4)	6,89–7,44 м (5H, Ph)	6,92–7,42 м (5H, Ph)
	2	1,11 c (Me, <i>i</i> -Pr), 1,13 c (Me, <i>i</i> -Pr), 2,40 c (3H, 3-Me), 3,10 m (1H, CH, <i>i</i> -Pr), 7,01 c (1H, H ⁵)	2,17 c (3H, 6-Me), 2,20 c (3H, 3-Me), 7,21 c (1H, H ⁵)	2,19 c (3H, 6-Me), 2,23 c (3H, 3-Me), 7,24 c (1H, H ⁵)	1,11 c (Me, i-Pr), 1,13 c (Me, i-Pr), 2,06 c (3H, 3-Me), 3,02 m (1H, CH, i-Pr), 7,06 c (1H, H ⁵)	2,05 c (3H, 6-Me), 2,33 c (3H, 3-Me), 7,12 c (1H, H ⁵)	2,08 c (3H, 6-Me), 2,35 c (3H, 3-Me), 6,96 c (1H, H ⁵)	1,18 c (Me, <i>i</i> -Pr), 1,21 c (Me, <i>i</i> -Pr), 2,01 c (3H, 3-Me), 3,28 m (1H, CH, <i>i</i> -Pr), 6,51 c (1H, H ⁵)	2,15 c (3H, 6-Me), 2,29 c (3H, 2-Me), 7,37 c (1H, H ³)	2,05 c (3H, 2-Me), 2,28 c (3H, 6-Me), 7,24 c (1H, H ³)	2,27 c (6H, 2,6-diMe)	2,12 c (3H, 6-Me), 2,21 c (3H, 2-Me), 6,72 c (1H, H ⁵)	2,11 c (3H, 6-Me), 2,25 c (3H, 2-Me), 6,71 c (1H, H ⁵)
	1	XXVb (CDCl ₃)	XXVIa (DMCO-d ₆)	XXVIb (DMCO-d ₆)	XXVII (DMCO-d ₆)	XXVIIIa (CDCl ₁)	XXVIIIb (CDCl ₃)	XXIX (CDCl ₃)	XXXI (DMCO-d ₆)	XXXII (CDCl ₃)	XXXIV (DMCO-d ₆)	XXXVa (DMCO-d ₆)	XXXVb (DMCO-d ₆)

Синтез галогенпроизводных N-ариламинокарбонил-1,4-бензохинонмоноиминов

4	7,10 ym.c (1H, NH)	7,84 уш.с (1Н, NH), 8,71 уш.с (1Н, NH), 9,59 уш.с (1Н, ОН)	7,84 уш.с (1H, NH), 8,59 уш.с (1H, NH), 9,99 уш.с (1H, OH)	8,18 уш.с (1Н, NH), 8,60 уш.с (1Н, NH), 9,63 уш.с (1Н, ОН)	8,09 уш.с (1Н, NH)	7,39 c (1H, NH)	7,63 c (1H, NH), 8,75 ym.c (1H, NH), 9,89 ym.c (1H, OH)	7,69 c (1H, NH), 8,83 ym.c (1H, NH), 9,94 ym.c (1H, OH)	7,52 уш.с (1Н, NH)	6,48 ym.c (2H, NH ₂), 7,95 c (1H, NH)
3	7,14–7,40 m (5H, Ph)	2,22 с (3H, Me, 2-Br-4-Me-C ₆ H ₄), 7,11 д.д (1H, H ⁵ ', H ³ '' J 2,1 Гц, H ³ '' J 7,8 Гц), 7,43 д (1H, H ³ ', J 2,1 Гц), 7,59 д (1H, H ⁶ ', J 7,8 Гц)	2,24 c (3H, Me, 4-Tol), 7,04 μ (2H, H ³⁵ , J 8,1 Γu), 7,31 μ (2H, H ²⁶ , J 8,1 Γu)	2,25 с (3H, Me, 2-Br-4-Me-C ₆ H ₄), 7,11 д.д (1H, H ⁵ ', H ³ '' J 2,1 Гц, H ³ '' J 7,8 Гц), 7,43 д (1H, H ³ ', J 2,1 Гц), 7,84 д (1H, H ⁶ ', J 7,8 Гц)	2,34 c (3H, Me, 4-Tol), 7,17 μ (2H, H ^{35'} , J 7,2 Γu), 7,42 μ (2H, H ^{26'} , J 7,2 Γu)	2;33 c (3H, Me, 2-Br-4-Me-C ₆ H ₄), 7,15 д.д (1H, H ⁵ , H ³⁻⁵ ' J 2,1 Гц, H ^{5'6'} J 7,8 Гц), 7,39 д (1H, H ^{3'} , J 2,1 Гц), 8,04 д (1H, H ^{6'} , J 7,8 Гц)	6,89–7,44 м (5Н, Ph)	6,89–7,45 м (5H, Ph)	7,14–7,39 м (5Н, Рһ)	$\begin{array}{c} 7,35 _{\rm JI,II} (1{\rm H}, {\rm H}^{5'}, {\rm H}^{3''}, J2,4 \Gamma_{\rm II}, {\rm H}^{5''}, J9,0 \\ \Gamma_{\rm II}, 7,68 _{\rm JI} (1{\rm H}, {\rm H}^{3'}, J2,4 \Gamma_{\rm II}), 8,09 _{\rm JI} (1{\rm H}, {\rm H}^{5''}, J9,0 \Gamma_{\rm II}) \end{array}$
2	2,26 c (3H, 6-Me), 2,42 c (3H, 2-Me), 6,57 c (1H, H ⁵)	2,10 c (3H, 5-Me), 2,22 c (3H, 3-Me), 6,70 c (1H, H ⁶)	2,26 c (6H, 3,5-diMe)	2,28 c (6H, 3,5-diMe)	2,44 c (6H, 3,5-diMe)	2,43 c (6H, 3,5-diMe)	2,11 c (3H, 5-Me), 2,20 c (3H, 3-Me), 6,71 c (1H, H ^o)	2,11 c (3H, 5-Me), 2,25 c (3H, 3-Me), 6,71 c (1H, H ^o)	2,26 c (3H, 5-Me), 2,37 c (3H, 3-Me), 6,53 c (1H, H ⁶)	
1	XXXVI (CDCl ₁)	XXXIX (DMCO-d ₆)	XLa (DMCO-d ₆)	XLb (DMCO-d ₆)	XLIa (CDCl ₃)	XLIb (CDCl ₃)	XLIIa (DMCO-d ₆)	XLIIb (DMCO-d ₆)	XLIII (CDCl ₃)	XLVI (DMCO-d ₆)

Окончание таблицы 2

112

С. А. Коновалова, А. П. Авдеенко, Е. Н. Лысенко

Синтез галогенпроизводных N-ариламинокарбонил-1,4-бензохинонмоноиминов

XXXV: Hlg=Cl (a), Hlg=Br (b).

Схема 5

В спектрах ЯМР ¹Н соединений (XXXI, XXXII) присутствует синглет протона H^5 при δ 7,37 и 7,24 м.д., соответственно, что подтверждает наличие одного атома брома в ядре аминофенола (XXXI) и хинонимина (XXXII). Для спектров ЯМР ¹Н моногалогензамещенных продуктов (XXXVa, b, XXXVI) характерно наличие синглета протона H^5 в области δ 6,71–6,72 и 6,57 м.д., соответственно. Характерной особенностью спектров ЯМР ¹Н соединений (XXXI, XXXII) является наличие уширенного синглета четырех протонов арильного фрагмента в области δ 7,42–7,47 м.д., что свидетельствует об эквивалентности их химических сдвигов и вхождении атома брома в пара-положение арильного фрагмента (см. табл. 2).

При бромировании 3,5-диметил-N-толиламинокарбонил-4-аминофенола (XXXVII) в уксусной кислоте с соотношением реагентов 1:2 получена смесь монобромзамещенного в аминофенольном ядре соединения (XXXIX, 32%) с атомом брома в орто-положении арильного фрагмента и дибромзамещенного в аминофенольном ядре соединения (XLa, 67%). В результате перекристаллизации и окисления данной смеси выделен чистый хинонимин (XLIa). При бромировании 1,4-хинонмоноимина (XXXVIIIa) в хлороформе с соотношением реагентов 1:2 получен 4-амино-2,6-дибром-3,5-диметил-N-(ариламинокарбонил)фенол (XLb), дальнейшее окисление которого привело к соответствующему хинонимину (XLIb) (схема 6).

В результате гидрогалогенирования хинонимина (XXXVIIIb) в индивидуальном виде выделены соединения (XLIIa, b), а при окислении монохлорзамещенного аминофенола (XLIIa) получен хинонимин (XLIII).

В спектрах ЯМР ¹Н 4-аминофенолов (XXXIX, XLIIa, b) и хинонимина (XLIII) присутствует синглет протона H⁶ в области δ 6,70–6,71 и 6,53 м.д., соответственно. Для спектров ЯМР ¹Н продуктов (XLa, XLIa) характерно наличие дублетов протонов H^{3'5'} и H^{2'6'} в области δ 7,04–7,17 и 7,31–7,42 м.д. соответственно, а в спектрах ЯМР ¹Н соединений (XXXIX, XLb, XLIb) присутствуют дублет дублета протона H^{5'} в области δ 7,11–7,15 м.д., дублет протона H^{3'} в области δ 7,39–7,43 м.д. и дублет протона H^{6'} в области δ 7,59–8,04 м.д. (см. табл. 2).

XL, XLI: X=H (a), X=Br (b); XLII: Hlg=Cl (a), Hlg=Br (b).

Схема 6

При действии брома на 4-амино-2,6-ди-трет-бутил-N-(фениламинокарбонил)фенол (XLIV) и 2,6-ди-трет-бутил-N-фениламинокарбонил-1,4-бензохинонмоноимин (XLV) наряду с бромированием протекает разложение исходного соединения с образованием дибромзамещённой в арильном фрагменте арилмочевины (XLVI) и 2,6-дибром-3,5-ди-трет-бутилхинона (XLVII) (схема 7).

Схема 7

Таким образом, эксперимент показал, что во всех случаях бромирования N-ариламинокарбонил-1,4-бензохинонмоноиминов и их восстановленных форм наблюдается бромирование арильного фрагмента. Это обусловлено соседством NHгруппы, которая обладает +М-эффектом и является ориентантом первого рода – повышает электронную плотность в бензольном кольце, особенно на углеродных атомах в орто– и пара-положениях, что благоприятствует взаимодействию данных атомов с электрофильными реагентами [14], в частности, с галогенами. Поэтому при галогенировании N-ариламинокарбонил-1,4-бензохинонмоноиминов и их восстановленных форм образуется большое количество изомеров, имеющих схожие физико-химические свойства, что обуславливает сложность их разделения. В связи с этим нам не удалось разделить и выделить продукты хлорирования и выделить в индивидуальном виде продукты бромирования (VIIa–с, VIIIa–с, XIIIb, XXII, XXIII, XXIVb, XXXIX, XLa). Ранее галогенирование арильного фрагмента было характерно только для N-замещенных 1,4-бензохинонмоноиминов, содержащих в арильном фрагменте донорную группу OMe [15].

На основании представленных данных можно сделать вывод, что для получения индивидуальных моногалогензамещенных производных N-ариламинокарбонил-1,4-бензохинонмоноиминов без вхождения атома галогена в арильный фрагмент наиболее подходит гидрогалогенирование соответствующих хинонмоноиминов.

Галогенирование N-ариламинокарбонил-1,4-бензохинонмоноиминов и их восстановленных форм позволяет выделить индивидуальные продукты только для случаев бромирования отдельных представителей, но это направление синтеза галогенпроизводных позволяет получить продукты с атомом галогена не только в аминофенольном ядре, но и в арильным фрагменте. В результате выполненного эксперимента найдены оптимальные условия бромирования N-ариламинокарбонил-1,4-бензохинонмоноиминов и соответствующих 4-аминофенолов с целью получения на их основе индивидуальных бромсодержащих продуктов (IX, X, XIIIa, c, XIV–XVI, XXI, XXIVa, XXV–XXIX, XXXI, XXXII, XXXV– XXXVI). Следует отметить, что соединения (X, XV, XVI, XXV, XXVIII, XXIX, XXXII, XXXVI) могут выступать синтонами в синтезе гетероциклических соединений на их основе – 2-ариламино-6-гидрокси-1,3-бензоксазолов [4].

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Спектры ЯМР ¹Н измерены на приборе Varian VXR-300 с рабочей частотой 300 МГц относительно ТМС. ИК спектры получены на спектрометре UR-20 в таблетках КВг. Образование продуктов реакции и их чистоту контролировали с помощью ТСХ на пластинках Silufol UV-254. В качестве растворителя использовали хлороформ, элюент бензол–гексан (10:1), проявление – УФ светом.

N-Ариламинокарбонил-1,4-бензохинонмоноимины (I, V, XIa, b, XVIIa,b, XVIII, XVIII, XVII–XXXVIII) и 4-аминофенолы (VI, XIIa, b, XIX, XX, XXX) синтезированы по методикам, приведенным в работе [5].

Взаимодействие 4-толилизоцианата (II) с 2-хлор-1,4-аминофенолом (III). К суспензии 2 ммоль аминофенола (III) в 3 мл осушенного диоксана при постоянном перемешивании прибавляли по каплям 0,3 мл изоцианата (II). Осадок, который образовывался через 20–30 мин, отфильтровывали, перекристаллизовывали из уксусной кислоты. Характеристики соединения (IV) приведены в табл. 1, а данные спектра ЯМР ¹Н – в табл. 2.

Гидрохлорирование хинониминов (I, V, XIa, b, XVIIa, XXXIII, XXXVIIIb). В раствор 2 ммоль хинонимина в 5 мл осушенного хлороформа пропускали ток сухого газообразного хлористого водорода в течение 20–30 мин. Осадок промывали небольшим количеством уксусной кислоты, сушили и перекристаллизовывали из уксусной кислоты. Данные спектров ЯМР ¹Н синтезированных соединений (IV, VIIa, VIIIa, XIVa, b, XXVIa, XXXVa, XLIIa) приведены в таблице 1, а характеристики индивидуальных соединений (IV, XIVa, b, XXVIa, XXXVa, XLIIa) – в таблице 2.

Гидробромирование хинониминов (V, XVIIb, XVIII, XXXIII, XXXVIIIb). В раствор 2 ммоль хинонимина в 3 мл уксусной кислоты при перемешивании порциями вносили 1 мл 40%-ной бромистоводородной кислоты. Перемешивали 20–30 мин, добавляли воду до образования осадка, который отфильтровывали и сушили. Перекристаллизовывали из уксусной кислоты. Данные спектров ЯМР ¹Н синтезированных соединений (VIIb, VIIIb, XXVIb, XXVII, XXXVb, XLIIb)

приведены в табл. 1, а характеристики индивидуальных соединений (XXVIb, XXVII, XXXVb, XLIIb) – в табл. 2.

Бромирование соединений (VI, XIIa, b, XVIII, XIX, XX, XXX, XXXIII, XXXVII, XXXVIII, XXXVIII, XXXVIII, XXXVIII, XXXVII, XXXVIII, XXXVII, XXXVIII, XXXVII, XXXVI, XXXV, XXXVI, XXXV, XXVI, XXXV, XLb, XLVI) приведены в табл. 2.

Окисление соединений (IX, XIIIc, XIVa, b, XXIVa, b, XXVIa, b, XXVII, XXXI, XXXVb, XLa, b, XLIIa). К 2 ммоль соответствующего аминофенола в 5 мл уксусной кислоты при комнатной температуре добавляли 2,6 ммоль тетраацетата свинца и перемешивали до изменения окраски до ярко-желтой. К реакционной массе добавляли 0,5 мл этиленгликоля и перемешивали еще 5 мин. Образовавшийся осадок отфильтровывали, промывали метанолом, сушили. Перекристаллизовывали из уксусной кислоты. Характеристики синтезированных соединений (X, XV, XVIa, b, XXVa, b, XXVIa, b, XXII, XXXII, XXXVI, XLIa, b, XLIII) приведены в табл.1, а данные спектров ЯМР ¹Н – в табл. 2.

СПИСОК ЛИТЕРАТУРЫ

- Авдеенко А.П., Коновалова С.А. Галогенирование N-замещенных пара-хинониминов и эфиров парахинонмоно-оксимов. V. Хлорирование и бромирование диалкилзамещенных N-арилсульфонил-1,4бензохинонмоноиминов // ЖОрХ. – 2006. – Т. 42, № 5. – С.689-701.
- Авдеенко А.П., Коновалова С.А., Лудченко О.Н., Паламарчук Г.В., Зубатюк Р.И., Шишкин О.В. Галогенирование N-замещенных пара-хинонмоноиминов и эфиров пара-хинонмонооксимов. IX. Галогенирование N-ароил-2,6(3,5)-диметил-1,4-бензохинонмоноиминов и их восстановленных форм // ЖОрХ. 2009. Т. 45, № 11. С.1660-1670.
- Авдеенко А.П., Коновалова С.А., Леденёва О.П., Санталова А.А., Пироженко В.В., Паламарчук Г.В., Шишкин О.В. Галогенирование N-замещенных пара-хинонмоноиминов и эфиров пара-хинонмонооксимов. XIV. Галогенирование N-[арилсульфонилимино-(фенил)метил]-2,5-диалкил-1,4бензохинонмоноиминов и их восстановленных форм // ЖОрХ. – 2012. – Т. 48, № 7. – С.933-942.
- Авдеенко А.П., Коновалова С.А., Леденёва О.П., Лудченко О.Н., Паламарчук Г.В., Зубатюк Р.И., Шишкин О.В. Галогенирование N-замещенных пара-хинонмоноиминов и эфиров пара-хинонмонооксимов. XIII. Некоторые особенности бромирования N-ацетил(ароил)-1,4-бензохинонмоноиминов // ЖОрХ. – 2011. – Т. 47, № 10. – С.1482-1487.
- Авдеенко А.П., Коновалова С.А., Сергеева А.Г., Зубатюк Р.И., Паламарчук Г.В., Шишкин О.В. Синтез и структура N-алкил(арил)аминокарбонил-1,4-бензохинонмоноиминов. // ЖОрХ. – 2008. – Т. 44, № 12. – С.1791-1798.
- Кравченко А.Н., Сигачев А.С., Максарева Е.Ю., Газиева Г.А., Трунова Н.С., Ложкина Б.В., Пивина Т.С., Ильин М.М., Лысенко К.А., Нелюбина Ю.В., Даванков В.А., Лебедев О.В., Махова Н.Н., Тартаковский В.А. Синтез новых хиральных моно-, ди-, три– и тетраалкилгликольурилов // Изв. АН. Сер. хим. – 2005. – № 3. – Р. 680-692.
- Cooley J.H., Jacobs P.T. Oxidative ring closure of 1-benzyloxy-3-arylureas to 1-benzyloxybenzimidazolones // J. Org. Chem. – 1975. – Vol. 40, N 5. – P. 552-557. http://dx.doi.org/10.1021/jo00893a002
- 8. Машковский М.Д. Лекарственные средства. М.: Медицина. 1998. 736 с.
- 9. Ильясов С.Г., Чикина М.В., Толстикова Т.Г. Синтез 4,5-дизамещенных производных имидазолидин-2онов взаимодействием глиоксаля с моноалкилмочевинами // Ползуновский вестник. – 2010. – № 4. – С. 9-12.

- Adams R., Looker J.H. Quinone imides. IV. p-Quinone monosulfonimides // J. Amer. Chem. Soc. 1951. Vol. 73, N 3. – P. 1145-1149. https://doi.org/10.1021/ja01147a078
- Robertson P.W. Secondary mechanisms in the halogenation of phenols and aromatic sulphonamides // J. Chem. Soc. - 1956. - P. 1883-1884.
- Бурмистров К.С., Юрченко А.Г. Присоединение хлористого водорода к N-арил-1,4-бензохинонмоноиминам // ЖОрХ. – 1985. – Т. 21, № 3. – С. 575-578.
- Торопин Н.В., Бурмистров К.С., Бурмистров С.И., Зайченко Н.Л. Реакция бромистого водорода с N-(п-толил)– и N-(п-толилсульфонил)-1,4-бензохинонмоноиминами // ЖОрХ. 1986. Т. 22, № 5. С. 999-1005.
- 14. Общая органическая химия. Азотсодержащие соединения. / Под ред. Д. Бартона, У.Д. Оллиса. / Под ред. И.О. Сазерленда. Пер. с англ. / Под ред. Н.К. Кочеткова, Л.В. Бакиновского. Т. 3. М.: Химия, 1982. 736 с.
- Авдеенко А.П., Коновалова С.А., Лудченко О.Н. Галогенирование 4-ароиламидофенолов, содержащих одну или несколько метоксильных групп в ароильном радикале // Вопросы химии и химической технологии. – 2007. – №2. – С.21-37.

Стаття надійшла до редакції 23.11.2016

С. О. Коновалова, А. П. Авдєєнко, О. М. Лисенко

Донбаська державна машинобудівна академія, вул. Академічна, 72, Краматорськ-13, Україна, 84313; e-mail: chimist@dgma.donetsk.ua

СИНТЕЗ ГАЛОГЕНВМІСНИХ ПОХІДНИХ N-АРИЛАМІНОКАРБОНІЛ-1,4-БЕНЗОХІНОНМОНОІМІНІВ

Галогенування N-ариламінокарбоніл-1,4-бензохінонмоноімінів є найбільш вдалим методом синтезу похідних на їх основі з атомом галогену в амінофенольному ядрі. В результаті бромування N-ариламінокарбоніл-1,4-бензохінонмоноімінів та їх відновлених форм виявлено бромування як амінофенольного ядра, так і арильного фрагменту. Знайдено оптимальні умови одержання індивідуальних бромвмісних продуктів з різною кількістю атомів брому в молекулі.

Ключові слова: N-ариламінокарбоніл-1,4-бензохінонмоноіміни, бромування, гідрогалогенування, окиснення.

S. A. Konovalova, A. P. Avdeenko, E. N. Lysenko

Donbass State Engineering Academy, Akademichna str., 72, Kramatorsk-13, Ukraine, 84313; chimist@dgma.donetsk.ua

SYNTHESIS OF HALOGEN DERIVATIVES OF N-ARYLAMINOCARBONYL-1,4-BENZOQUINONE MONOIMINES

The hydrohalogenation of N-arylaminocarbonyl-1,4-benzoquinone monoimines is optimal method to obtain the halogenated derivatives. This method allows obtaining the pure products in high yield with a halogen atom in the aminophenol ring.

The bromination of N-arylaminocarbonyl-1,4-benzoquinone monoimines and their reduced forms allows obtaining of individual products only in several cases. The bromination allows synthesizing of products with a halogen atom not only in the aminophenol ring, but in the aryl moiety too.

As a result of the experiment we have found the optimal conditions to synthesis the N-arylaminocarbonyl-1,4-benzoquinone monoimine derivatives containing halogen atom. The bromination and hydrohalogenation products with one free ortho-position toward to the imine carbon atom of the quinoid ring can be used as synthons in the synthesis of heterocyclic compounds -1,3-benzoxazole derivatives.

Keywords: N-arylaminocarbonyl-1,4-benzoquinone monoimines, bromination, hydrohalogenation, oxidation.

REFERENCES

- Avdeenko A.P., Konovalova S.A. Halogenation of N-substituted para-quinone monoimines and para-quinone monooxime esters: V. Chlorination and bromination of N-arylsulfonyl-1,4-benzoquinone monoimines dialkyl-substituted in the quinoid ring. Russ. J. Org. Chem., 2006, vol. 42, no. 5, pp. 669-682. http://dx.doi. org/10.1134/S1070428006050058
- Avdeenko A.P., Konovalova S.A., Ludchenko O.N., Palamarchuk G.V., Shishkin O.V. Halogenation of N-substituted para-quinone monoimines and para-quinone monoximes ethers: IX. Halogenation of N-aroyl-2,6(3,5)-dimethyl-1,4-benzoquinone monoimines and their reduced forms. Russ. J. Org. Chem., 2009, vol. 45, no. 11, pp. 1651-1662. http://dx.doi.org/10.1134/S1070428009110128
- Avdeenko A.P., Konovalova S.A., Ledeneva O.P., Santalova A.A., Pirozhenko V.V., Palamarchuk G.V., Shishkin O.V. Halogenation of N-substituted p-quinone monoimines and p-quinone monooxime ethers: XIV. Halogenation of N-[arylsulfonylimino(phenyl)methyl]-2,5-dialkyl-1,4-benzoquinone monoimines and their reduction products. Russ. J. Org. Chem., 2012, vol. 48, no. 7, pp. 928-937. http://dx.doi.org/10.1134/ S107042801207007X
- Avdeenko A.P., Konovalova S.A., Ledeneva O.P., Ludchenko O.N., Palamarchuk G.V., Zubatyuk R.I., Shishkin O.V. Halogenation of N-substituted p-quinone monoimines and p-quinone monooxime ethers: XIII. Specificity of bromination of N-acetyl(aroyl)-1,4-benzoquinone monoimines. Russ. J. Org. Chem., 2011, vol. 47, no. 10, pp.1508-1514. http://dx.doi.org/10.1134/S1070428011100101
- Avdeenko A.P., Konovalova S.A., Sergeeva A.G., Zubatyuk R.I., Palamarchuk G.V., Shishkin O.V. Synthesis and structure of N-alkyl(aryl)aminocarbonyl-1,4-benzoquinone imines. Russ. J. Org. Chem., 2011, vol. 44, no. 12, pp.1765-1772. http://dx.doi.org/10.1134/S1070428008120075
- Kravchenko A. N., Sigachev A. S., Maksareva E. Yu., Gazieva G. A., Trunova N. S., Lozhkina B. V., Pivina T.S., Il'in M.M., Lyssenko K.A., Nelyubina Yu.V., Davankov V.A., Lebedev O.V., Makhova N.N., Tartakovsky V.A. Synthesis of new chiral mono-, di-, tri-, and tetraalkylglycolurils. Russ. Chem. Bull., 2005, vol. 54, no. 3, pp. 691-704. http://dx.doi.org/10.1007/s11172-005-0307-3
- Cooley J.H., Jacobs P.T. Oxidative ring closure of 1-benzyloxy-3-arylureas to 1-benzyloxybenzimidazolones. J. Org. Chem., 1975, vol. 40, no. 5, pp. 552-557. http://dx.doi.org/10.1021/jo00893a002
- Mashkovskii M. D. Lekarstvennye sredstva [Drugs]. Moscow, Novaya Volna, 1998, vol. 1, 736 p. (in Russian).
 II'yasov S.G., Chikina M.V., Tolstikova T.G. Sintez 4,5-dizameshchennykh proizvodnykh imidazolidin-2-onov vzaimodeystviem glioksalia s monoalkilmochevinami [Reaction of glyoxal with monoalkyl ureas to synthesis of imidazolidine-2-ones 4,5-disubstituted derivatives]. Polzunovskiy vestnik, 2010, no. 4, pp. 9-12. Available at: http://elib.altstu.ru/elib/books/Files/pv2010_04_1/pdf/009ilyasov.pdf
- Adams R., Looker J.H. Quinone Imides. IV. p-Quinone monosulfonimides. J. Amer. Chem. Society, 1951, vol. 73, no. 3, pp. 1145-1149. https://doi.org/10.1021/ja01147a078
- Robertson P.W. Secondary mechanisms in the halogenation of phenols and aromatic sulphonamides. J. Chem. Soc., 1956, pp. 1883-1884. https://doi.org/10.1039/JR9560001881
- Burmistrov K.S., Yurchenko A.G. Prisoedinenie khloristogo vodoroda k N-aril-1,4-benzokhinonmonoiminam [Addition of hydrogen chloride to N-aryl-1,4-benzoquinone monoimines]. Zhurnal organicheskoy khimii, 1985, vol 21, no. 3, pp. 575-578. (in Russian).
- Toropin N.V., Burmistrov K.S., Burmistrov S.I., Zaychenko N.L. Reaktsia bromistogo vodoroda s N-(p-tolil)-i N-(p-tolilsulfonil)-1,4-benzokhinonmonoiminami [Reaction of hydrogen bromide with N-(p-tolyl)- and N-(ptolylsulphonyl)-1,4-benzoquinone monoimines]. Zhurnal organicheskoy khimii, 1986, vol 22, no. 5, pp. 999-1005. (in Russian).
- Comprehensive organic chemistry: the synthesis and reactions of organic compounds. Nitrogen compounds. / Ed. D. Barton, W.D. Ollis. / Ed. I.O. Sutherland. Oxford, Pergamon press, 1979, vol. 2, 1329 p.
- Avdeenko A.P., Konovalova S.A., Ludchenko O.N. Galogenirovanie 4-aroilamidofenolov, soderzhashchikh odnu ili neskolko metoksilnykh grup v aroilnom radikale [Halogenation of 4-aroylamido phenols containing one or more methoxyl groups in the aroyl radical]. Voprosy khimii i khimicheskoy tekhnologii, 2007, no. 2, pp. 21-37. (in Russian).

УДК 543.422.3; 546.155(7); 547-304.2

О.С.Погребняк

Черкаський національний університет імені Богдана Хмельницького, б-р Шевченка, 81, м. Черкаси, Україна, 18031. e-mail: pogrebniak-oleg@ukr.net

СУМАРНЕ ТА РОЗДІЛЬНЕ СПЕКТРОФОТОМЕТРИЧНЕ ВИЗНАЧЕННЯ ЙОДАТІВ ТА ПЕРЙОДАТІВ N,N-ДІЕТИЛАНІЛІНОМ

Запропоновано методику сумарного спектрофотометричного визначення IO_3^- та IO_4^- іонів, яка базується на реакції окиснення N,N-діетиланіліну у присутності надлишку KBr у середовищі сульфатної кислоти та фотометруванні продукту бромування при 226 нм. Межі виявлення йодатів, перйодатів та їх сумарного вмісту (за 3s-критерієм) дорівнюють 0,73; 0,69 та 0,61 мг/дм³ відповідно. Лінійність градуювальних графіків зберігається в діапазоні 1,0–11,0 мг/дм³, s_r \leq 0,10, n = 5. Показана можливість роздільного визначення йодатів на основі вибіркового вилучення IO_4^- силікагелем, модифікованим четвертинною амонійною сіллю. З'ясований вплив сторонніх іонів.

Ключові слова: йодат, перйодат, N,N-діетиланілін, спектрофотометрія, четвертинна амонійна сіль.

Вступ. Йод є життєво необхідним мікроелементом для людини і знаходиться в природі переважно у формі йодовмістних аніонів [1]. Його дефіцит особливо сильно позначається на працездатності, стомлюваності, здатності до концентрації уваги, запам'ятовуванні та розумових здібностях. На території більшості країн спостерігається недостатня кількість йоду в природних водах, повітрі та грунтах, і як наслідок – виникають йододефіцитні захворювання у населення. З метою профілактики цих захворювань проводять масштабне йодування продуктів харчування різними йодовмістними реагентами. Відомо [2], що не тільки недостача, але і надлишок йоду призводить до розвитку ряду захворювань, тому досить актуальною задачею є контроль вмісту різних форм йоду, що надходять до організму людини, з метою забезпечення його оптимальної кількості.

Йод належить до елементів, що відрізняються різноманітністю ступенів окислення і співіснуючих у водних розчинах хімічних форм [1]. Визначення вмісту однієї хімічної форми йоду при низьких концентраціях у різноманітних об'єктах, і, особливо, у присутності інших його форм є складною задачею. Оксоаніони йодат і перйодат, що містять йод у вищих ступенях окиснення мають схожі хімічні властивості, що ускладнює їх визначення при одночасній присутності у зразку. Тому на тлі великої кількості робіт по визначенню різних форм йоду [3], методик визначення однієї форми в присутності інших обмаль. Серед найбільш чутливих методів визначення йодатів і перйодатів чільне місце займають кінетичні зі СФ детектуванням [4, 5], електрохімічні [6, 7] та спектрофотометричні (СФ) [8–11]. Втім кінетичні методики характеризуються невисокою відтворюваністю і точністю, а також потребують висококваліфікованого персоналу та високочистих реактивів. Електрохімічні методики не знайшли широкого практичного застосування через недостатню чутливість, вузький діапазон градуювальних графіків (ГГ) та (або) недостатню селективність робочих електродів. Попри доступність і простоту

DOI: http://dx.doi.org/10.18524/2304-0947.2017.1(61).94720 © О. С. Погребняк,2017 СФ методики не є екологічно безпечними, оскільки включають стадію екстракції органічним розчинником.

Отже, проблема розробки простої, експресної і водночає вибіркової та екологічно безпечної методики сумарного і роздільного визначення йодатів і перйодатів залишається актуальною.

Відомо [12, 13], що N,N-діетиланілін (ДЕА) окиснюється броматами, йодатами та перйодатами за присутності бромід-іонів у кислому середовищі з утворенням 4-бромо-ДЕА. Світлопоглинання продукту реакцій при 220–235 нм змінюється прямопропорційно концентрації аналіту в розчині, що покладено в основу СФ визначення вказаних аніонів.

Метою даної роботи було застосування цієї індикаторної системи для сумарного та роздільного СФ визначення йодатів та перйодатів у їх суміші.

Реагенти, апаратура та методики дослідження. *Реагенти.* Використовували свіжоперегнаний при 217 °С ДЕА марки «ч». Всі інші реактиви мали кваліфікацію «х.ч.», розчини готували на бідистильованій воді.

Для приготування «змішаного реактиву» (3Р) готували 0,1 моль/дм³ розчин ДЕА розбавленням 1,60 см³ препарату ($\rho = 0,933$ г/см³) до 100,0 см³ 4,5 моль/дм³ розчином H₂SO₄ попередньо додавши 2,0 см³ 1 моль/дм³ розчину калій броміду. Вихідні розчини калій йодату та калій перйодату (2,00 г/дм³ в перерахунку на IO₃⁻ та IO₄⁻) готували в мірних колбах ємністю 100,0 см³ розчиненням 0,2446 та 0,2409 г препаратів у бідистильованій воді. Робочі розчини йодату та перйодату (C = 20,00 мг/дм³ в перерахунку на оксоаніони) готували 100-кратним розбавленням бідистильованование в перерахунку по вихідних розчини безпосередньо перед проведенням експерименту.

Апаратура. СФ дослідження проводили на спектрофотометрі СФ-46 (ЛОМО, Росія). Зважування речовин здійснювали на аналітичних терезах ВЛР-200 (Госметр, Росія). Для нагрівання та перемішування розчинів використовували магнітну мішалку ММ-5 (Мукачівський завод комплексних лабораторій, Україна). Час вимірювали секундоміром СОП пр-2а-3-000 (Златоусівський часовий завод, Росія). Вихідні речовини та модифікований силікагель (СГ) висушували у сушильній електрошафі СНОЛ–3,5 (Гомельський ЗВП, Білорусь).

Методики експерименту. Для дослідження впливу оптимальної кислотності реакційної суміші змішували 2,0 см³ 0,1 розчину ДЕА в сульфатній кислоті певної концентрації та вмістом КВг 0,02 моль/дм³, вводили 2,0 см³ робочого розчину КІО₃ (20,0 мг/дм³ в перерахунку на ІО₃⁻) або розчину КІО₄ (20,0 мг/дм³ в перерахунку на ІО₄⁻). Суміші нагрівали 2–3 хв та реєстрували значення оптичної густини при 226 нм проти розчину порівняння, що містив 0,05 моль/дм³ водний розчин ДЕА, 0,01 моль/дм³ відносно КВг та відносно H₂SO₄ (концентрація кислоти дорівнювала половині її вмісту в відповідному розчині ДЕА).

ГГ для визначення йодатів та перйодатів будували наступним чином. У ряд стаканчиків ємністю 10 см³ до 0,3; 0,5; 0,7; 1,0; 1,3; 1,5 та 2,0 см³ розчинів калій йодату і калій перйодату (вміст IO_3^- та IO_4^- 20,0 мг/дм³) додавали (в разі необхідності) бідистильовану воду до загального об'єму 2,0 см³ та 2,0 см³ ЗР. Суміші нагрівали 2–3 хв та реєстрували значення оптичної густини при 226 нм. Як розчин порівняння використовували розведений бідистильованою водою ЗР у співвідношенні 1:1. Визначення йодатів та перйодатів у контрольних розчинах проводили аналогічно як і при побудові ГГ.

Для дослідження впливу сторонніх іонів до 0–1,0 см³ розчинів солей додавали по 0,5 см³ розчинів КІО₃ та КІО₄ з того розрахунку, щоб вміст йодату та перйодату

в розчині складав 2,0·10⁻⁵ моль/дм³ для кожного іону (c(An⁻)) та в разі необхідності додавали бідистильовану воду до загального об'єму 2,0 см³. До розчину додавали 2,0 см³ ЗР, суміші нагрівали 2–3 хв та реєстрували значення оптичної густини при 226 нм проти розчину порівняння – розведеного бідистильованою водою ЗР в співвідношенні 1:1. Коефіцієнт селективності (K_c) розраховували за формулою: $K_c = c(X)/c(An⁻)$, де c(X) – молярна концентрація стороннього іону в розчині, при якій похибка ≤ 5 %.

Для з'ясування можливості роздільного визначення йодатів та перйодатів проводили вибіркову сорбцію IO_4^- -іона на СГ SG-60 (Мегск, Німеччина; S_{пит} = 490 м²/г, d_{пор} = 6 нм), модифікованому четвертинною амонійною сіллю (ЧАС). В якості ЧАС використовували тринонілоктадециламоній хлорид – N(C₉H₁₉)₃C₁₈H₃₇. Модифікацію СГ проводили згідно [14]. Силікагель, модифікований четвертинною амонійною сіллю (СГ-ЧАС) перед застосуванням промивали послідовно насиченим розчином NaCl, а потім бідистильованою водою до негативної реакції на хлорид-іон і сушили на повітрі та у сушильній шафі за температури 80 ± 1 °С до сталої маси. До 25,0 см³ досліджуваного розчину, що містив IO₃⁻ і IO₄⁻-іони (рН 6–7) додавали 0,020 г ЧАС-СГ, перемішували 15 хв магнітною мішалкою та відділяли рідку фазу декантацією. Після цього проводили визначення йодатів як і при побудові ГГ. Вміст перйодату знаходили за різницею сумарного вмісту аніонів та йодату.

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Загально відомо, що бромати, йодати та перйодати у кислому середовищі здатні окиснювати броміди, з утворенням вільного брому. Взаємодія ДЕА із бромом у розчині сульфатної кислоти супроводжується утворенням (як основного продукту) 4-бромо-N,N-діетиланіліну, що поглинає у спектральному діапазоні 220–235 нм. Продукт реакції характеризується наявністю чітко вираженого максимуму в спектрі при 226 нм (проти розчину ДЕА) з напівшириною смуги поглинання \approx 4 нм [13]. Цей факт було використано для СФ визначення броматів, йодатів та перйодатів [12, 13].

В даній роботі досліджено реакції окиснення ДЕА йодатами і перйодатами за присутності надлишку бромід-іонів у розчині сульфатної кислоти та встановлені оптимальні умови їх сумарного та роздільного СФ визначення.

Стандартні окисно-відновні потенціали йодату та перйодату становлять 1,08 та 1,24 В відповідно [15]. Оскільки формальні потенціали залежать від кислотності середовища, нами було досліджено залежність світлопоглинання продуктів окиснення розчину ДЕА йодатами та перйодатами від концентрації сульфатної кислоти. Результати дослідження впливу концентрації H_2SO_4 на світлопоглинання реакційних сумішей наведено на рис. 1.

3 рис. 1 видно, що в обох випадках оптимальною є концентрація $H_2SO_4 2,0-2,5$ моль/дм³. Подальші дослідження проводили при $c(H_2SO_4) = 2,25$ моль/дм³. Для зручності використовували розчин ДЕА, що містив сульфатну кислоту з концентрацією 4,5 моль/дм³.

Сумарне спектрофотометричне визначення йодатів та перйодатів N,Nдіетиланіліном. За оптимальних умов кількість утвореного 4-бромо-ДЕА, а, отже, і світлопоглинання розчину залежить від концентрації окисників, що було використано для знаходження їх вмісту методом ГГ. На рис. 2 наведено ГГ для визначення IO_3^- - та IO_4^- -ioнів.

Рис. 1. Залежність світлопоглинання продуктів реакції окиснення ДЕА йодатами – (1) та перйодатами – (2) від концентрації H₂SO₄ у реакційній суміші. с(ДЕА) – 0,05 моль/дм³; с(КВг) – 0,01 моль/дм³; С(ІО₃⁻) та С(ІО₄⁻) = 10 мг/дм³.

Рис. 2. Градуювальні графіки для визначення йодатів (1) та перйодатів (2).

Метрологічні характеристики методик визначення йодатів та перйодатів наведено в табл. 1.

З табл. 1 та рис. 2 видно, що параметри ГГ у випадку йодатів та перйодатів схожі, що може бути підставою для розробки методики їх сумарного визначення за методом градуювального графіку. Параметри усередненого ГГ наведено в табл. 1. Розрахована за 3s-критерієм межа виявлення (MB) оксоаніонів становить 0,61 мг/дм³.

Таблиця 1

Метрологічні характеристики методик визначення йодатів та перйодатів N.N-діетиланіліном (P = 0.95, n = 7). $A = (a \pm \Delta a) + (b \pm \Delta b) \cdot c(An^{-})$, мг/дм³

Аніон (<i>Ап</i> ⁻)	λ, нм	а	∆a	b	Δb	R ²	МВ, мг/ дм ³	Лінійність ГГ, мг/дм ³
IO_3^{-}	226	-0,022	0,026	0,107	0,004	0,991	0,73	1,0–11,0
IO_4^-	226	0,029	0,023	0,100	0,004	0,993	0,69	1,0–11,0
$IO_{3}^{-} + IO_{4}^{-}$	226	0,004	0,021	0,103	0,004	0,994	0,61	1,0–11,0

Для перевірки можливості сумарного визначення йодатів і перйодатів, правильності та збіжності результатів проаналізували методом «введено–знайдено» модельні розчини з різним вмістом IO_3^- та IO_4^- . Вихідні розчини КІО₃ та КІО₄ готували за точними наважками, модельні розчини готували методом розбавлення вихідних розчинів.

Визначення вмісту оксоаніонів при різному їх співвідношенні проводили аналогічно, як і при побудові ГГ. Концентрацію аніонів знаходили за рівнянням усередненого ГГ (табл. 1). Результати наведено у табл. 2.

Видно, що методика характеризується задовільною правильністю та збіжністю. Відносне стандартне відхилення визначення суми йодату та перйодату не перевищує 0,10, а відносна похибка визначення не перевищує $\pm 8,00$ %, що, свідчить про придатність методики для визначення загального вмісту йодатів та перйодатів.

Роздільне спектрофотометричне визначення йодатів та перйодатів ДЕА. Для з'ясування можливості роздільного визначення йодатів та перйодатів проводили вибіркову сорбцію IO_4^- -іона на силікагелі SG-60 модифікованому ЧАС – тринонілоктадециламоній хлоридом [NH(C_9H_{19})₃ $C_{18}H_{37}$]Сl. Модифікований СГ-ЧАС має властивості іонообмінника та здатен вибірково абсорбувати сполуки аніонної природи. Перйодат, на відміну від йодату, вилучається ЧАС-СГ за схемою:

$$\text{\rm HAC-C}\Gamma^+ + \mathrm{IO}_4^- \rightarrow (\text{\rm HAC-C}\Gamma^+)\mathrm{IO}_4^-$$

Абсорбції, очевидно, сприяє близькість розмірів іону перйодату і активного центру іммобілізованої ЧАС. Погана сорбція йодат-іонів та руйнування асоціату (ЧАС-СГ⁺)ІО₃- на поверхні силікагелю може бути також викликана гідролітичними та обмінними процесами [16]:

$$(\text{\rm HAC-C}\Gamma^+)\text{\rm IO}_3^- + \text{\rm H}_2\text{\rm O} \leftrightarrows (\text{\rm HAC-C}\Gamma^+)\text{\rm O}\text{\rm H}^- + \text{\rm IO}_3^- + \text{\rm H}^+.$$

Спочатку визначали сумарний вміст оксоаніонів йоду, як описано вище. Після цього до 25,0 см³ досліджуваного розчину, що містив IO_3^- і IO_4^- -іони (pH 6–7) додавали 0,020 г ЧАС-СГ, перемішували 15 хв магнітною мішалкою та відділяли рідку фазу декантацією. При цьому перйодат на ≈ 85 % вилучається сорбентом, а йодат залишається у розчині [16, 17]. Потім проводили визначення йодату як і при побудові ГГ. Вміст перйодату знаходили за різницею сумарного вмісту аніонів та йодату.

Результати роздільного СФ визначення йодатів та перйодатів у модельних розчинах представлені в табл. 3.

	Вве	дено, мг/д	M ³		Знайден	ю, мг/дм	3
№ за/п	$C(IO_{3}^{-})/C(IO_{4}^{-})$	<i>C</i> (IO ₃ ⁻)	<i>C</i> (IO ₄ ⁻)	$\frac{\Sigma(C(IO_3^{-}) + C(IO_4^{-}))}{C(IO_4^{-}))}$	$\frac{\Sigma(C(IO_3^{-}) + C(IO_4^{-}))}{C(IO_4^{-}))}$	S _r	Δ, %
1	0,18	1,50	8,50	10,00	9,27 ± 0,10	0,05	-7,30
2	0,20	1,00	5,00	6,00	6,30 ± 0,16	0,08	+5,00
3	0,20	1,50	7,50	9,00	8,50 ± 0,12	0,06	-5,56
4	0,30	1,50	5,00	6,50	6,19 ± 0,17	0,08	-4,77
5	0,40	2,00	5,00	7,00	7,34 ± 0,15	0,07	+4,86
6	0,50	1,50	3,00	4,50	4,86 ± 0,20	0,09	+8,00
7	0,60	3,00	5,00	8,00	7,84 ± 0,13	0,06	-2,00
8	0,80	4,00	5,00	9,00	9,53 ± 0,12	0,05	+5,89
9	1,00	1,50	1,50	3,00	2,94 ± 0,24	0,10	-2,00
10	1,00	2,00	2,00	4,00	3,88 ± 0,21	0,10	-3,00
11	1,00	3,00	3,00	6,00	6,30 ± 0,16	0,07	+5,00
12	1,00	5,00	5,00	10,00	10,44 ± 0,11	0,05	+4,40
13	1,25	5,00	4,00	9,00	9,68 ± 0,11	0,05	+7,56
14	1,67	5,00	3,00	8,00	8,59 ± 0,13	0,06	+7,38
15	2,33	3,50	1,50	5,00	5,40 ± 0,20	0,08	+8,00
16	2,50	5,00	2,00	7,00	7,49 ± 0,16	0,07	+7,00
17	3,33	5,00	1,50	6,50	6,79 ± 0,18	0,08	+4,46
18	5,00	5,00	1,00	6,00	6,36 ± 0,18	0,09	+6,00
19	5,00	7,50	1,50	9,00	9,18 ± 0,12	0,06	+2,00
20	5,67	8,50	1,50	10,00	9,90 ± 0,11	0,05	-1,00

Таблиця 2 Результати визначення суми йодатів та перйодатів у контрольних розчинах методом «введено–знайдено» (P = 0,95; n = 5)

124

Спектрофотометричне визначення йодатів та перйодатів N,N-діетиланіліном

			Сведс	ю-зпандено//					
		Введено, м	икг/см ³	Знайдено, мкг/см ³					
№ за/п	<i>C</i> (IO ₃ ⁻)	<i>C</i> (IO ₄ ⁻)	$\frac{\Sigma(C(IO_3^{-}) + C(IO_4^{-}))}{C(IO_4^{-}))}$	$\Sigma(\mathbf{C}(\mathbf{IO}_{3}^{-}) + \mathbf{C}(\mathbf{IO}_{4}^{-})),$ (BII*, %)	<i>C</i> (IO ₃ ⁻), (ВП*, %)	<i>C</i> (IO ₄ ⁻), (ВП*, %)			
1	1,50	1,50	3,00	2,89 (3,7)	1,45 (3,3)	1,44 (2,0)			
2	3,50	1,50	5,00	5,40 (8,0)	3,82 (9,1)	1,58 (5,3)			
3	5,00	1,00	6,00	6,36 (6,0)	5,27 (5,4)	1,09 (9,0)			
4	5,00	1,50	6,50	6,79 (4,5)	5,20 (4,0)	1,59 (6,0)			
5	7,50	1,50	9,00	9,18 (2,0)	7,58 (1,1)	1,60 (6,5)			

Таблиця 3 Результати роздільного визначення йодатів та перйодатів у модельних розчинах методом «введено–знайдено»

* Відносна похибка.

Як видно з табл. З відносна похибка роздільного визначення йодатів та перйодатів в модельних розчинах не перевищувала 9,1 %, що вказує на цілковиту придатність запропонованої методики для окремого визначення IO_3^- та IO_4^- -іонів при їх одночасній присутності.

Встановлення впливу сторонніх іонів на визначення йодатів та перйодатів. Результати впливу сторонніх іонів на визначення йодатів та перйодатів при їх одночасній присутності представлено у табл. 4.

Таблиця 4

2,010 моль/дм ио,	дань га периодат	ID	
Іон	$\mathbf{K}_{\mathbf{C}}(\Sigma)$	К _с (IO ₃ -)	$K_{C}(IO_{4}^{-})$
$NH_4^+; Mg^{2+}; Al^{3+}; Zn^{2+}; SO_4^{2-}; ClO_4^-; H_2PO_4^-$	$\geq 5 \cdot 10^3$	$\geq 5 \cdot 10^3$	$\geq 5 \cdot 10^3$
Cl-	2,5.103	1.103	1·10 ³
Ca ²⁺	50	40	50
Br	25	40	25
ClO ₃ -	12,5	10	10
I ⁻ ; NO ₃ ⁻	1	1	1
BrO ₃ ⁻ ; Cr ₂ O ₇ ²⁻	$\leq 0,05$	≤ 0,05	$\le 0,05$

Результати дослідження впливу сторонніх іонів при визначенні 2,0·10⁻⁵ моль/дм³ йодатів та перйодатів

Як видно з табл. 4, методика придатна для визначення оксоаніонів йоду у присутності більш ніж 1000-кратних кількостей NH_4^+ , Mg^{2+} , Al^{3+} , Zn^{2+} , SO_4^{2-} , ClO_4^- , $H_2PO_4^-$ та Cl^- . Заважають визначенню сумарного вмісту оксоаніонів йодид-іони, а також такі аніони-окисники як NO_3^- , BrO_3^- та $Cr_2O_7^{2-}$. Заважаючий вплив нітрату, крім того, обумовлений його власним світлопоглинанням при 226 нм [18].

ВИСНОВКИ

Запропонована спектрофотометрична методика сумарного та роздільного визначення йодатів та перйодатів із застосуванням ДЕА, яка характеризується задовільною вибірковістю щодо багатьох компонентів природних вод. Запропонована методика не поступається за кількість операцій та експресністю більшості методик, і є разом з тим екологічно безпечнішою та простішою у виконанні, а реагенти доступні і стійкі при зберіганні. Результати апробації методики при аналізі ряду контрольних розчинів свідчать про її задовільну правильність та збіжність. Розроблена методика може бути використана як альтернативна для визначення йодатів та перйодатів при їх сумісній присутності у різноманітних об'єктах.

Автор висловлює щиру подяку завідуючій кафедрі аналітичної хімії Київського національного університету імені Тараса Шевченка проф. Запорожець О. А. за критичні зауваження та цінні рекомендації при оформленні статті.

СПИСОК ЛІТЕРАТУРИ

- 1. Кашин В. К. Биогеохимия, фитофизиология и агрохимия йода. Л.: Наука. 1987. 261 с.
- 2. Носкова Г. Н., Иванова Е. Е., Толмачева Т. П., Заичко А. В. Определение йода в пищевых продуктах методом инверсионной вольтамперометрии // Пищевая промышленность. 2006. № 2. С. 16–18.
- Трохименко О. М., Зайцев В. М. Наукометричне дослідження публікацій за останні три десятиріччя з методів визначення різних форм йоду в об'єктах (огляд) // Методы и объекты химического анализа. – 2009. – Т. 4, № 1. – С. 4–10.
- Yongnian N., Yong W. Application of chemometric methods to the simultaneous kinetic spectrophotometric determination of iodate and periodate based on consecutive reactions. // Microchemical J. – 2007. – N 86. – P. 216-226. https://doi.org/10.1016/j.jhazmat.2009.03.003.
- Benvidi A., Heidari F., Tabaraki R., Mazloum-Ardakani M. Simultaneous determination of iodate and periodate by kinetic spectrophotometric method using principal component artificial neural network // J. Anal. Chem. – 2012. – № 67. – P. 661–668. https://doi.org/10.1134/S1061934812070027.
- 6. Дрозд А. В., Тишакова Т. С. Определение йодат-и периодат-ионов методом потенциостатической кулонометрии на платиновом электроде // Вісник ХНУ. – Серія Хімія, 2008. – (16), № 820. – С. 98–102.
- Chatraei F, Zare H. R. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination // Mater. Sci. Eng. – 2013. – N 33. – P. 721–726. https://doi.org/10.1016/j. msec.2012.10.024.
- El-Shahawi M. S. Extraction equilibrium of the ion-associate of periodate with amiloride hydrochloride and simultaneous spectrophotometric determination of periodate and iodate by liquid–liquid extraction // Anal. Chim. Acta. – 1997. – Vol. 356, N 1. – P. 85–91. https://doi.org/10.1016/S0003-2670(97)00103-7.
- Kamburova M. Triphenyltetrazolium chloride for determination of iodate and periodate // Talanta. 1992. Vol. 39, N 8. – P. 997–1000. https://doi.org/10.1016/0039-9140(92)80285-L.
- 10. Zarei A. R. Sequential spectrophotometric determination of trace amounts of periodate and iodate in water samples after micelle-mediated extraction // Журн. аналит. химии. 2009 Т. 64, № 9. С. 920–925.
- Дрозд А. В., Тишакова Т. С. Спектрофотометрическое определение иодата и периодата при совместном присутствии // Вісник ХНУ. – Серія Хімія, 2010. – (18), № 895. – С. 101–106.
- 12. Запорожец О. А., Погребняк О. С., Визир Н. Н. Спектрофотометрическое определение оксогалогенидов N,N-диэтиланилином // Журн. аналит. химии. – 2012. – Т. 67, № 8. – С. 770–776.
 - Погребняк О. С. Спектрофотометрическое определение периодатов N,N-диэтиланилином // Вісн. Черк. Унів. Серія Хім. науки. 2014. Т. 307, № 14. С. 3–8. Запорожець О. А., Наджафова О. Ю., Зубенко О. И., Іщенко В. Б. та ін. Застосування високомолекулярної
- Запорожець О. А., Наджафова О. Ю., Зубенко О. И., Іщенко В. Б. та ін. Застосування високомолекулярної четвертинної амонісвої солі для концентрування важких металів у вигляді ацидокомплексів // Укр. хім. журн. – 1995. – Т. 61, № 9. – С. 64.
- 15. Лурье Ю. Ю. Справочник по аналитической химии. М.: Химия. 1971. С. 278.
- Верба В. В. Сорбційно-спектрометричне і тест-визначення Ві, Сг, Fe, Mn, Mo, U, I та аніонних ПАР силікагелями, модифікованими ЧАС. Дис. канд. хім. наук. – Київ. – 2008. – С. 78.
- Верба В. В., Єрмоленко О. С., Турчин В. О. Запорожець О. А., Сухан В. В. Сорбційне концентрування сполук йоду та урану на модифікованому силікагелі // Наукові записки НаУКМА, серія "Хімічні науки і технології". – 2005. – Т. 42. – С. 35–37.
- 18. Уильямс У. Дж. Определение анионов. М.: Химия, 1982. С. 128.

Стаття надійшла до редакції 16.11.2016

О.С.Погребняк

Черкасский национальный университет имени Богдана Хмельницкого буль. Шевченка, 81, г. Черкассы, 18031, Украина e-mail: pogrebniak-oleg@ukr.net

СУММАРНОЕ И РАЗДЕЛЬНОЕ СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ЙОДАТОВ И ПЕРЙОДАТОВ N,N-ДИЭТИЛАНИЛИНОМ

Резюме. Предложена методика суммарного спектрофотометрического определения IO_3^- и IO_4^- -ионов, основанная на реакции окисления N,N-диэтиланилина в присутствии избытка KBr в среде серной кислоты и фотометрированием продукта бромирования при 226 нм. Пределы обнаружения йодатов, перйодатов и их суммарного содержания (по 3s-критерию) равны 0,73; 0,69 и 0,61 мг/дм³ соответственно. Линейность градуировочных графиков сохраняются в диапазоне 1,0–11,0 мг/дм³, s_r \leq 0,10, n = 5 Показана возможность раздельного определения йодатов и перйодатов на основе выборочного извлечения IO_4^- силикагелем, модифицированным четвертичной аммонийной солью. Выяснено влияние посторонних ионов.

Ключевые слова: йодат, nepйoдат, N,N-диэтиланилин, спектрофотометрия, четвертичная аммонийная соль.

O. S. Pogrebnyak

Cherkasy B. Khmelnytsky National University, blvd. Shevchenko, 81, Cherkasy, 18031, Ukraine e-mail: pogrebniak-oleg@ukr.net

THE SPECTROPHOTOMETRIC DETERMINATION OF NITRITES WITH N,N-DIETHYLANILINE

Summary. A method for spectrophotometric determination of the total IO_3^{-} and IO_4^{-} -ions was proposed. The method is based on the oxidation of N,N-diethylaniline in an excess of potassium bromide in the presence of sulfuric acid medium and on the measurement of the bromination product absorbance at 226 nm. The influence of sulfuric acid concentration on the sensitivity of the measurement has been determined and the optimum conditions have been established. The detection limits (blank + 3σ) for iodate, periodate and their total content equal to 0.73; 0.69 and 0.61 mg·L⁻¹, respectively. The linearity range of the calibration graph was found to be $1.0-11.0 \text{ mg·L}^{-1}$, respectively. The linearity robate determination of iodate and periodate based on selective extraction IO_4^- silica modified with a quaternary ammonium salt is proposed. The metrological characteristics of the procedure were checked by means of the "entered-found" method on the control samples. The relative error did not exceed 0.10 for iodate and periodate determination on the control samples, and the relative determination at 2.0·10⁻⁵ mol·L⁻¹ has been studied. The proposed procedure is simple and suitable for iodate and periodate determination in various objects.

Keywords: iodate, periodate, N,N-diethylaniline, spectrophotometry, quaternary ammonium salt.

REFERENCES

- 1. Kashin V.K. Biogeohimija, fitofiziologija i agrohimija joda. Leningrad, Nauka, 1987, 261 p. (in Russian)
- Noskova G.N., Ivanova E.E., Tolmacheva T.P., Zaichko A.V. Opredelenie joda v pishhevyh produktah metodom inversionnoj vol'tamperometrii Pishhevaja promyshlennost². 2006, no 2, pp. 16–18. (in Russian)
- Trohimenko O.M., Zajcev V.M. Naukometrichne doslidzhennja publikacij za ostanni tri desjatirichchja z metodiv viznachennja riznih form jodu v ob'ektah (ogljad). Metody i objekty himicheskogo analiza. 2009, vol. 4, no 1, pp. 4–10. (in Ukrainian)
- Yongnian N., Yong W. Application of chemometric methods to the simultaneous kinetic spectrophotometric determination of iodate and periodate based on consecutive reactions. Microchemical J. 2007, no 86, pp. 216 – 226. https://doi.org/10.1016/j.jhazmat.2009.03.003.
- Benvidi A., Heidari F., Tabaraki R., Mazloum-Ardakani M. Simultaneous determination of iodate and periodate by kinetic spectrophotometric method using principal component artificial neural network. J. Anal. Chem., 2012, no 67, pp. 661–668. https://doi.org/10.1134/S1061934812070027.
- 6. Drozd A.V., Tishakova T.S. Opredelenie jodat- ta perjodat-ionov metodom potenciostaticheskoj kulonometrii na platinovom jelektrode. Visnik HNU. Serija Himija, 2008, vol. 16, no 820, pp. 98–102. (in Russian)
- Chatraei F., Zare H.R. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination. Mater. Sci. Eng, 2013, no 33, pp. 721–726. https://doi.org/10.1016/j.msec.2012.10.024.
- El-Shahawi M.S. Extraction equilibrium of the ion-associate of periodate with amiloride hydrochloride and simultaneous spectrophotometric determination of periodate and iodate by liquid–liquid extraction. Anal. Chim. Acta., 1997, vol. 356, no 1, pp. 85–91. https://doi.org/10.1016/S0003-2670(97)00103-7.
- Kamburova M. Triphenyltetrazolium chloride for determination of iodate and periodate. Talanta., 1992, vol. 39, no 8, pp. 997–1000. https://doi.org/10.1016/0039-9140(92)80285-L.
- Zarei A.R. Sequential spectrophotometric determination of trace amounts of periodate and iodate in water samples after micelle-mediated extraction. Zhurn. analit. himii., 2009, vol. 64, no 9, pp. 920–925.
- Drozd A.V., Tishakova T.S. Spektrofotometricheskoe opredelenie iodata i periodata pri sovmestnom prisutstvii. Visnik. HNU. Serija Himija, 2010, vol. 18, no 895, pp. 101–106. (in Russian)
- 12. Zaporozhec O.A., Pogrebnjak O.S., Vizir N.N. Spektrofotometricheskoe opredelenie oksogalogenidov N, Ndijetilanilinom. Zhurn. analit. himii., 2012, vol. 67, no 8, pp. 770–776. (in Russian)
- Pogrebnjak O.S. Spektrofotometricheskoe opredelenie periodata N,N-dijetilanilinom. Visn. Cherk. Univ. Serija Him. Nauki., 2014, vol. 307, no 14, pp. 3–8. (in Russian)
- Zaporozhec' O. A., Nadzhafova O. Ju., Zubenko O. I., Ishhenko V. B. ta in. Zastosuvannja visokomolekuljarnoï chetvertinnoï amonicvoï soli dlja koncentruvannja vazhkih metaliv u vigljadi acidokompleksiv. Ukr. him. zhurn., 1995, vol. 61, no 9, pp. 64. (in Ukranian)
- 15. Lur'e Ju. Ju. Spravochnik po analiticheskoj himii. Moscow, Himija, 1971, pp. 278. (in Russian)
- 16. Verba V.V. Sorbcijno-spektrometrichne i test-viznachennja Vi, Sr, Fe, Mn, Mo, U, I ta anionnih PAR silikageljami, modifikovanimi ChAS. Dis. kand. him. nauk, Kiev, 2008, pp. 78. (in Ukrainian)
- Verba V.V., Ermolenko O.S., Turchin V.O. Zaporozhec' O.A., Suhan V.V. Sorbcijne koncentruvannja spoluk jodu ta uranu na modifikovanomu silikageli. Naukovi zapiski NaUKMA, serija "Himichni nauki i tehnologii", 2005, vol. 42, pp. 35–37. (in Ukrainian)
- 18. Uil'jams U. Dzh. Opredelenie anionov. Moscow, Himija, 1982, pp. 128. (in Russian)

ІНФОРМАЦІЯ ДЛЯ АВТОРІВ

1. ПРОФІЛЬ ЖУРНАЛУ

1.1. «Вісник Одеського національного університету. Хімія» здійснює такі типи публікацій:

(11) ·

наукові статті,
 короткі повідомлення,

3) матеріали конференцій,

4) бібліографії,

рецензії,

6) матеріали з історії науки.

 У певному конкретному випуску один автор має право надрукувати тільки одну самостійну статтю.

1.3. Мови видання – українська, російська, англійська.

1.4. До редакції «Вісника ...» подається:

1. Текст статті з анотацією – 2 роздрукованих примірники (рисунки та підписи до них, таблиці розміщувати по тексту після першого посилання на них);

2. Резюме – 2 примірники;

3. Колонтитул;

4. Рекомендація кафедри або наукової установи до друку;

5. Відомості про авторів;

6. Відредагований і узгоджений з редколегією текст статті, записаний на диску у редакторі Word (кегль 14; відстані між рядками 1,5 інтервали; поля сторінок: ліве, верхнє та нижнє – не менш 20 мм, праве – 10 мм).

2. ПІДГОТОВКА СТАТТІ – ОБОВ'ЯЗКОВІ СКЛАДОВІ

Оригінальна стаття має включати:

2.1. Вступ.

2.2. Матеріали і методи дослідження.

2.3. Результати дослідження.

2.4. Аналіз результатів дослідження (можливе поєднання третього і четвертого розділів).

2.5. Висновки (у разі необхідності).

2.6. Анотація (мовою статті) та резюме (двома іншими мовами).

2.7. Ключові слова (до п'яти).

2.8. Колонтитул.

3. ОФОРМЛЕННЯ РУКОПИСУ. ОБСЯГ. ПОСЛІДОВНІСТЬ РОЗТАШУВАННЯ ОБОВ'ЯЗКОВИХ СКЛАДОВИХ СТАТТІ

3.1. Граничний обсяг статті – 12 сторінок, 6 рисунків, 4 таблиці, 20 джерел у списку літератури; листів в редакцію – 4 сторінки; оглядів – 20 сторінок (оглядові статті замовляються редколегією).

3.2. Послідовність друкування окремих складових наукової статті має бути такою:

1. УДК – зліва.

2. Ініціали та прізвище авторів (згідно з паспортом) – нижче УДК зліва.

3. Назва наукової установи (в тому числі відділу, кафедри, де виконано дослідження).

4. Повна поштова адреса (за міжнародним стандартом), Е-mail (обов'язково), телефон для співпраці з авторами на окремому аркуші.

5. Назва статті. Вона повинна точно відбивати зміст дослідження, бути короткою, містити ключові слова.

6. Анотація мовою оригіналу друкується перед початком статті після інтервалу 20 мм від лівого поля.

7. Під анотацією друкуються ключові (основні) слова (не більше п'яти, мовою оригіналу статті).

8. Текст статті і список літератури.

9. Резюме друкується на окремому аркуші паперу та включає: назву статті, прізвища та ініціали авторів, назву та адресу наукової установи, е-mail, слово «Резюме» або «Summary», текст резюме та ключові слова

3.3. Другий екземпляр статті повинен бути підписаний автором (або авторами).

4. МОВНЕ ОФОРМЛЕННЯ ТЕКСТУ: ТЕРМІНОЛОГІЯ, УМОВНІ СКОРОЧЕННЯ, ПОСИЛАННЯ, ТАБЛИЦІ, СХЕМИ, РИСУНКИ

4.1. Автори несуть повну відповідальність за бездоганне мовне оформлення тексту, особливо за правильну українську наукову термінологію (її слід звіряти за фаховими термінологічними словниками).

4.2. Якщо часто повторювані у тексті словосполучення автор вважає за потрібне скоротити, такі абревіатури при першому вживанні обумовлюють у дужках.

4.3. Посилання на літературу подаються у тексті статті, обов'язково у квадратних дужках, арабськими цифрами. Цифра в дужках позначає номер публікації у списку літератури.

4.4. Цифровий матеріал, по можливості, слід зводити у таблиці і не дублювати у тексті. Таблиці повинні бути компактними, мати порядковий номер; графи, колонки мають бути точно визначеними логічно і графічно.

4.5. Рисунки повинні бути представлені в двох ідентичних екземплярах, виконаних на комп'ютері (на диску – файли з розширенням tif, pcx, jpg, bmp). Підписи на них повинні бути короткими, їх слід по можливості заміняти цифрами чи буквами, котрі розшифровуються в підписах до них; криві нумеруються арабськими цифрами. Однотипні криві повинні бути виконані в однаковому масштабі на одному рисунку. Рекомендується застосовувати декілька масштабних шкал для об'єднання різних кривих в один рисунок. Зображення на рисунках структурних та других формул небажано. Всі ілюстрації повинні бути пронумеровані в послідовності, яка відповідає згадуванню їх у рукописі, та номерами прив'язані до підрисуночних підписів.

При об'єднанні декількох рисунків чи фотографій в один рисунок рекомендується позначати кожен з них прописними літерами знизу. Наприклад:

4.6. У розділі «Результати досліджень» (якщо цей розділ не поєднаний з «Аналізами результатів», див. 2.4.) необхідно викласти лише виявлені ефекти без коментарів – всі коментарі та пояснення подаються в «Аналізі результатів». При викладі результатів слід уникати повторення змісту таблиць та рисунків, а звертати увагу на найважливіші факти та певні закономірності, що з них випливають.

4.7. У розділі «Аналіз результатів» необхідно показати причинно-наслідкові зв'язки між встановленими ефектами, порівняти отриману інформацію з даними літератури і наголосити на виявлених нових даних. При аналізі слід посилатися на ілюстративний матеріал статті. Аналіз має закінчуватися відповіддю на питання, поставлені у вступі.

5. ЛІТЕРАТУРА

Список літератури друкується мовою оригіналу відповідної публікації. Він оформлюється згідно з ГОСТом і повинен містити тільки назви праць, на які посилається автор. Назви праць у списку літератури розташовуються в порядку згадування та оформлюються за правилами ВАКу. Список літератури подається з зазначенням ініціалів та прізвищ всіх авторів (не допускаються записи та інші, и др., et al.). Слід привести DOI для тих видань, для котрих він доступний.

Приклади бібліографічних описів

Книги, монографії

1. *Климова В.А.* Основные микрометоды анализа органических соединений. – М.: Химия, 1975. – 224 с.

2. *Очистка* производственных сточных вод / Под ред. Ю.И. Турского. – Л.: Химия, 1967. – 331 с.

3. Скопенко В.В., Григорьева В.В. Координационная химия. Практикум. – К., 1984. – 232 с. 4. Yungnickel I.L., Peter E.D., Polgar A., Weiss E.T. Organic Analysis. Vol.1. – New York, 1953. – Р. 127.

Статті із журналів (з назвою статті)

1. Сейфуллина И.И., Скороход Л.С. Андреянов А.Д. Исследование комплексообразования ионов Cu(II) с 1-нафтиламин-8-сульфокислотой в водно-диоксановых смесях // Ж. общ. хи-мии. – 1985. – Т.55, № 11. – С.2559.

2. Скрылев Л.Д., Стрельцова Е.А., Скрылева Т.Л. Флотационное выделение катионных ПАВ алкилкарбоксилатами калия // Химия и технология воды. – 1998. – Т.20, №3. – С. 311-316.

3. Malinka E.A., Kamalov G.L., Vodzinskii S.V., Melnik V.I., Zhilina Z.I. Hydrogen production from water by visible light using zinc porphyrin-sensitized platinized titanium dioxide // J. Photochem. Photobiol. A: Chemistry. – 1995. – Vol.90, N 4. – P.153-158. http://dx.doi. org/10.1016/1010-6030(95)04093-u

Збірки

1. Чеботарев А.Н., Гузенко Е.М., Щербакова Т.М. Особенности динамики адсорбции комплекса хрома (VI) с 1,5-дифенилкарбазидом катионитом КУ-2-8 из водных сред // Сб научн. тр. Международной. научно-технической конференции «Современные проблемы химической технологии неорганических веществ». Т.1. – Одесса, 2001. – С.193-195.

2. Хома Р.С., Гавриленко М.І., Нікітін В.І. Вивчення взаємодії діоксиду сірки з водними розчинами карбаміду // Тез. доп. XV Укр. конф. з неорг. хімії за міжнародною участю. – Київ, 2001. – С. 91.

3. *Rakitskaya T.L., Bandurko A.Yu., Ennan A.A., Paina V.Ya.* Carbon fibrous material supported base catalysts of ozone decomposition // International symposium on Mesoporous Molecular Sieves: Book of abstracts. – Quebec (Canada), 2000. – P.31.

Авторські свідоцтва СНД, патенти зарубіжних країн

1. Пат. 4894296 США, МКИ Н 01 М 4/00. Cathod for zinc air cells / A. Borbely, G. Molla; Duracell Inc. – № 113708. Заявл. 27.10.87; Опубл. 16.01.90.

Автореферати дисертацій

1. *Скороход Л.С.* Комплексообразование кобальта (II), никеля (II), меди (II) с производными нафталинсульфокислот // Автореф. дис. ... канд. хим. наук. – Одесса, 1991. 21 с.

Депоновані наукові роботи

1. Чеботарев А.Н., Малахова Н.М. Активизация мыслительной деятельности студентов в процессе обучения аналитической химии. Одесса: Деп. НИИ ПВШ № 161, 1987.

СПИСОК ЛІТЕРАТУРИ ЛАТИНИЦЕЮ – REFERENCES

Список літератури в латиниці – References подається в кінці статті

Опис статті із журналу:

Author A.A., Author B.B., Author C.C. Title of article (транслітерація). Title of Journal (переклад англійскою), 2005, vol. 10, no. 2, pp. 49-53.

Приклад

Zagurenko A.G., Korotovskikh V.A., Kolesnikov A.A., Timonov A.V., Kardymon D.V. Technical and economic optimization of hydrofracturing design. Neftyanoe khozyaistvo – Oil Industry, 2008, no.11, pp. 54-57 (in Russian).

Опис статті із електронного журналу:

Swaminathan V., Lepkoswka-White E., Rao B.P. Browsers or buyers in cyberspace? An investigation of electronic factors influencing electronic exchange. Journal of Computer-Mediated Communication, 1999, vol. 5, no. 2. Available at: http://www. ascusc.org/ jcmc/vol5/ issue2/ (Accessed 28 April 2011).

Опис статті з DOI:

Zhang Z., Zhu D. Experimental research on the localized electrochemical micro-machining. Russian Journal of Electrochemistry, 2008, vol. 44, no. 8, pp. 926-930.

doi: 10.1134/S1023193508080077

Опис матеріалів конференцій:

Usmanov T.S., Gusmanov A.A., Mullagalin I.Z., Muhametshina R.Ju., Chervyakova A.N., Sveshnikov A.V. Features of the design of field development with the use of hydraulic fracturing. Trudy 6 Mezhdunarodnogo Simpoziuma «Novye resursosberegayushchie tekhnologii nedropol'zovaniya i povysheniya neftegazootdachi» [Proc. 6th Int. Symp. «New energy saving subsoil technologies and the increasing of the oil and gas impact»]. Moscow, 2007, pp. 267-272. (In Russian).

Опис книги (монографії, збірки):

Kanevskaya R.D. Matematicheskoe modelirovanie gidrodinamicheskikh protsessov razrabotki mestorozhdenii uglevodorodov [Mathematical modeling of hydrodynamic processes of hydrocarbon deposit development]. Izhevsk, 2002. 140 p.

Izvekov V.I., Serikhin N.A., Abramov A.I. Proektirovanie turbogeneratorov [Design of turbogenerators]. Moscow, MEI Publ., 2005, 440 p.

Latyshev, V.N., Tribologiya rezaniya. Kn. 1: Friktsionnye protsessy pri rezanie metallov (Tribology of Cutting, Vol. 1: Frictional Processes in Metal Cutting), Ivanovo: Ivanovskii Gos. Univ., 2009.

Опис дисертації чи автореферату дисертації:

Semenov V.I. Matematicheskoe modelirovanie plazmy v sisteme kompaktnyi tor. Diss. dokt. fiz.-mat. nauk [Mathematical modeling of the plasma in the compact torus. Dr. phys. and math. sci. diss.]. Moscow, 2003. 272 p.

Grigor'ev Iu.A. Razrabotka nauchnykh osnov proektirovaniia arkhitektury raspredelennykh sistem obrabotki dannykh. Diss. dokt. tekhn. nauk [Development of scientific bases of architectural design of distributed data processing systems. Dr. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 1996. 243 p.

Опис патенту:

Palkin M.V., e.a. Sposob orientirovaniia po krenu letatel'nogo apparata s opticheskoi golovkoi samonavedeniia [The way to orient on the roll of aircraft with optical homing head]. Patent RF, no. 2280590, 2006.

На сайті *http://www.translit.ru/* можна безкоштовно скористатися програмою транслітерації російського тексту в латиницю. Програма дуже проста, її легко використовувати як для готових посилань, так і для транслітерації різних частин описань.

6. АНОТАЦІЯ. РЕЗЮМЕ. КОЛОНТИТУЛ. АВТОРСЬКЕ РЕЗЮМЕ.

6.1 **Анотація** (коротка стисла характеристика змісту праці) подається мовою статті, містить не більше 50 повнозначних слів і передує (окремим абзацом) основному тексту статті.

6.2 **Резюме** (короткий висновок з основними положеннями праці) подаються двома мовами (виключаючи мову статті), кожне містить не більше 50 повнозначних слів і друкується на окремому аркуші.

6.3 **Колонтитул** (короткий або скорочений чи видозмінений заголовок статті для друкування зверху на кожній сторінці тексту праці) подається мовою статті разом із прізвищем та ініціалами автора на окремому аркуші.

6.4 **Авторське резюме** (реферат) подається англійською мовою окремим файлом та включає: назву статті, прізвища та ініціали авторів, назву та адресу наукової установи, е-mail, слово «Резюме» або «Summary», текст резюме та ключові слова.

Авторське резюме є коротким резюме більшої за обсягом роботи, що має науковий характер, може публікуватися самостійно, отже має бути зрозумілим без звернення до самої публікації. З авторського резюме читач повинен визначити, чи варто звертатися до повного тексту статті для отримання більш докладної інформації.

Авторське резюме до статті є основним джерелом інформації у вітчизняних та зарубіжних інформаційних системах і базах даних, що індексують журнал.

Авторське резюме розміщується на сайті журналу для загального огляду в мережі Інтернет та індексується мережевими пошуковими системами.

Авторське резюме англійською мовою включається в англомовний блок інформації про статтю, який завантажується на англомовний варіант сайту журналу і готується для зарубіжних реферативних баз даних і аналітичних систем (індексів цитування).

Авторське резюме повинне містити істотні факти роботи, і не повинне перебільшувати або містити матеріал, який відсутній в основній частині публікації.

Рекомендується структура анотації, що повторює структуру статті і включає вступ, мету і завдання, методи, результати, висновок (висновки).

Однак предмет і тема дослідження вказуються в тому випадку, якщо вони не зрозумілі з заголовку статті; метод або методологію проведення роботи доцільно описувати в тому випадку, якщо вони відрізняються новизною або представляють інтерес з точки зору даної роботи.

Результати роботи повинні описуватись точно і інформативно. Наводяться основні теоретичні та експериментальні результати, фактичні дані, виявлені взаємозв'язки і закономірності. При цьому віддається перевага новим результатам і даним довгострокового значення, важливим відкриттям, висновкам, які спростовують існуючі теорії, а також даним, які, на думку автора, мають практичне значення.

Висновки можуть супроводжуватися рекомендаціями, оцінками, пропозиціями, гіпотезами, описаними в статті.

Відомості, що містяться в заголовку статті, не повинні повторюватися в тексті авторського резюме. Слід уникати зайвих вступних фраз (наприклад, «автор статті розглядає…»). Історичні довідки, якщо вони не становлять основний зміст документа, опис раніше опублікованих робіт і загальновідомі положення в авторському резюме не наводяться.

У тексті авторського резюме слід вживати синтаксичні конструкції, властиві мові наукових і технічних документів, уникати складних граматичних конструкцій.

Авторське резюме повинне містити ключові слова з тексту статті.

Скорочення і умовні позначення, крім загальновживаних, застосовують у виняткових випадках або дають їх розшифровку та визначення при першому вживанні в авторському резюме.

Текст авторського резюме повинен бути зв'язаним з використанням слів «отже», «більш того», «наприклад», «в результаті » і т.д. («Consequently», «moreover», «for example», «the benefits of this study», «as a result» etc.), розрізнені положення повинні логічно випливати один

з іншого. Необхідно використовувати активний, а не пасивний залог, тобто «The study tested», але не «It was tested in this study» (часта помилка російських анотацій).

Текст авторського резюме повинен бути лаконічним і чітким, вільним від другорядної інформації, зайвих вступних слів, загальних і незначущих формулювань.

В авторському резюме не робляться посилання на номер публікації в списку літератури до статті.

Обсяг тексту авторського резюме визначається змістом публікації (обсягом відомостей, їх науковою цінністю та/або практичним значенням), але не повинен бути менше 100-250 слів (для російськомовних публікацій рекомендується більший об'єм).

Згідно додатку до Наказу МОН України № 1021 від 07.10.2015 р. науковий журнал «Вісник Одеського національного університету. Хімія» входить до Переліку наукових фахових видань України, в яких можуть публікуватися основні результати дисертаційних робіт на здобуття наукових ступенів доктора та кандидата наук.

Статті приймаються до друку після попереднього рецензування. Редколегія має право редагувати текст статей, рисунків та підписів до них, погоджуючи відредагований варіант з Хімія». Рукописи статей, що прийняті до публікування авторам, не повертаються. Наукове видання

ВІСНИК одеського національного університету

Серія Хімія

Науковий журнал

Виходить 4 рази на рік

Том 22 Випуск 1(61)

Українською, російською та англійською мовами

Адреса редколегії Одеський національний університет імені І.І. Мечникова, Редакційна колегія «Вісника ОНУ. Хімія» 2, Дворянська, Одеса, 65082, Україна Тел: (+380-48) 723-82-64 E-mail: heraldchem@onu.edu.ua Caйт: heraldchem.onu.edu.ua http://www.lib.onu.edu.ua/ua/izdanONU/ua/elres/vischem

Макет В.Г. Вітвицька

Підписано до друку 17.01.2017 р. Формат 70×108/16. Ум. друк. арк. 11,8. Тираж 100 прим. Зам. № 1570.

Видавець і виготовлювач Одеський національний університет імені І.І. Мечникова Свідоцтво суб'єкта видавничої справи ДК № 4215 від 22.11.2011 р. 65082, м. Одеса, вул. Єлісаветинська, 12, Україна Тел.: (048) 723 28 39 e-mail: druk@onu.edu.ua